Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics **Chapter 7**

Relations: The Second Time Around

Instructor: Cheng-Hsin Hsu

Outline

- **7.1 Rations Revisited: Properties of Relations**
- **7.2 Computer Recognition: Zero-One Matrices and Directed Graphs**
- **7.3 Partial Orders: Hasse Diagrams**
- **7.4 Equivalence Rations and Partitions**
- **7.5 Finite State Machines: The Minimization Process**

Reviews

- For sets A , B , any subset of $A \times B$ is called a (binary) relation from A to B . Any subset of $A \times A$ is called a (binary) relation on *A*
	- Ex: Let Σ be an alphabet, with language $A \subseteq \Sigma^*$. For *x*, *y* in *A*, we define $x \mathcal{R} y$ if *x* is a prefix of *y*.
	- Ex: Consider a state machine $M = (S, \mathcal{I}, \mathcal{O}, \nu, \omega)$
		- First level of reachability: $s_1 \mathcal{R} s_2$ if $\nu(s_1, x) = s_2$
		- Second level: $s_1 \Re s_2$ if $\nu(s_1, x_1 x_2) = s_2, x_1 x_2 \in \mathcal{I}^2$

Reflexive

A relation $\mathcal R$ on a set A is called reflexive if for all $x \in A$, $(x, x) \in \mathcal{R}$

- **•** Ex 7.4: Consider $A = \{1,2,3,4\}$, a relation $\mathcal{R} \subseteq A \times A$ is reflexive iff $\mathscr{R} \supseteq \{(1,1), (2,2), (3,3), (4,4)\}$
	- Are the following relations reflexive?

$$
\mathcal{R}_1 = \{ (1, 1), (2, 2), (2, 3) \}
$$

$$
\mathcal{R}_2 = \{ (x, y) | x, y \in A, x \ge y \}
$$

A relation \mathcal{R} on a set A is called symmetric if for all $x, y \in A$, we know $(x, y) \in \mathscr{R} \Longrightarrow (y, x) \in \mathscr{R}$

■ Ex 7.6: Consider $A = \{1,2,3\}$, are the following relations symmetric or reflexive?

$$
\mathcal{R}_1 = \{ (1, 2), (2, 1), (1, 3), (3, 1) \}
$$

$$
\mathcal{R}_2 = \{ (1, 1), (2, 2), (2, 3), (3, 3) \}
$$

$$
\mathcal{R}_3 = \{ (1, 1), (2, 2), (2, 3), (3, 3), (3, 2) \}
$$

Transitive

A relation $\mathcal R$ on a set A is called transitive if for all $x, y, z \in A$, we know $x\mathscr{R}y$ and $y\mathscr{R}z \Longrightarrow x\mathscr{R}z$

■ Ex 7.10: Consider $A = \{1,2,3,4\}$, are the following relations transitive?

$$
\mathscr{R}_1 = \{ (1, 1), (2, 3), (3, 4), (2, 4) \}
$$

$$
\mathscr{R}_2 = \{ (1, 3), (3, 4) \}
$$

Antisymmetric

A relation \mathcal{R} on a set A is called antisymmetric if for $\textbf{all}\,a, b \in A$, if $a\mathscr{R}b$ and $b\mathscr{R}a \Longrightarrow a = b$

• Ex 7.11: For any universe \mathscr{U} , relation \mathscr{R} defined on $\mathscr{P}(\mathscr{U})$ $by (A, B) \in \mathcal{R}$ if $A \subseteq B$. Is this relation antisymmetric? Howa bout reflexive, symmetric, and transtive?

Partial Order

A relation \mathcal{R} on a set *A* is called partial order if it is reflexive, antisymmetric, and transitive

- Ex 7.14: Are the following relations partial order?
	- Define a relation on \mathbb{Z} by $(a, b) \in \mathcal{R}$ if $a \leq b$
	- Let $n \in \mathbb{Z}^+$, for $x, y \in \mathbb{Z}$, the modulo *n* relation \mathcal{R} is defined by $x \mathcal{R} y$, if $x \rightarrow y$ is a multiple of *n*

Equivalence Ration

A relation \mathcal{R} on a set A is called equivalence relation if it is reflexive, symmetric, and transitive

■ Ex 7.16: Are the following relations equivalence relations?

$$
\mathcal{R}_1 = \{ (1, 1), (2, 2), (3, 3) \}
$$

$$
\mathcal{R}_2 = \{ (1, 1), (2, 2), (2, 3), (3, 2), (3, 3) \}
$$

$$
\mathcal{R}_3 = \{ (1, 1), (1, 3), (2, 3), (3, 1), (3, 3) \}
$$

Outline

- **7.1 Rations Revisited: Properties of Relations**
- **7.2 Computer Recognition: Zero-One Matrices and Directed Graphs**
- **7.3 Partial Orders: Hasse Diagrams**
- **7.4 Equivalence Rations and Partitions**
- **7.5 Finite State Machines: The Minimization Process**

Composite Relation

F If $\mathcal{R}_1 \subseteq A \times B$ and $\mathcal{R}_2 \subseteq B \times C$ then the composite relation $\mathcal{R}_1 \circ \mathcal{R}_2$ is a relation from *A* to *C* defined by $\mathscr{R}_1 \circ \mathscr{R}_2 = \{(x, z) | x \in A, z \in C, \exists y \in B \text{ s.t. } (x, y) \in \mathscr{R}_1, (y, z) \in \mathscr{R}_2\}$

• Ex 7.17: Let $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\}.$ If $\mathscr{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ and $\mathscr{R}_2 = \{(w, 5), (x, 6)\}.$ Write $\mathcal{R}_1 \circ \mathcal{R}_2$. If $\mathcal{R}_3 = \{(w, 5), (w, 6)\}\$, what is $\mathcal{R}_1 \circ \mathcal{R}_3$?

Association and Powers

- **•** Let $\mathcal{R}_1 \subseteq A \times B, \mathcal{R}_2 \subseteq B \times C, \mathcal{R}_3 \subseteq C \times B$, we have $\mathscr{R}_1 \circ (\mathscr{R}_2 \circ \mathscr{R}_3) = (\mathscr{R}_1 \circ \mathscr{R}_2) \circ \mathscr{R}_3$
	- There is no ambiguity if we write $\mathcal{R}_1 \circ \mathcal{R}_2 \circ \mathcal{R}_3$
- **Powers of** \mathcal{R} on *A* are recursively defined by: (i) $\mathcal{R}^1 = \mathcal{R}$ and (ii) $\mathscr{R}^{n+1} = \mathscr{R} \circ \mathscr{R}^n$, where $n \in \mathbb{Z}^+$
- **F** Ex 7.19: If $A = \{1, 2, 3, 4\}, \mathscr{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\},\$ what are $\mathcal{R}^2, \mathcal{R}^3, \mathcal{R}^4$?

Zero-One Matrix

• An *m* by *n* zero-one matrix $E = (e_{ij})_{m \times n}$, is a rectangular array with *m* rows and *n* columns, where each e_{ij} denotes the entry in the *i*th row and *j*th column, which can be either *0* or *1*

Ex 7.20: *E* is a 3 by 4 zero-one matrix

$$
E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}
$$

Relation Matrices

■ Ex 7.21: Write the following relations into relation matrices $A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\}$ $\mathscr{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ $\mathscr{R}_2 = \{(w, 5), (x, 6)\}\;$ $M(\mathscr{R}_1) =$ $\sqrt{ }$ \perp \perp \perp 0100 0100 0011 0000 $\overline{\mathbf{I}}$ \perp \perp fl $M(\mathscr{R}_2) =$ Γ \perp \perp $\mathbf{1}$ 100 010 000 000 $\overline{1}$ \perp \perp fl

 $M(\mathscr{R}_1)M(\mathscr{R}_2) = ?$

■ Note that, a convention used here is $1 + 1 = 1$, which is called boolean addition

Some Properties

- Execute 1 Let *A* be the set with *n* elements. \mathcal{R} is a relation on *A*. If $M(\mathscr{R})$ is the relation matrix for \mathscr{R} then
	- $M(\mathscr{R}) = 0$ iff $\mathscr{R} = \varnothing$
	- $M(\mathscr{R}) = 1$ iff $\mathscr{R} = A \times A$
	- $M(\mathscr{R}^m) = M(\mathscr{R})^m$, for $m \in \mathbb{Z}^+$

Precedes, Identify Matrix, Transpose

- § Let *E* and *F* be two *m* by *n* (*0*,*1*) matrices. We say *E* precedes, or is less than *F*, and we write $E \le F$ if $e_{ij} \leq f_{ij}, \forall 1 \leq i \leq m, 1 \leq j \leq n$
- Identify Matrix:

 $I_n = (\delta_{ij})_{n \times n}$, where $\delta_{ij} = 1$ if $i = j, \delta_{ij} = 0$, o.w.

■ Transpose:

$$
A^{\mathrm{tr}}: a_{ji}^* = a_{ij}
$$

Relations in Matrices

- Given a relation \mathcal{R} on A , where $|A| = n$. Let M be the relation matrix of *R*
	- $-$ *R* is reflexive iff $I_n \le M$
	- $-g$ is symmetric iff $M = M^{\text{tr}}$
	- $-$ *R* is transitive iff $M^2 \le M$
	- \Re is antisymmetic iff $M \cap M^{\text{tr}} \leq I_n$
		- where $1 \cap 1 = 1, 1 \cap 0 = 0 \cap 1 = 0, 0 \cap 0 = 0$

Directed Graph

- Let *V* be a finite set. A directed graph (or digraph) *G* on *V* is made up the elements of *V*, called the vertices or nodes of *G*, and a subset *E*, of $V \times V$, that contains the directed edges, or arcs, of *G*. The set *V* is called the vertex set of *G*, and the set *E* is called the edge set. $G = (V,E)$ denotes the graph.
- **•** If $(a, b) \in E$, then there is an edge from *a* to *b*. Vertex *a* is called the origin, and *b* is called terminus. We say *b* is adjacent from *a* and *a* is adjacent to *b*.
- **•** If $a \neq b$ then $(a, b) \neq (b, a)$. An edge from *a* to *a* if called a loop.

Examples of Digraphs

- Are there isolated vertices?
- Undirected edges $\{a,b\} = \{b,a\}$

Figure 7.2

Precedence Graph

■ Dependency among statements (computer programs)

Figure 7.3

A Few More Terms

■ What are: (i) associated undirected graph, (ii) path (cannot contain duplicated vertices), (iii) connected graph, (iv) length, (v) loop, and (vi) cycle?

Figure 7.4

Strongly Connected

- A directed graph *G* on *V* is called strongly connected if there is a path from any vertex *x* to any vertex *y*
- The graph on the right is connected but not strongly connected
- The graph on the right is strongly connected and loop-free

Components

§ Two components in each graph

Figure 7.6

Complete Graphs

Figure 7.7

Matrices and Graphs

- § A graph G describes a relation *R*
	- If (x,y) is an edge in *G*, then $x \mathcal{R} y$

- Both 0-1 matrix and digraph can describe relations
	- The matrix is called the adjacency matrix for G
	- Or a relation matrix for *R*

Reflexive and Antisymmetric

Transitive and Antisymmetric

Outline

- **7.1 Rations Revisited: Properties of Relations**
- **7.2 Computer Recognition: Zero-One Matrices and Directed Graphs**
- **7.3 Partial Orders: Hasse Diagrams**
- **7.4 Equivalence Rations and Partitions**
- **7.5 Finite State Machines: The Minimization Process**

Partially Ordered Set

- *P* is a relation on *A*. (A, \mathcal{R}) is called partially ordered set if relation $\mathcal R$ on A is a partial order relation
	- Reflexive, antisymmetric, transitive
	- Also called poset

• Ex 7.34: Define the relation $x \mathcal{R}y$ if x, y are the same course or if *x* is a prerequisite of *y*

Not Partial Order

31

Figure 7.16

Hasse Diagram

- Drop loops
- Drop transitive edge
- Directions go from bottom up

Figure 7.17

Totally Ordered

- **•** If (A, \mathcal{R}) is a poset, *A* is totally order (or linearly ordered) if for any *x* and *y*, either $x \Re y$ or $y \Re x$.
	- $\mathcal R$ is called a total order (or a linear order)

Figure 7.19

Partial vs. Total Orders

- Consider a car manufacturer which needs to assemble 7 components into a car. The partial order is $\mathscr R$ given below
	- Can the company find a total order \mathscr{T} so that $\mathscr{R} \subseteq \mathscr{T}$?
	- Topological sorting!

Topological Sorting

■ Idea: Repeatedly remove the vertex that is not a source (nor an implicit source) of any edge, until we have no vertex left in the Hasse diagram

Topological Sorting Algorithm

- **•** Input: A partial order \mathcal{R} on a set *A*, where $|A| = n$
- Step 1: Let $k = 1$, Let H_1 be the Hasse diagram
- Step 2: Select v_k from H_k , so that no (implicitly directed) edge in H_k starts at v_k
- Step 3: If $k < n$, remove v_k and edges terminating at v_k from H_k . Call the new Hasse H_{k-1} , and goto step 1
- Step 4: The total order that contains $\mathcal R$ is

$$
\mathcal{T}: v_n < v_{n-1} < \cdots < v_2 < v_1
$$

Maximal, Minimal Elements

- **•** If (A, \mathcal{R}) is a poset, an element $x \in A$ is a maximal element of *A* if for all $a \in A$, $a \neq x \Longrightarrow \neg(x\Re a)$. An element $y \in A$ is a minimal element of *A* if for all $b \in A$, $b \neq y \Longrightarrow \neg(b\mathscr{R}y)$
- Ex 7.42: Define \mathcal{R} be "less than or equal to" relation on $\mathbb Z$, we find that $(\mathbb Z,\mathscr R)$ is a poset with no maximal nor minimal element. How about $(\mathbb{N}, \mathcal{R})$?
- A poset may have multiple maximal (minimal) elements! Recall the topological sorting algorithm.
- **•** If (A, \mathcal{R}) is a poset and A is finite, A has both a maximal and a minimum element $\frac{37}{10}$

Least, Greatest Elements

• If (A, \mathcal{R}) is a poset, an element $x \in A$ is a least element of *A* if $x\Re a \ \forall a \in A$. An element $y \in A$ is a greatest element of *A* if $b\Re y \ \forall b \in A$

- If a poset has a greatest (least) element, the element is unique

- Ex 7.45: Define $\mathcal{U} = \{1, 2, 3\}$, \mathcal{R} be subset relation
	- Poset ($\mathcal{P}(U), \subseteq$) has \emptyset as a least element and U as a greatest element
	- Let *A* be all the nonempty subsets of \mathcal{U} . (A, \subseteq) has \mathcal{U} as the greatest element. It has no least element, but three minimal elements.

Lower and Upper Bounds

- **•** If (A, \mathcal{R}) is a poset and $B \subseteq A$. An element $x \in A$ is called a lower bound of *B* if $x\Re b$ $\forall b \in B$. An element $y \in A$ is called an upper bound of *B* if $b\Re y \forall b \in B$
	- $-x' \in A$ is a greatest lower bound (glb) of *B* if it is a lower bound of *B* and $x''\mathcal{R}x'$ for any other lower bound x'' of *B*
	- $x' \in A$ is a least upper bound (lub) of *B* if it is an upper bound of *B* and $x' \mathcal{R}x''$ for any other upper bound x'' of *B*
- **•** Ex 7.47: Let $A = \mathcal{P}(\{1, 2, 3, 4\})$ and \mathcal{R} be the subset relation on A. If $B = \{\{1\}, \{2\}, \{1, 2\}\}\$ then what are the upper bounds? What is the least upper bound? What is the greatest lower bound?
	- Lub and glb are unique **39**

Lattice

A poset (A, \mathcal{R}) is called a lattice if for all $x, y \in A$ the elements $\text{lab}\{x, y\}$ and $\text{glb}\{x, y\}$ both exist in A

Outline

- **7.1 Rations Revisited: Properties of Relations**
- **7.2 Computer Recognition: Zero-One Matrices and Directed Graphs**
- **7.3 Partial Orders: Hasse Diagrams**
- **7.4 Equivalence Rations and Partitions**
- **7.5 Finite State Machines: The Minimization Process**

Equivalence Relations

A relation $\mathcal R$ on A is an equivalence relation if it's reflexive, symmetric, and transitive.

- **Ex** 1: For $A \neq \emptyset$, the equality relation is an equivalence relation, in which two elements are related if they are identical.
- **•** Ex 2: Consider a relation on \mathbb{Z} , where $x\mathscr{R}y$ if $x-y$ is a multiple of 2.
	- How does this relation split $\mathbb Z$ into two subsets?

Partition

- **•** Let *A* be a set and *I* be an index set, where A_i is not empty and $A_i \subseteq A$, for all $i \in I$. $\{A_i\}_{i \in I}$ is a partition of *A* if
	- $A = \bigcup A_i$ - $A_i \bigcap A_j = \emptyset$ for all *i∈I* $A_i \bigcap A_j = \emptyset$ for all $i \neq j$; $i, j \in I$

Each subset A_i is a cell, or block of the partition

- **Ex** 7.52: For $A = \{1, 2, 3, ..., 10\}$, the following are partitions of *A*
	- {{*1*,*2*,*3*,*4*,*5*}, {*6*,*7*,*8*,*9*,*10*}}
	- $A_i = \{i, i+5\}, 1 \le i \le 5$

Equivalence Class

• Let $\mathscr R$ be an equivalence relation on A . The equivalence class of $x \in A$, denoted as $[x]$, is defined $\mathbf{by}[x] = \{y | y \in A, y\mathcal{R}x\}$

- **•** Ex 7.52: \mathcal{R} is a equivalence relation on \mathbb{Z} , where $x\mathcal{R}y$ if $4|(x-y)$. The four equivalence classes are
	- $[0] = \{4k | k \in \mathbb{Z}\}\$
	- $[1] = \{4k + 1 | k \in \mathbb{Z}\}\$
	- $[2] = \{4k + 2|k \in \mathbb{Z}\}\$
	- $[3] = \{4k + 3|k \in \mathbb{Z}\}\$

Properties of Equivalence Class

- Exercise 1 Let \mathcal{R} is an equivalence relation on A, and $x, y \in A$.
	- $-x \in [x]$
	- $x\mathscr{R}y$ iff $[x] = [y]$
	- $[x] = [y]$ or $[x] \cap [y] = \varnothing$
- This theorem tells us the distinct equivalence classes given by $\mathcal R$ gives us a partition of A

Examples of Partitions

• Ex 7.56 (a) : Let $A = \{1, 2, 3, 4, 5\}$ and $\mathscr{R} = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)\}$

what's the corresponding partition?

- **Figure 1** Ex 7.56 (b): Function $f : A \rightarrow B$, where $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{x, y, z\}$, *f* is defined as $\{(1, x), (2, x), (3, x), (4, y), (5, z), (6, y), (7, x)\}$
- We define a relation \mathcal{R} by $a\mathcal{R}b$ if $f(a) = f(b)$. What is the partition determined by \mathscr{R} ?

Examples of Partitions (cont.)

F If an equivalence relation \mathcal{R} on $A = \{1, 2, 3, 4, 5, 6, 7\}$ results in the partition $A = \{1, 2\} \cup \{3\} \cup \{4, 5, 7\} \cup \{6\},\$ what is \mathcal{R} ? What's the size of it?

 $\mathscr{R} = (\{1,2\} \times \{1,2\}) \cup (\{3\} \times \{3\}) \cup (\{4,5,7\} \times \{4,5,7\}) \cup (\{6\} \times \{6\})$

Equivalence Class and Partition

- For a set *A*
	- Any equivalence relation $\mathcal R$ on A leads to a partition of A
	- Any partition of *A* gives an equivalence relation \mathcal{R} on *A*
- For any set *A*, there is a one-to-one correspondence between the set of equivalence relations on *A* and the set of partitions of *A*.
	- So counting the number of partitions is the same as counting 1-1 functions.

Outline

- **7.1 Rations Revisited: Properties of Relations**
- **7.2 Computer Recognition: Zero-One Matrices and Directed Graphs**
- **7.3 Partial Orders: Hasse Diagrams**
- **7.4 Equivalence Rations and Partitions**
- **7.5 Finite State Machines: The Minimization Process**

Redundant States

- Redundant state: A state that can be eliminated because other states will perform its function
- **Consider a finite state machine** $M = (S, \mathcal{I}, \mathcal{O}, \nu, \omega)$, Let a relation $s_1E_1s_2$ if $\omega(s_1, x) = \omega(s_2, x)$ for all $x \in \mathcal{I}$
	- E_1 is called *1*-equivalent.
- $s_1E_ks_2$ if $\omega(s_1, x) = \omega(s_2, x)$ for all $x \in \mathscr{I}^k$
	- $-E_k$ is called *k*-equivalent
- $s_1 E s_2$ if $s_1 E_k s_2$ is true for all $k \ge 1$
	- *E* is called equivalent

Minimization Algorithm

- To get rid of redundant states
- Step 1: Let $k=1$, find states that are 1-equivalent by examining the output rows in the state table. This gives partition P_1 and relation E_1
- Step 2: When P_k is found, we obtain P_{k+1} by knowing that if $s_1E_k s_2$, then $s_1E_{k+1}s_2$ when $\nu(s_1, x)E_k\nu(s_2, x)$ $\forall x \in \mathscr{I}$
	- This is true if $\nu(s_1, x)$ and $\nu(s_2, x)$ are in the same cell of P_k
- Step 3: If $P_{k+1} = P_k$, we are done, o.w. goto step 2

A Simple Example

- **Ex** 7.60: If $\mathcal{I} = \mathcal{O} = \{0, 1\}$, the state table is given below. What is P_1 ? P_1 : { s_1 }, { s_2 , s_5 , s_6 }, { s_3 , s_4 }
- Show $\nu(s_3, x)E_1\nu(s_4, x)$, and thus?

Table 7.1

• Show $\neg[\nu(s_5, x)E_1\nu(s_6, x)]$, and thus?

$$
\blacksquare \ P_2 : \{s_1\}, \{s_2, s_5\}, \{s_6\}, \{s_3, s_4\}
$$

- Since $P_1 \neq P_2$, we need to get P_3
	- Because $P_3 = P_2$, we stop here
	- s_5 , s_4 are redundant states

Refinement

P₂ is called a refinement of P_1 , $P_2 \le P_1$, if every cell of P_2 is contained in a cell of P_1 . When $P_2 \le P_1$ and $P_2 \neq P_1$, we write $P_2 = P_1$.

• In the minimization process, if $k \geq -1$ and $P_k = P_{k+1}$, then $P_{r+1} = P_r$ for all $r \geq k+1$

Distinguishing String

- A sample string with length $k+1$ that leads to different outputs for states s_1 and s_2
- **Ex** 7.61: Find the minimal distinguish string for $s₂$ and s_6 in the finite state machine of Ex 7.60

$$
P_2: \{s_1\}, \{s_2, s_5\}, \{s_6\}, \{s_3, s_4\}
$$

$$
P_1: \{s_1\}, \{s_2, s_5, s_6\}, \{s_3, s_4\}
$$

Table 7.1

