=

EAVAEENE =1 3= Gkl 7= MW S
E 3w
Department of Computer Science
College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

HI HTTP By RR 2 AR LA I 2 & W] i 52 (R Al e BB T &
S Android B EAISE R
MPEG-DASH Standard with SVC Video Streaming on Android
Mobile .Dé_vicés

BT
Chien-Chang Chen

TEEH Y « RIENT Bt
Advisor: Cheng-Hsin Hsu, Ph.D.

HEE R E] 1044 06 H
June, 2015

BT <
e HEBIR R

EHE

I HTTP iR i S fr g o E 45

IEBRIE AN %4 Android BB fn

i &

TBEA
T
N

104

06

D&

AREMEZEEEZS - EIELHIE H.264/SVCHETEAY - 15 LRI
BHEEZ I OTERE L W3R HTTP R ThEE - HME
TERfRISER i Z8UTHE » R BE S O0VFE » FRitkz 5 » 218
R AR IR AR K A P o B S AR m B AR R AT HTTP 2R R o FRAM &
T E R AR HORLEE » 7E Android FOSFRREE RS & B E A 4% BT E
B FEH H.264/SVCE R 2R EREEE - IKMERGERER » HEE2%
O Android TE) 46 B _FIETT RIS 2 AT ATHY o SRFIZREL » E AL
960x544152 F IR} » fRISERAE M B (FPS EHHEFP) nILL#E
£20.72 FPS E B 480x2720752 Fr iR » B B 2K 1] 42.03 FPS [R
THRISEETHI RSN BT A TR GBI E R - 0 BIAE WIF
B 3G A4 T F HTTP SR SR > S HTTP SR R RS > FAFIRY
FERE S B B 2 5 42 FPS BIMGT BRI IHIEE (4 2.580) o 3/
HE— ST AFIEECE 5 i?%-'MPEG-DASHt%ﬁEL)&%)\ SDL B
U o MPEG-DASHZE i SVC Al # R4l 48 i © (1) AT AR & i Al
IRAFPIEEFTR K + (2) BRI IR A% 22K A% £ v] DL 4R A8 A2 20 Al IR
BRIV EYE s DU (3) M DABE Pkt [R R R BE AUFEK o FAIH
MPEG-DASHLL} SDL 1T EER - Ehess R R EREN BB &S
Al E £ 15 Mbits > #& 5L 360x18009 5 Fr > fifil 2% nl £ 2= /D 50 FPSe
1% A B R E T & FGA T R AR A -

Abstract

We design, implement, and evaluate an H.264/SVC decodarakid TP
video streaming client on multi-core mobile devices. Theadler employs
multiple decoder threads to leverage multi-core CPUs, apdstheaming
server/client support adaptive HTTP video streaming. Taluate the de-
coder performance, we conduct experiments using real 5282 videos
on a tablet and a smart phone running Android 4.0. Our exariah results
demonstrate that real-time H.264/SVC decoding is feasibi@ulti-core mo-
bile devices. For example, for 960x544 and 480x272 videas,decoder
achieves up to 20.72 and 42.03 Frame-Per-Second (FPSgctegty. We
also conduct extensive HTTP video streaming experimergslwe WiFi and
3G cellular networks. Our system achieves high frame rgi¢qu-42 FPS),
and short initial delay (as small'as2.5 secs). We extend our testbed to sup-
port MPEG DASH (Dynamic'Adaptive Streaming over HTTP) staadand
SDL (Simple DirectMedia Layer) library. The benefits of MPEASH with
SVC are that (i) the storage space. requirement is reduggde@ments can
be reused to reduce server overhead, and-(iii) switchingts\wee performed
faster. Last, we conduct experiments using MPEG-DASH stathdnd SDL
library. The results show that the throughput of MPEG-DASHiaves up to
~15 Mbits/s, and our decoder achieves at least 50 FPS for 360xtieos.
We have made our testbed publicly available to the reseantiminities.

Contents

PR E i
Abstract i
1 Introduction 1
2 Related Work 6
3 Background 8
3.1 H.264/SVC Standard 8
3.2 MPEG-DASH Standard ... P~ 11
4 System Architecture =T S, £ 14
5 Implementations 18
5.1 Multi-Core Decoder on AndrOId Dewces 18
5.1.1 Limitations of Single-Threaded Decoder. 18
5.1.2 Software Architecture of Our Multi-Core Decoder 18
5.1.3 ParallelismStrategy 19
5.1.4 Porting SDL Library as Renderer to Decoder 20
5.2 MPEG-DASH Client with SVC Decoder on Android Devices 21
5.2.1 Architecture of DASHClient. 21
5.2.2 Supporting H.264/SVC MPD Format 22
5.2.3 SVC SegmentExtractor 22
5.3 Switching EventHandler, 32
6 Experiments 25
6.1 Multi-core SVC Decoder 25
6.1.1 VideosandSetup 25
6.1.2 Evaluation Results of SVC Decoder 25
6.2 Scalable Video Streamingover HTTP 28
6.2.1 Setup 28
6.2.2 Evaluation Results of HTTP streaming 2 3
6.3 Evaluation of MPEG-DASHClient. 33
6.3.1 Setup 33
6.3.2 Evaluation Results of MPEG-DASH Client 33
6.4 Effective SDLRendering 35
6.4.1 Setup e 35

6.4.2 Evaluation Results of SDL Rendering 35

7 Conclusion and Future Work 38

7.1 Conclusion s
7.2 Future Work
Bibliography 40

List of Figures

11
1.2
1.3
1.4
15
1.6
1.7

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Our client and decoder running on an Android phone.
Screenshotafoc video.
Screenshot gfeux video.
Screenshot foapvideo.
Screenshot (fport video.
Screenshotdfal k video.
The Sland Tl foreachvideo.

Example of temporal scalability.-.. I. P .-
Example of spatial scalability:, .. BV L L L L
Example of quality scalability. Firpe Bl 1 - PR
MPD hierarchical structljre.. e e s
MPEG-DASH overview. “.-.4 Ao 0L

System Architecture. L L Lo

Decoder architecture. L.
Decoder architecture with SDL.
libdash architecture. oL
Our DASH client architecture.
Client with gesture for switching spatial and temporal..

FPS, 960x544 videosonatablet.
FPS, 960x544 videos on a smartphone.

FPS, 480x272 videosonatablet.
Trade-off between FPS and resolution on a smart phone..

Memory consumption of our decoder, results fropor t

Power consumption comparison on a smart phone, resotsdfoc. . . .
Sample FPS of three resolutions, results famx.
Mean FPS of all videos with different resolutions.
Sample throughput of three resolutions, results fre@ux over 3G. . . .

\

..... 19

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Mean throughput of all videos with different resolasmver 3G. 31

Mean transfer delay of all videos with differentre¢iols. 31
Mean decoder delay of all videos with different resohd. 31
Streaming setup of MPEG-DASH. 33
Mean throughput of all videos with different resolasmver WiFi. . .. 34
Sample throughput of three resolutions, result fraux over WiFi.. . . 34
Mean FPS of all 1280x720 videos with different decotezdds. 36
Sample FPS of three resolutions, resultsfsgrar t 36
Mean FPS for all videos with three resolutions. 36

Vi

List of Tables

1.1 SVC Decoders are notreal-timeonalaptop. 2

1.2 Videos Descriptions

6.1 Bitrateand PSNRofVideos
6.2 Average Power Consumption (inWatts) 29

vii

viii

Chapter 1
| ntroduction

Mobile video streaming is getting increasingly popular.d&b streaming will ac-
count for more than 70 percent of mobile data traffic in 201€oeading to the Cisco’s
report [10]. The mobile data traffic will achieve 24.3 ExaBypeer month in 2019, which
is 10 times the traffic in 2014. It means-a-majority of usersusiag their mobile device
to watch videos. It is important.to provide better user eigrere for mobile streaming
services. The traditionalonscal able video-coders encode video into a stream, which can
only decode the video stream at-one 'sinlgl_e__quality. Nonbtaltzoders are less suitable
for mobile video streaming since they can not-timely resptinbeterogeneous mobile
devices and adapt to dynamic wireless network. conditionscohtrast,scalable video
coders encode each video into one based layer and a numb#raf@ment layers. The
based layer provides the basic video quality, and the emmaaut layers provide the in-
cremental quality enhancements. H.264/SVC [19] is the Inesadable coding standard,
but has not been widely used for mobile video streaming Isx#uere is no efficient
H.264/SVC decoder on resource-constrained mobile devi€esillustrations, we con-
sider five different types of H.264/SVC videos, which arecated in multiple resolutions
at 24 FPS. Fig. 1.2 to 1.6 are the screenshots of the videashweiné contents courtesy
of CBC/Radio-Canada. All of these videos are originally the futiidDefinition (HD)
videos and we compute the Peak Signal-to-Noise Ratio (PSNhapter 6. Table 1.2
lists the descriptions of these five videos. We plot$patial Information (SI) andTem-
poral Information (TI) [14] of each video in Fig. 1.7. The SI means the compiexit
frames. The frame with more components has higher compléXk calculate the com-
plexity of each frame and set the maximum one as the SI. Wecalsalate the T for all
videos. TI is the complexity of two continuous frames. Theghar TI means the more
difference between two continuous frames. In Fig. 1.7 gffibint is close to the top right,
it means that video has higher complexity. For examppmrt has a lot of fast moves
so that it has the highest TIl. Most frames of talk are the hufae@ and there are a few

1

Table 1.1: SVC Decoders are not real-time on a laptop.

Decoder doc j eux soap sport tal k
JSVM 17.75 (FPS) | 20.36 19.44 17.44 19.11
OpensSvC 18.79 27.03 20.79 18.71 24.26

Table 1.2: Videos Descriptions

Video Description
doc a documentary video talking about a woman who

lost her house

j eux a live show video about the guessing games

soap an action style soap video

sport a sports news video including volleyball,
basketball, swimming, etc.

tal k a talk show video

fast moves in the video, which leads to the lowest Sl and TId&@de the videos using
two single-threaded decoders, JSVM-and OpenSVC, on a laptb@awIntel i5 2.3 GHz
CPU running OS X. Table 1.1 presents the average FPS, whictssthat the existing
H.264/SVC decoders may not run in real-time:on laptops |teteaon mobile devices.

Recently, many multi-core maobile 'de\'/i_ce__s have been releadaidh may allow true
parallelism for real-time applications such-as H:264/S\éCatlers. In this work, we de-
velop an SVC decoder for multi-core’mobile devices. Fig.dives a screenshot of our
streaming client, and the decoder running on.an Android 4Bil@phone which is devel-
oped in our previous work [15]. To provide better event handhd larger display space,
we also design the new User Interface (Ul) which is detaite@éc. 5.3. We conduct
real experiments using HD videos with diverse charactesisin various mobile devices.
The experimental results are very encouraging. For exaroptedecoder achieves up to
20.72 FPS for 960x544 videos, and 42.03 FPS for 480x272 sidacwommodity multi-
core mobile devices. When streaming scalable videos ovePH® & quad-core Android
phone, we also achieve high frame rate, as high-42 FPS, and short initial delay, as
small as~2.5 secs.

To the best of our knowledge, that software-based videodkrsare inherently more
power-hungry than hardware-based solutions, as we hawraukin our evaluations.
Unfortunately, there exists no massively-produced SV@decchip at the time of writ-
ing. We believe this is because the benefits of SVC have not &esuated in the wild.
Our end-to-end scalable video streaming testbed can behyse mobile multimedia
community for setting up complete SVC-based testbeds. Wéyfioglieve that this will
stimulate more research studies on SVC and the productiS8iGfdecoder chips. There
is a technology has similar idea to SVC, which is dividing tldew into a lots of small

2

X 2 B %) @ 117 em

+ Spatial - Spatial + Temporal - Temporal

Figure 1.1: Our client and decoder running on an Android phone.

Figure 1.2: Screenshot dbc video.

Figure 1.3: Screenshot peux video.

Figure 1.5: Screenshot eport video.

POUR ASSISTER AUX ENREGISTREMENTS

514 529-0402
F WWW.PUBLICCIBLE.COM

Figure 1.6: Screenshot bfl k video.

~
o

- * doc
2 O jeux %
w6571 | + soap
= sport
“960 O talk o
= +
=
=99 i
a,
@p)
50 -

60 70 80 90 100 110
Temporal Information

Figure 1.7: The Sl and Tl for each video.

chunks, called adaptation streaming. : _

In the recent years, the HTTP protocel streaming has becbmenbst popular ap-
proach for delivering multimedia contents. In particukataptation HTTP streaming al-
lows clients to switch to different str_ea'm'é on the fly! In 20MPEG published the adap-
tation HTTP streaming standard, called MPEG-DASH standakelextend our system to
support MPEG-DASH standard (see Sec. 5.2) and conduct peziments in Chapter 6.

Chapter 2

Related Work

Although there are commercial H.264/SVC decoders [4, Hjrthmplementations
are proprietary and thus are less suitable for researcleqisoj There are two publicly
available H.264/SVC decoders: (i) Joint Scalable Video MgqdSVM), which is the
reference software of the H.264/SVC standard, and (ii) @M decoder [11], which is
an open-source project, but has not been pdrte_d to moderiten@®'s. For this project,
we build a multi-core decoder on Andrdid using, the librarfecéd by the OpenSVC
project. = e

Mueller and Timmerer propose' a seséién mobility testbeshsting based on Dy-
namic Adaptive Streaming over HTTP(DASH)[17], which enysmonscalable videos.
In a more recent work, Mueller et al.. conduct DASH streamirgegiments [16] using
scalable videos. Their work focus on adaption processidgcampares the performance
among the MPEG-DASH and proprietary solutions. The corestmetrics are average
bit-rate, number of quality switches, buffer level, andmosth seconds, between AVC
and SVC with MPEG-DASH. Their traces are recorded by cello&work by car drives
on three different highways. The results show that MPEG-BA®th H.264/SVC out-
performances than MPEG-DASH with AVC. Sieber et al. [20] megd new adaption
algorithm compares with other three existing adaptionritigms on H.264/SVC MPEG-
DASH streaming. Their algorithm achieves high playbackliggaigh bandwidth uti-
lization, low switching frequency, low memory consumptimempared with other three
algorithms. Sanchez et al. [13] work focus on proxy cachecampares MPEG-DASH
with H.264/SVC and MPEG-DASH with H.264/AVC video streamiaon VoD service.
The results show that the SVC streaming can reduced thersereehead, because of
SVC layered structure can fully utilize the proxy cache. S#@aming can provide more
number of clients than AVC streaming, because of proxyditie-is higher.

All of above works are focus on Networks performance, suclh@sg to increase
the Quality of Experiment (QoE) to provide highest qualdgpd how to reduce stalling

6

frequency. Our work is complementary to [16] in the senséweadevelop a real-time
MPEG-DASH with H.264/SVC decoder on Android OS and build ad-&-end HTTP
streaming testbed. Our work not only evaluation the peréorce of Networks but also
evaluate the H.264/SVC decoder. Since we make our codecpulblailable [9] for
research community. We want to let more people to underdtantbenefits of MPEG-
DASH with SVC and apply this system in the real world.

Chapter 3
Background

In this section, we will introduce the idea of H.264/SVC anBEAG-DASH standards.

3.1 H.264/SVC Standard

The traditional video coders are nonscaléb_le which is nibaisie for heterogeneous
mobile devices, such as H.264/AVC, When we'encode the videmesd to configure
encoding parameters, like frame=-rate; re'solu_tion, aneércdebr nonsacalable video cod-
ing, we encode one stream per co.nfiguraﬁc-Jn, therefore we adet of spaces to store
multiple versions of videos. The client needs to choose theegy version of video to
display. If the client chooses the wrong version, it willltehile playback or will spend
too much resources for decoding. The scalable video codiagoetter solution to solve
this problem.

H.264/SVC standard [19] extends H.264/AVC standard [22)ioport scalable video
coding. The idea of SVC is a layered structure which divides video into multiple
layers. H.264/SVC provides three scalable features: teahpspatial, and quality: (i)
T temporal layers, where each layer leads to a different freates (ii) S spatial lay-
ers, where each layer leads to a different resolution, andcfiquality layers, where
each layer leads to a different fidelity level controlled thoby quantization parameters.
When decoding an H.264/SVC stream, user selects a tuple ¢> and decodes the cor-
responding sub-stream for the target representation ofenate) < ¢ < 7, resolution
0 < s < S, and fidelity leveld < ¢ <). These sub-streams allow multimedia sys-
tems to conserve resources by not, e.g., storing, transgyitiuffering, uncompressing,
or rendering some layers.

For each scalable feature, the layers are split into twostyipagsed layer and enhance-
ment layer. There are only one based layer and one or moraesmant layers for SVC
video stream. Based layer contains necessary data for ahecadlient displays the worst

8

|
Enhancement ! | Frame Type
L 2
e | /l s | Frame
;—— —_—_‘ mmmmss P Frame
Enhancement | | "1 BFrame
Layer 1 | |
-/

\
I
I
I
I
I
I
I
I
I
I
|

Base :
Layer | |
—_ e — e —— — ~
Figure 3.1: Example of temporal scalability.
Frame Type
lI } s | Frame
Enhancement | | | — P Frame
Layer | | |71 BFrame
| - =)
Frame Size
rel=——- . B == N
Base | |
Layer : }
- Low High
j : Resolution Resolution
Figure 3:2: EXan‘IpIé ofispatial-scalability.
4
I
Enhancement :
Layer |
I
\
4
I
I
Base Layer |
I
I
\

Figure 3.3: Example of quality scalability.

quality video, if decoder only decodes based layer. The tauality can be defined
by lowest frame-rate, smallest frame size, or worst fidéétyel, according to encoding
configuration. Enhancement layers provide extra inforomafior enhancing fidelity level,
frame-rate, or resolution. The SVC is a layer dependenttsire. For instance, the higher
enhancement layer depends on the lower enhancement laydralowest enhancement
layer depends on the based layer. In other words, if the @dedsdmissing the based
layer, decoder cannot decode any frames. If decoder isngigsihancement layers, the
video stream can’'t be enhanced any more. The following asergion of examples for
scalable features.

e Temporal Scalability. Fig. 3.1 is an example of temporal scalability. Temporal
layer number i$) < t < 3. Temporal layer 0 means based layer, temporal layer 1
means enhancement layer 1, and so on. The GOP size for tmgpéxa 9. This
figure shows that the based layer includes 3 frames. Enhamtdayer 1 provides
4 more B frames for enhancing. There are total 7 frames wheaodieg based
layer and enhancement layer 1. We assume the frame-ratenkeé¥ decoding all
temporal layerst(= 2). The frame-rate'is d_ecreased to 9 when decoding only based
layer. Therefore, more terhpora_l Ia;}ers'leads to higher draate.

e Spatial Scalability. The example' of spatial scalability is shown in Fig. 3.2. Eher
are two layers, based layer.and enhancement layer{ < 2). If number of spatial
layer is increasing, the resolution of decoded frames @ylechi Each enhancement
layer frame references correspond to-based layer frame ddta enhancement
layer reconstructs the higher resolution frame accordntpé based layer frame
data and its frame data. So, the enhancement layer datatondytke difference
between higher and lower resolution data.

e Quality Scalability. Fig. 3.3 is an example of quality scalability. The reference
structure of quality scalability is like the combinationtefporal and spatial scal-
ability. The lower quality layer has a worse fidelity levelhé'enhancement layer
not only reference the lower layer data but also the previ@mse data in the same
layer.

User can select the appropriate number of layers to decoilie w#ing scalable video
coding. We know that the android mobile devices are hetereges, such as different
screen size and computation power. If screen size of mobiued is 1280x720, the user
does not want to decode 4K video. Likewise, if computatiowgoof android mobile
device is not powerful to decode the full-quality SVC streatecoder can ignore some
enhancement layers to meet the device computation powett i3 hvhy scalable video
coding is more suitable for nonscalable video coders fagrogeneous devices.

10

MPD

Period 2

Representation 1

Period 1 e Start =100s Adaptation 2 o Bitrate = 1 Mbit/s
o Start=0s ¢ o width = 640
O %0 Representation 1 e height =480
Adaptation 1 e
. o Bitrate =
Period 2 Mbit/s Segment Info.
© SiEre= 1l Adaptation 2 [Initia]ization Segment]
o oo . .
Representation 2 http://test.dash/init.mp4

Period 3 e Bitrate =3 [}lrlttzd/l/ﬁ: Sfim;'/lt 11 .

X : ://test.dash/segl.m4s
e Start=200s Adaptation 3 Mbits [Media Segment 2]
o .- http://test.dash/seg2.m4s

Figure 3.4: MPD hierarchical structure.

N

Qo

Web Server Network Android Smart Phone
Quality Bandwidth ; Quality
“ A1
Low | OJOOOO0O . Low DIIDII -
» Time P Time - Time
d‘i];?eioerclgnf:lgi:::)hn Network with yariable Received video quality
1 bandwidth on Client

Web Server
Figure 3.5: MPEG-DASH overview.

3.2 MPEG-DASH Standard

For recent years, HTTP protocol becomes a popular approadélivery multimedia
contents. Traditional streaming protocol, likeal-Time Sreaming Protocol (RTSP), is
a stateful protocol. The drawback of stateful protocol igttberver needs to maintain
the connection state after setting up the connection betwkent and server. Server
and client need to send and respond the messages to kedpdrdwk connection state.
The better approach to deliver multimedia content is usifdPtbased approach. HTTP
protocol is stateless protocol so that server does not me@eintain the connection. The
server responds to the media streams when it receives th® iHaquest from client. It's
easier to scale up number of streaming clients with sligist.c@®ther benefit of HTTP
protocol is that HTTP can reuse the infrastructure, like CDiexies, and caches. To
compare with traditional streaming approach, HTTP prdtix€easy to go through the
firewall and without NAT traversal issues.

11

For the past few years, progressive download is used fosfeanimg the multimedia
contents over HTTP. By using progressive download, cliegtiests byte range of mul-
timedia contents from server. If client stops to watch vigdole multimedia contents
are downloading, the downloaded media data becomes usdiads leads to waste the
network resources. Progressive download has another dchkwithich does not support
switching to other streams during the downloading. The adapiTTP streaming can
solve the drawbacks of progressive download.

The adaptive HTTP streaming consists of two components,fesirfile and seg-
ments. There are some existing solutions of adaptive HTdasting, such as Apple
HTTP Live Streaming, Adobe HTTP Dynamic Streaming, and Bsoft Smooth Stream-
ing. But the mentioned solutions are the proprietary sohstioThe problem of propri-
etary solutions is that they are incompatible to each otHence, MPEG published the
adaptive HTTP streaming standard with Third Generatiorin@eship Project (3GPP),
companies, and experts, and called it MPEG-DASH [2]. Tha ideMPEG-DASH is
chopping the video into multiple segments with the same segtength. The segment
length is defined by display time. The MPEG-DASH segmentsiaded into two types,
initial segment and media segment. The manifest file of MREGH is calledMedia
Presentation Description (MPD). '

Fig. 3.4 is a simplified hierarchical structure-of MPD whishviritten byeXtensible
Markup Language (XML). In this example, the outermost layer is called Peraodl the
innermost layer is called Segment List. Each MPD includesralyer of Period layers.
The Period defines the start time and period of time for gavideo. Period can be
considered as a set of continuous segments. For each Pegodtains multiple Adap-
tation Sets. The Adaptation Set is a video or an audio tratkvelhave two different
language voice and three different videos, there are todaldptation Sets inside the Pe-
riod. Each Adaptation Set includes multiple Representatidine Representation is one
version of stream. In other words, if we encode the video fatw different resolutions,
there are 4 Representations inside the Adaptation Set. Repadisn defines the aver-
age bit-rate, resolution for video stream, and sample @taddio stream. Client side
switches to different Representations according to the amedsnformation, like current
available bandwidth, state of buffer which is used for stgihe downloaded segments,
or user preference. Client can only request the segmentieitise selected Representa-
tion. Fig. 3.5 is the overview of MPEG-DASH with H.264/AVC. &Web Sever stores
the different versions of H.264/AVC media contents. The imedof figure is measured
bandwidth. The client side based on measured bandwidtHeotdbe appropriate seg-
ment and requests it.

The MPD structure in Fig. 3.5 is nonscalabe video streamiihg. difference between

12

nonscalable and scalable streams are: (i) Representateoueal to specific layer for
SVC. For example, if video encoded into 5 layers, there are $d®eptations. (ii) Client
requests the segments from multiple Representations fors$\@ming rather than from
one of Representations. If user want to display the loweslityuadeo stream, client
requests the based layer segments from the RepresentatiotheEMPEG-DASH with
H.264/AVC, client focus on how to choose the most suitableastr to request. For the
nonscalable screams, how to obtain the sufficient accu@omnéasured information to
choose the stream is the most important point. If measugsgltis not precise enough,
the segment can't be downloaded completely before deadlmeontrast, the point of
MPEG-DASH with SVC video streaming is to download as moreag@ement layers
as possible for client. If bandwidth is decreasing rapidhyilevrequesting the segment
of enhancement layer, client can cancel downloading segamehdisplay video without
stalling.

As we mentioned, we need to encode the multiple versionsdafod for nonscalable
video coders. For scalable video coding, we only need todaoae version and provide
multiple features of videos. Hence; using SVC can reducspaee requirement on the
streaming server side. For the S_\/C'streaming, the requsstgdent can be used for all of
clients, like based layer. If some-clients want to enhaneeagthality level, clients request
more enhancement layers. The segménts--are requested ahosexhfor many times
so that reduce the overhead of the streaming server. Foratitianal MPEG-DASH
streaming, client only can switch to'the different streamtha boundary of segments.
If we use MPEG-DASH with SVC streaming, the client can switbh layer number
not only at the boundary of segments but also switch the layetber during playing the
segments. Using MPEG-DASH with SVC provides more flexibléagwpoints than tradi-
tional MPEG-DAHS streaming. Therefore, MPEG-DASH with S8Zeaming provides
the better user experience than nonscalabe video streaming

13

Chapter 4

System Architecture

Fig. 4.1 is our system architecture which contains 9 comptsnen both server side
and client side. The componeMi’D Generator andDASH Content are located at server
side, Web HTTP server. The other components, sué?&si Client, SYC Decoder, Ren-
derer, Snitch Event Handler, andData Recorder, are on the android client. DASH Client
consists oMPD Parser, Segment Reguester, andExtractor. The following is simplified
step for each component. ' i :

1. Download the HD videos from [6],-'éncode into H.264/SVQat, and generate
the segments and MPD. : 48

N

. Place the segments and MPD:to someWhere that can be redjbgstlient.
3. Download MPD and parse it to obtain video information.

4. Download corresponding video segments according to MB&@mation and se-
lected quality level.

5. Extract the non-decodable segments (i.e. different lasggments) and reconstruct
into a decodable segment for SVC Decoder.

6. Decode the SVC segment to obtain frames for rendering.
7. Display the decoded frames on the screen.

8. When switching event occurs, Segment Requester, ExtracidSVC Decoder are
notified.

9. Data Recorder is recording the throughput, delay, and A#lI® displaying.

Step 4 to step 7 is a loop, DASH Client keeps downloading anaetktg, SVC Decoder
keeps decoding, and Renderer keeps rendering. The follawetpe detailed description
of each component.

14

DASH Client

(3. MPD Parser]

4. Segment) C 0

(S =

Requester

1. MPD Generator]

8.
Switch
& . Event (‘:I)[5. Extractor

2. DASH Content Handler

9.
Data

l MPD

. Recorder
MPD File (,E()(. SVC Decoder }‘:\)
HTTP 1.0 ;/

HTTP 1.1
[7. Renderer
Qo

Android Smart Phone

Video Segments

Wt

HTTP Server

Figure 4.1: System Architecture.

First, we describe the components.on: the server side. Alpoments on the server
side are preprocess works. At the_ bégihr}'ir)_g, we downloaditkeHD videos,j eux,
doc, soap, sport, andt al k, wﬁich_ are available from [6]. The video contents are
courtesy of CBC/Radio-Canada. We encode these five HD videosantéarmat (i.e.
yuv420p) videos with multiple resolutions by FFmpeg. Thenber of resolutions are the
same as the number of spatial layers of the SVC video. For gbeam SVC video has 3
spatial layers, there are 3 different resolutions for ragkews. After getting raw videos,
we encode them into SVC format by JSVM. For each SVC videagtae one main con-
figuration file and multiple layer configuration files. The mabnfiguration file defines
the location of output SVC video, number of layers, encodmges, and locations of
each layer configuration files, etc. Each layer configurdtlerdefines encoding parame-
ter of its layer, such as location of raw video, resolutioanfe-rate, and QP value, etc. If
this layer configuration file is an enhancement layer, thene additional parameter to
indicate the dependent layer IDs.

Once the encoding process completes, MPD Generator useS {8Phbrary to gen-
erate the MPD and to chop SVC video into one initial segmedtraaltiple media seg-
ments. We divide the MPD Generator into three steps: (i) At,fiGPAC tool parse
the SVC format video to acquire the number of layers, theluéiso of each layer and
frames data. (ii) Second, GPAC imports the parsed SVC tetst into ISO Base Media
File Format (ISOBMFF). (iii) Last, GPAC chops the ISOBMFF filghich results from
GPAC importing, into one initial segment and multiple medegments. The chopped

15

segments are also the ISOBMFF files. For the last step of MP2@tar, we only set
one parameter which is segment length, and others remanltefve place chopped seg-
ments and MPD files into DASH Content component which can beastgd by clients.
In other words, these segments and MPD files can be addregssetéssible URL. So
far, the server side is ready for streaming.

On the client side, user selects one video at first for stregmiThe DASH Client
starts to parse the corresponding MPD file and stores thenaftion. The information in
MPD we’re concerned about includes the URL addresses of sggmember of layers,
layer dependency ID, and resolution for each layer. The mgstrtant information is the
URL address, because other information is also stored itls&leegments. But we can-
not obtain the information from the segment until the segneeaxtracted by Extractor.
Based on the situation, we decide which component to usefasmation. The Segment
Requester operates on the basis of the selected qualityilevelownload how many lay-
ers) and addresses of segments. Our quality selectionesl lnaisthe user preference, and
this also can be decided by the algorithms. The Segment Rieqlkegps requesting the
new segment until the free space of buffer is not enough te she segment. As we men-
tioned, the segment is ISOBMFFE which 'mean.s we cannot decasleagment directly.
To solve this problem, we implement the.Extractor|(more itigt&Sec. 5.2.3). Once the
Extractor receives one segment;it starts to parse the |IS@Bidiffnat. The ISOBMFF
format can be considered as a lot of different types of bokash box contains two piece
of information: box header which includes box:type and bae sand payload. Different
box types have different box structures and different pagy$o Extractor parses the boxes
and acquires the media data from mdat box. If Extractor veseihe dependency seg-
ments, it begins to reconstruct the media data into comlpdidibmat for SVC Decoder.
Once SVC Decoder gets the media data from Extractor, SVC d&cstarts to decode
(decoder implementation in Sec. 5.1). After SVC Decodermetely decodes one GOP,
the decoded frames are sent to Renderer and the Renderer sleodecbded frames on
the screen. The SVC Decoder and Renderer are the most imipootaponents in this
work. The steps from DASH Client to Renderer will keep goinglysiayer is stopped.

The last two components, Switch Event Handler and Data Recgoade the auxil-
iary components. The Switch Event Handler can be triggeyealdorithms or user itself
(implementation in Sec. 5.3). Once the Switch Event Handléiggered, Switch Event
Handler sends the switching signal to DASH Client and SVC Deco~or DASH Client,
Segment Requester needs to change the number of layers tasteg, and Extrac-
tor cancels the segments if layer number exceeds the sgliegter number. For SVC
Decoder, decoder needs to change the decoding parameteupdate the display size
according to resolution of displaying frame. During thepthy, the Data Recorder keeps

16

measuring the information, like throughput, FPS, delay, dthe recorded information
can be used by switching algorithms or performance analyfi®e above are the de-
scriptions of our system, the next section talks about th@eamentation detail of SVC
Decoder, DASH Client, and Switch Event Handler.

17

Chapter 5

| mplementations

5.1 Multi-Core Decoder on Android Devices

5.1.1 Limitationsof Single-Threaded Decoder

We first implement and evaluate a single-threaded SVC deamaé\ndroid using
OpenSVC library [11]. Since OpenSVC decoder is implememed/C++, it cannot be
compiled as an Android applicétion-direc-tly. Hence, we adopdroid Native Devel-
opment Kit (NDK) to embed the OpehSVC.library as native fiored, and we develop
a Java application, which interacts with thése_ native fonstvia Java Native Interface
(INI). We evaluate our single-threaded.SVC decoder usiogdmdroid 4.0 devices, with
1.2 and 1.4 GHZ CPUs, respectively. We decode five 375-seepwidoded at 960x544
and 24 FPS , and we found that the achieved frame rates argsdless than 50% of the
coded frame rates. Hence, we develop a multi-core H.264/@40der in the following.

5.1.2 Software Architecture of Our Multi-Core Decoder

Fig. 5.1 shows the software architecture of our multi-careatier which is proposed
from our previous work [15]. It consists of two major compatee (i) a Java front-end
and (ii) a native decoder. The native decoder is implemeuseny Android NDK, and
is interfaced with the Java front-end using JNI. The Javatfemd also interacts with
Android’s Java Framework offered by Android SDK. The natilecoder consists of a
Coded Frame Buffer (CFB}{ decoder threads, and a Decoded Frame Buffer (DFB). The
CFB holds the H.264/SVC video packets read from video filesstwarks. The decoder
threads concurrently reconstruct the raw frames from tdeowipackets, and store the
resulting frames in the DFB.

Our SVC decoder works as follows. First, the Java front-essbps the initial argu-
ments to the native decoder, and asks itidoode. Once the decoded frames are stored

18

Java Front-End
1. Decode Decoded
Frame
Buffer
3. Display
Java Native Interface 2. Retrive Android API
l"__——__——_—__" ________ T (T T~
|
|
| y
|
Video Files | Coded
4 Frame Framework

Streams Buffer

!
' |
' |
: !
' |
|
Decoded | :
Frame I |
| Buffer | |
! : | |
| et ' |
I H Threads : I
I I
|
| | I

(
I
I
I
I
: Java
I
I
I
I
I
I
Android NDK :

)

Figure 5.1: Decoder architecture.

in the DFB of the native decoder, the Java front-eetdieves the frames. Last, the Java
front-end uses Android API tdisplay frames in its DFB.

Our decoder threads employ-the ObenSVC library [11] to dedbe videos. Al-
though this seems to be straightforward at first glance gu®ipenSVC library in multi-
threaded applications turns out'to be fairly-challengingdose it is not designed to be
multi-thread safe. We had to pay extra attentions to avaid canditions while invoking
functions in OpenSVC library. We make our decoder availablthe research commu-
nity [9].

5.1.3 Parallelism Strategy

Our decoder employs multiple decoder threads, where eaehdiworks on @roup
of video packets at each moment. The groups are determinagdnallelism strategy.
Several parallelism strategies have been proposed, emgaao-block (MB), frame, and
GOP levels [12,18]. There are data dependencies amonggadwyideo packets. That
is, before decoding the next group of video packets, theathraust check its depen-
dency. Each strategy has its advantages and disadvantagesxample, MB-level par-
allelism realizes finer-grained groups at the expense opt@ngroup inter-dependency.
GOP-level parallelism minimizes the interdependency agrgnoups but demands more
memory due to larger DFBs. GOP-level parallelism leads tohighest possible FPS,
and hence we implement GOP-level parallelism in our decotteparticular, we em-
ploy pthread to implement GOP-level parallelism. Other strategies #se possible by

19

Java Front-End

[Call Native Function]
1. Start Native
Library
Java Native Interface

T e |

: Native Decoder Display Library :

I e 3 Displa I

i Decoder)i N play I
: \ Buffer :
Video Files Decoded |
Frame .

Streams | Buffer v2. Display :
| Y DecoderY: ’] [

[. ; Renderer |

I H Threads I

| |

|\ Android NDK)'

Figure 5.2: Decoder architecture with SDL.

redefining the groups, which is one of our future tasks.

5.1.4 Porting SDL Library asRenderer to Decoder

The SDL library is a popular cross-platform library to hamdideo and audio, and to
access user inputs, like screen touch event and keyboantl &ve found that the step 2
in our decoder architecture (Fig. 5.1) copies the data frative side to Java front-end
by JNI. Every time for displaying, decoder movies large deden DFB from native side
to Java. Because of decoder uses Android API to render theefrathdecoder uses the
renderer in the native library, the step 2 can be removed fsandecoder architecture.
Hence, we port the SDL library to render the frame in nativke sather than Android
API. Fig. 5.2 is our new decoder architecture with SDL lilgraAfter porting the SDL
library into our decoder, decoder can render the frames dylBitary directly. We know
that there is an event queue inside the SDL library. Eachtevertuding SDL predefined
events and costumed events, will be put into event queuectder, which without SDL,
handles input events, it possible can not get the user evams rendering thread is
displaying on Java front-end. The reason is that Androichrttaiead is charging of all Ul
events, like rendering and screen touch event. When maiadhselisplaying, the screen
touch event can not be captured at the same time. Porting BEAry which enables to
use the frame buffer in the native side directly and to habdlevents easier.

20

52 MPEG-DASH Client with SVC Decoder on Android

Devices
Android Application
QT Application Android UI
PP
QT Ul e X A
DASH Client
(R (" MPD Parser A
DASH Client .
_ . (libxml) DASH
Ml}l?) Pal{ser Requester Framework
(libxml) DASH | (ibeur)]
e Framework) & .
li
(tibeur) / Extractor
<L \ J
(Decoder) p > N
L (libav)) Decoder
_ T y, L (OpenSVC))
p N2 < ' \ T J
QT Renderer : : ()
. J T SDL Renderer
| J

Figure 5.3: libdash architecture. _))
Figure 5.4: Our DASH client archi-

tecture.

5.2.1 Architecture of DASH Client

OurDASH Client is based on libdash library and we will describe our DASH Glien
this section. The libdash is open source library availatdenf[7] and Fig. 5.3 is libdash
architecture. This library is implemented by c++ and has @3¢l simple player. The
QT based simple player contains QT Ul, MPD Parser, DASH Fraonle Requester,
Decoder, and QT Renderer.

The first component in libdash MPD Parser. The MPD Parser is based on libxml
library and MPD file is written by XML. After parsing the MPDhé¢ data will be stored
into DASH Framework component, such as number of layers, frame-rate, resofjtio
address of segments and dependency layer ID. The Requestporent is based on
libcurl library. This Requester in charge of all TCP connet$io Requester requests
the segments from DASH server according to the parsed irdoom which are stored
inside DASH Framework. ThBecoder in libdash uses libav as decoding library, and it

21

is locked until receives the segment from Requester. Afteodiag, the decoded frames
are rendered by QT Renderer.

We reference libdash architecture and modify some comgst@rupport SVC stream-
ing. Fig. 5.4 is our DASH Client architecture. We modify the ®A Framework and Re-
guester to support SVC streaming and insert new componbed &xtractor (Sec. 5.2.3)
to our DASH client. We also switch the Ul from QT to Android,siign interfaces for
DASH Client, and integrate with our SVC Decoder.

5.2.2 Supporting H.264/SVC MPD For mat

The general MPD file does not support SVC streaming. The tsireiof MPD for
non-scalable video streaming is not the same as the steusfuMPD for scalable video
streaming, such as attributes and location of elementsintance, each Representation
contains one initial segment in general MPD, but there ig onk initial segment for SVC
format MPD. The initial information is located in Represeiua section for non-scalable
streaming. For SVC streaming, initial information is lagtin Initialization section.
The MPD Parser checks Representation section first, if isiéigment is not found, then
checks Initialization section. For non-scalable .'stregnmequester requests one initial
segment followed by one media segmén't. The number of resphigstial segments is the
same as media segments. Forthe SVC streaming, Requestestethe initial segment
at beginning and remainder segments:are media segment.eBsYV(B segment cannot be
decoded by SVC decoder directly, we need an Extractor tovdéalSVC media segment.

5.2.3 SVC Segment Extractor

The SVC decoder unable to decode segments directly. Thenreathat segments are
ISOBMFF format. Each SVC segment contains a lot of boxes ,gmests cannot be de-
coded by SVC decoder. In order to solve this problem, we impla the Extractor. The
purposes of Extractor are parsing boxes to get informatnahodtaining media data from
segments. Once Extractor receives the segment, Extraatts ® parse the boxes.The in-
formation we concerned are layer ID, segment length, numitfeaames from downloaded
segment and media data. If Extractor receives based lageres#, Extractor reconstructs
the media data frame by frame. If Extractor receives therldgpendency segments, Ex-
tractor reconstructs the media data into decodable forr®Y&E decoder. The approach
of reconstruction for multiple layers is interleaving. Feach iteration, Extractor inserts
the NAL header followed by the corresponding frame data fimwest layers segment to
highest layer segment and combines into one decodable fitataeAfter reconstructing,
SVC decoder is able to decode this kind of data.

22

Increasing Spatial Layer

Decreasing Increasing
Temporal Temporal
Layer Layer

Decreasing Spatial Layer

Figure 5.5: Client with gesture for switching spatial and temporal.

5.3 Switching Event Handler

This section describes the user interface of switching tswerhich include switch to
higher or lower resolution and frame-rate. At first,’'we dasigenu as our user interface
to trigger switching events (Fig. 1.1) whichis designedun previous work [15]. As our
knowledge, android API provides few kinds of menu, OptionnMe&nd Context Menu.
For Option Menu, user clicks the menu button to show the $woftions and selects one
switching event. For Context Menu, user presses on the stwednsecond and options
are showed on the screen, then selects switching evennhofinis approach, using menu
to show options for user selection, needs at least two dpasatshowing option list and
selection.

For reducing the number of operations, we design the gesti@ir new interface
for switching. We also increase the display size by removirgtitle and menu bar.
Gesture only has one operation which is sliding. We define dinections for different
switching events, like Fig. 5.5. Sliding up and sliding domean switch to higher and
lower resolutions, respectively. Sliding left and slidinght mean switch to lower and
higher frame-rate, respectively. Once user selects alswgevent, the switching signal
Is sent to MPEG-DASH Client and SVC Decoder. MPEG-DASH Cliertarding to
switching signal to request proper number of segments, &t [3ecoder according to
spatial ID and temporal ID to decode the video frames.

The scope of this work is focus on the real implementation BENG-DASH with SVC
streaming system. So far, the switching events of our S\V&hthre triggered by the user.

23

The SVC client can use the algorithms to trigger the switghgwents. Algorithms have
two strategies for requesting segments: enhance the tsegment quality or download
the segments for future time slots. The decision of algor#lare based on available
bandwidth, client buffer state, etc. Using algorithms tevdmad the proper segment is
our future work.

24

Chapter 6

Experiments

6.1 Multi-core SVC Decoder

6.1.1 Videosand Setup

We consider five HD videogoc,j eux, soap, sport, andt al k, which are avail-
able online [6]. The videos are provided bya leading brostloampany in Canada, and
each of them lasts for 6 mins 15 secs, at 24 EPS. We encode ielachusing JSVM into
three spatial layersS(= 3): 960x544; 4805(2.72, and 240x144, and each GOP contains 16
frames, which leads to five temporal layers S 5).'We fix the quantization parameter
at 32; there is a single fidelity laye®)(=1).. The average video quality of the complete
streams across all videos is 44.16 dB in PSNR, and more datailsummarized in Ta-
ble 6.1. We conduct the experiments on: (i) a dual-core tabith a 1.4 GHz CPU, 1
GB memory, and a 1280x800 screen and (ii) a quad-core smartepwith a 1.5 GHz
CPU, 1 GB memory, and a 1280x720 screen. We decode each vittediffierent tuples
<t,s,q> and H, and we report the average FPS (frame rate) over each videcalst/
report the memory and energy overhead of our decoder.

6.1.2 Evaluation Results of SVC Decoder

We present sample results wifh= 0 andt = 5.

Performance gains. We first report the performance improvement by usihgle-
coder threads. Figs. 6.1 and 6.2 present the FPS values x6860esolution £ = 2)
on the tablet and the smart phone, respectively. We obsérae [EPS increases for most
videos whenH increases from 1 to 3. For example, playingux on the smart phone
with H = 1 achieves an FPS of 12.08, while doing so with= 3 leads to an FPS of
19.39, a 60% gain. However, the performance gain saturatés & 4, and the FPS
gradually decreases wheéhgoes beyond 4. This can be attributed to the thread synchro-

25

w
o

]

=

S

53)207 = R ~=SE]

Qq? —e—doc

QE):LO’ - e -jeux

& .-m--50ap

— A sport
0 ‘ ‘ ‘ _|===talk

1 2 3 4 5

Number of Threads

Figure 6.1: FPS, 960x544 videos on a tablet.

30 —e—doc
- e -jeux
'g .-m- SOap
2 ST ARELI ST
% == talk . i intledlod) |
o ? g
£10| ===
=
=
. | | | ‘ :
1 2 3 4 >

Number of Threads

Figure 6.2: FPS, 960x544 videos on a smart phone.

50
40
S
g
© 30!
E - e -jeux
QéZO* .-p-.S0ap
s
£10 A sport
- talk
0

1 2 3 4 5
Number of Threads

Figure 6.3: FPS, 480x272 videos on a tablet.

26

[1480x272
50 I 960544

40

30

20

10+

talk

soap 3

jeux 2

Video doc 1 Number of Threads

Figure 6.4: Trade-off between FPS and resolution on
a smart phone.

M'1500

2

- []480x272

2 1000/ [HE960x544 _

o

Memory Consumpt
)
o
o

1 2 3 4
Number of Threads

Figure 6.5: Memory consumption of our decoder, re-
sults fromsport .

—Our Decoder
1. ---MPlayer (AVC) ||
-- Hardware (AVC

o
0

Current (A)
o
> > @ 3

o o
N B

o

0 100 200 300
Time (sec)

Figure 6.6: Power consumption comparison on a
smart phone, results frodoc.

27

nization overhead, and the competition among our decodeads and other Android
processes. We suggest settiig= 3 for 960x544 videos.

Fig. 6.3 presents the FPS values at 480x&72 (1) on the tablet. This figure shows
a smaller performance gain, compared to Fig. 6.1. Howewde that the achieved FPS
values in Fig. 6.3 are as high as 42.03, much higher than tthedcBPS of 24. In other
words, decoding 480x272 videos incurs lower computationaiplexity and thus leaves
smaller rooms for performance improvement. Indeed, thispeance drops oncE > 2.
We suggest settingf = 2 for 480x272 videos.

Tradeoff between resolutions and frame rates. Fig. 6.4 compares the FPS at dif-
ferent resolutions on the smart phone. It is clear that degotB0x272 videos is at least
two times faster than decoding 960x544 videos. This revaalsnportant tradeoff: for
real-time decoding at 960x544, vmust reduce the frame rate to 12 FPS= 3). This
indicates that a user may choose high resolution or highdnaate, bunot both. Similar
observations can be drawn from the results obtained frortattiet.

Memory consumption. We report the memory consumption of decoding 960x544
videos in Fig. 6.5, which shows that our decoder consumes m&mory wherH in-
creases. Nonetheless, the total memory consumption at+io&B, which is the com-
mon specification of medium- to high-end mobile-devices attitime of writing.

Power consumption. We use Agilent 66321D:mobile communications DC source [1]
to measure the power consumption of our SVC decoder. We assumne the power con-
sumption of mplayer-android [3] and tHe default hardwamder for comparisons; these
two players only support H.264/AVC videos. For fair comparis, we encode the videos
in AVC videos with the same quantization parameters. Wertehe device-level power
consumption with display brightness set to 50%. Fig. 6.8¢més the measured currents
on the smart phone. This figure shows that although decod#t@\édeos is much more
complex, our SVC decoder only incurs small power overhesthwa as 7% during some
time periods, compared to mplayer-android. We presentubeage power consumption
in Table 6.2. This table shows that our SVC decoder consun2é8o (smart phone) and
~31% (tablet) more power than software-based mplayer, andy@pconsumes-94%
(smart phone) and 26% (tablet) more power than the hardware decoder.

6.2 ScalableVideo Streamingover HTTP

6.2.1 Setup

We have also implemented an end-to-end H.264/SVC streatastiged over HTTP.
The testbed has a Linux server and an Android client usingrauti-core H.264/SVC

28

Table 6.1: Bitrate and PSNR of Videos

Resolution doc j eux soap sport tal k
Bitrate (kbps)
240x144 450.60 282.77 376.46 619.60 254.19
480x272 1425.71 809.41 1018.51 | 1760.64 909.11
960x544 4637.29 | 2446.46 | 3133.69 | 5228.77 | 3304.90
PSNR (dB)

240x144 41.72 45.22 43.36 42.02 42.65
480x272 42.21 45.98 44.48 42.74 42.47
960x544 42.98 46.04 45.37 43.67 42.70

Table 6.2: Average Power Consumption (in Watts)

Decoder doc j eux soap sport tal k
Smart Phone
Our Decoder 2.13 2.06 2.09 2.15 2.03
Mplayer (AVC) 1.68 1.60 1.67 1.69 1.65
Hardware (AVC) 0.86 0.88 0.81 0.88 0.83
Tablet

Our Decoder 7.94 7.84 7.87 7.96 7.89
Mplayer (AVC) 6.22 | 6.37 6.20 6.27 6.32
Hardware (AVC) 5.26 5.79 5.21 5.33 5.22

29

50
240
g . o 0= o
g L ad Ml P
301
5} o _%g
%20 g, | a . e lilﬂ,,n‘|:|v|:|"=""="‘I:"/,_-l‘l:!“Izl o
g
=101 ——300x158
-0-598}(314
. -8 1196x628
0 100 200 300

Time (sec)

Figure 6.7: Sample FPS of three resolutions, results

fromj eux.

240 % T ‘} i

c

m30‘

g

201

Q

g i

£10 [C1300x158

P I 598x314
0 B 1196x628

doc jeux soap sport talk
Video

Figure 6.8: Mean FPS of all videos with different res-
olutions.

2.5

n

1.5]

i

Throughput (Mpbs)
o
o

o

o

100 200 300
Time (sec)

Figure 6.9: Sample throughput of three resolutions,
results from eux over 3G.

30

. B

21.25 100008 |
o
= 1
20.75
=
2 0.5
E
HO.ZSA m ﬂ m

0

doc jeux soap sport talk
Video

Figure 6.10: Mean throughput of all videos with dif-
ferent resolutions over 3G.

25 . [E=300x158
|| 100008 |
ﬁJ i ﬁ'| rﬂll ol |

doc jeux soap sport talk
Video

Figure 6.11: Mean transfer delay of all videos with

se
[N)
Q

'_\'_‘y(
© o

o

Transfer Dela

o

different resolutions.

12.5{(E=3300x158

| ==Y

\%10‘ | 196x628

%75

)

)

5 O

S

$2.5

: i |
0

doc Jeux soap sport talk
Video

Figure 6.12: Mean decoder delay of all videos with
different resolutions.

31

decoder. We configure each segment wjth= 8 GOPs, number of decoder threads
H = 3, the circular buffer thresholds = 1.5 andb = 15 MB. We encode the five
HD videos into three resolutions: 300x158, 598x314, and6x®98, which better fit
the screen resolution of our quad-core 1.5 GHz Android pboliée stream each video
over the WiFi and 3G cellular networks, with different ragans, in our lab. We repeat
each experiment five times, and report average, minimum,naadmum performance
whenever appropriate. The considered performance metcgi) FPS, (ii) throughput,
and (iii) initial delay. The initial delay is further divideinto two parts: transfer delay,
which refers to the time to fill up the circular buffer withytes, and decoder delay, which
Is the time to render the first frame. We currently use a coasige heuristic to determine
the pre-buffering time, which leads to higher initial defay some videos. It is our future
work to address this issue.

6.2.2 Evaluation Results of HTTP-streaming

Framerate. We plot the instantaneous FPS of a sample run of streajrenix over
a WiFi network in Fig. 6.7. This figure reveals that our HTTRlable video streaming
client achieves 41+, 32+, and 20+ FPS with different regmhst which are fairly accept-
able for mobile video streaming. Fig. 6.8 reports the mead &Hive runs for all videos,
and the errorbars indicate the minimum and maximum FPS. .fiuee is consistent with
the results in Fig. 6.7.

Network throughput. We plot the achieved network throughput when streaming
scalable videos at different resolutions. Figs. 6.9 an@ présent the throughput over 3G
from j eux and the mean throughput over 3G from all videos, respegtivehese fig-
ures show that our HTTP scalable streaming client fullyizes the available bandwidth:
generally, higher resolution leads to higher network tgiqaut.

Initial delay. We present the initial delay, which is divided into the trf@nsand de-
coder delay. We plot these two delays in Figs. 6.11 and 6.12&sé& two figures reveal
that lower resolution leads to shorter delay. One way torbeye this property for mini-
mizing initial delay is to first play a video with the lowestsmution, and then switch to
the desired resolution once the buffer is filled. In partcpiby doing so, the total delay is
between~2.5 and~4.0 secs as illustrated in Figs. 6.11 and 6.12.

32

Android Client

MPD ___ MPEG-DASH Client
X Circular
Init Seg. Buffer
Seg 1.
Seg 2. { }
SVC Decoder
Decoder
Buffer
Seg N. .
= WiFi in our Lab
I
5 ~>
I
S ﬁ : Display
o
NS
HTTP Server

Figure 6.13: Streaming setup of MPEG-DASH.

6.3 Evaluation of MPEG-DASH-Client

6.3.1 Setup

We port the MPEG-DASH standard.into-our H.264/SVC streantésgbed. Fig. 6.13
Is an architecture of our testbed with MPEG-DASH standardwr ©stbed consists of
Linux web server and an Android client with our multi-thre&dC decoder and MPEG-
DASH Client module. In our Linux web server, we encode five HDegs into three
resolutions § = 3): 320x180, 640x360, and 1280x720. We also generate camesug
MPD and chop each video into multiple segments. We set theeeglength to 5.12
seconds, the GOP size is 16 frames, and each segment coptaing GOPs. In our
android client, we set circular buffer thresholdg te: 1.5 andb = 15 MB. We conduct
the experiment on quad-core 1.5 GHz Android phones with 1 @Bory and 1280x720
screen size.

6.3.2 Evaluation Results of MPEG-DASH Client

We show the average throughput of five videos with differesbtutions for MPEG-
DASH streaming in Fig. 6.14. This figure reveals that the agerthroughput of MPEG-
DASH Client achieves up to 15 Mbits per second for 1280x72@widtreams. For
320x180 video streams, the average throughput of MPEG-DE&&¢ht achieves at least
2.5 Mbits per second. We observe the trend of average thpauighthe same among this

33

I 320180
[640x360
[]1280x720|

=
o1

(@)

Throughput (Mbits/s)
o

doc sport soap jeux talk

o

Figure 6.14: Mean throughput of all videos with dif-
ferent resolutions over WiFi. = |

307 [Ze=320x180
2| |- e-640x360
= e 1280720
220*’._, = 2
S| A med, g g BB
'éleOi\ VAN A 1 N A 9\'—-’
2 ¥
—
=
=
0

100 200 300 400
Time(s)
Figure 6.15: Sample throughput of three resolutions,

o

result fromj eux over WiFi.

34

5 different types of videos. In other words, the higher regsoh streaming has higher
throughput. It means the utilization of the available baiwvis high in our MPEG-
DASH Client.

Fig. 6.15 is the instantaneous FPS of sample run result ftomarsingj eux. The
result of this figures is the same as our expectation. Whi&astmg higher resolution
videos, MPEG-DASH achieves higher throughput For some apgints, the throughput
of higher resolution is less than the throughput of loweoh&sn. As we know, the
reasons are: (i) Bandwidth condition is changing while daa&ding so the throughput
is decreased. (ii) The free space of circular buffer is naugih for new segments, so
the requester threads are stopped. The network conditiariesd over time, therefore, a
more efficient buffering strategy and scheduling algoriitemecessary. This will be our
future work to further improve the system.

6.4 Effective SDL Rendering

6.4.1 Setup

We use the same testbed aréhitect_ure as Fig. 6.13 in Semddreplace the Android
Renderer API with SDL library inour H:264/SV.C decoder. IrstbBkperiment we encode
the five HD videos into three spatial layeis £.:3):-320x180, 640x360, and 1280x720
with 24 frame per second. We generate MPD and chop segmettis aimux server. We
stream each video over WiFi in our lab and repeat 5 times. Wequad-core 1.5 GHz
Android phones with 1 GB memory and 1280x720 screen as owrgmpntal streaming
client. We report the FPS for each video with varied resohgiand number of decoder
threads on Android smart phone.

6.4.2 Evaluation Resultsof SDL Rendering

Fig. 6.16 shows average FPS of the five videos with differemhlmer of decoder
threads. The FPS is enhanced by increasing the decodedshed = 2 on multi-core
device. When number of decoder thread is set to 2, the FPSresaised at least 1.5 time
than using only one decoder thread. The performance of FiR®reased for most videos
when number of decoder threads3. The reasons are the overhead of multi-threading
synchronization and the resources competition among theepses, which includes our
SVC decoder and other Android applications. This resulbisconsistent with Sec. 6.2,
because the system architectures are not the same.

Fig. 6.17 shows the instantaneous sample points of FPS3 fiesulspor t . Our SVC
decoder achieves60 FPS and-40 FPS for 320x180 and 640x360 video, respectively.

35

=
(o¢]

(FPS)

=
N

[N
N

Frame Per Second

=
o

2 3 4
Thread(s)
Figure 6.16: Mean FPS of all 1280x720 videos with
different decoder threads.

80 —e—320x180
g_() - 6-640x360
3 ~m 1280x720
\/60 1 W
o) W
=i
3
A0, o ¢ 000
% 00 % 0004 000?900 900% 000
o
gZO ‘n..ﬂ,.,ﬂ‘.ﬂ..u_,a.-a..n_,ﬂ.‘ﬂ..n..n.,n»n'-..n--ﬂ..u__n..u..ﬂ..u
8
0 100 200 300 400

Time(s)
Figure 6.17: Sample FPS of three resolutions, results

fromsport.
60
nim Il doc
%50 | Bl sport
£401 [Esoap
7 T | Eieu
&30 [Jtalking
£20-
2
Il |
O i

320x180 640x360 1280x720

Figure 6.18: Mean FPS for all videos with three reso-
lutions.

36

For 1280x720 video stream, our SVC decoder achiev28 FPS. Fig. 6.18 is the aver-
age FPS of the five videos under different resolution. Thigrégeveals that our SVC
decoder achieves at least 50 average FPS and 30 averagerFR28xth80 and 640x360
video streams, respectively. For the highest resolutidd04220 video stream, our de-
coder achieves-15 average FPS. The results show that our SVC decoder canrsaity
time streaming for 320x180 and 640x360 videos. Our SVC decstill can be further
improved, since it cannot achieve 24 FPS for 1280x720 vid®des will give directions
in Sec. 7.2.

37

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have developed an.end-to-end scalakl@nsing testbed, consisting
of a multi-threaded SVC decoderiand HT-TP étreaming seharic Our experimental
results show that our SVC decoder'bar] decode 480x272 videasal-time, and does
not incur too much memory and-power overhead, While our SV@dkcis not a re-
placement of a hardware-based soluti_on, we-believe thadecoder will stimulate more
research on SVC-related systems, and-encourage manufactormassively produce
SVC decoder chips. We have also evaluated the proposed Hiddsng server/client.
Via extensive experiments, we show the practicality andiefficy of our proposed end-
to-end scalable streaming testbed over HTTP for mobilecgsviFor example, streaming
scalable videos over live 3G and cellular networks lead gb iiame rate;~42 FPS, and
short initial delay~2.5 secs.

We further extend our testbed to support MPEG-DASH standaddimplement the
MPEG-DASH client in our SVC decoder. In order to handle segisér SVC decoder,
we implement the extractor in the MPEG-DASH client. Our expental results show
that the throughput of our testbed with MPEG-DASH standatdeves at least 15 Mbits
per second for 1280x720 videos. We replace the Android Rendétl with SDL library.
SDL library and our SVC decoder are written in native-code. (iC/C++), which can
render the decoded frame in native side without copyingrdm@é¢ data to Java front-end.
We design a new switching event handler based on the SDL enente, which uses
gestures to switch the spatial and temporal layers, in aemntclThe experimental results
of our decoder with SDL library show that our decoder achseakleast 50 FPS when
streaming 320x180 videos.

38

7.2 FutureWork

Our experimental results reveal an important trade-ofiveen resolutions and frame
rates. Due to resource constraints of mobile devices, amagronly pick either high
resolution or high frame rate. The user’s decision depemnd$he video genres, device
types, and even user preferences. There are active prgactsas Song et al. [21], which
conducts user studies and tries to model the Quality-ofeEgpce (QoE) of mobile video
streaming. These user studies do not leverage scalablesvated only consider very
few resolutions and frame rates for each video. Our enditbraobile scalable video
streaming testbed allows us to conduct large-scale useiestusing H.264/SVC videos
on commodity Android devices. This enables us to derive arflexible QOE model.

In this work, user triggers the switching events based oprigerences. The switch-
ing events can also be triggered by scheduling algorithrosrding to the available band-
width, state of buffer, and so on to decide either to enhameegtiality level or download
more segments for later usage. Employing such schedulgagitims in our client and
obtaining a more flexible QOE model are-among our future tasks

The performance of our SVC decoder still ‘has room to improverwrendering
1280x720 video. We found that the:bottlenecks 'of our clieatdecoding and render-
ing. Itis important to eliminate the bottleﬁe_c_ks and img@rdive performance of our SVC
decoder. There are some possible'approachestoimproverfioerpance, such as design-
ing more efficiency multi-threading:structures, and usitgW instructions set to speed
up the decoding and color space conversion. There is a moeatteemerging, scalable
video coding standard, called H.265/SHVC, which is an extensf H.265/HEVC. We
may use H.265/SHVC as our scalable video coder and evalhmfeetformance once the
standard is finalized.

39

Bibliography

[1] User's guide, 66321B/D mobile communications dc sourcéttp://cp.
literature.agilent.conilitweb/pdf/5964-8184. pdf, 2005.

[2] MPEG-DASH - Part 1: Media presentation description anebjrsent for-
mats. http://wwv. i so.org/iso/ hone/ store/catal ogue_tc/
cat al ogue_det ai | . ht n?csnunber =65274, 2011.

[3] Mplayer-Android project page. https://github.con aj eet 17181/
npl ayer - andr oi d, 2011.

[4] Scalable video coding (SVC v_i_deo)_—R'advisiorht tp://ww. radvi sion.
coni Sol ut i ons/ Vi deo--Commumi-cati ons- Technol ogy/
Scal abl e- Vi deo- Codi'ng/ ;2012

[5] Video conferencing technology: platform—Vidyoht t p: / / www. vi dyo. com
t echnol ogy/, 2012.

[6] Video library and tools. http://nsl.cs.sfu.cal/wki/index.php/
Vi deo_Li brary_and_Tool s, 2012.

[7] Opern Source libdash library page.https://github. con bitnovin/
| i bdash, 2013.

[8] GPAC open source multimedia framework. http:// gpac. wp.
m nes-tel ecomfr/,2014.

[9] Multi-Core SVC Decoder on Android pagehtt ps:// gi t hub. com nnsl /
svc_androi d_project, 2014.

[10] Cisco visual networking index: Global mobile data
fic forecast update, 2014-20109. http://ww. ci sco. com
c/ en/us/sol utions/coll ateral/service-provider/
vi sual - net wor ki ng-i ndex-vni / whi te_paper _c11-520862.
ht m , 2015.

40

[11] M. Blestel and M. Raulet. Open SVC decoder: A flexible SM&dry. InProc. of
ACM Multimedia’ 10, pages 1463-1466, Firenze, Italy, October 2010.

[12] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. KgutEfficient paral-
lelization of H.264 decoding with macro block level schedgl In Proc. of IEEE
International Conference on Multimedia and Expo (ICME’07), pages 1874-1877,
Beijing, China, July 2007.

[13] Y. S. de la Fuente, T. Schierl, C. Hellge, T. Wiegand, DnglcD. D. Vleeschauwer,
W. V. Leekwijck, and Y. L. Lo@gdec. idash: Improved dynamic adaptive stream-
ing over http using scalable video coding. Pnoc. of ACM Multimedia Systems
(MMSys' 11), pages 257-264, San Jose, CA, February 2011.

[14] ITU-T Study Group 9. Subjective video quality assesstmeethods for multimedia
applications.ITU Series P: Audiovisual quality in multimedia services, 1999.

[15] Y. Li, C. Chen, T. Lin, C. Hsu, Y..Wang, and X. Liu. An end-togktestbed for
scalable video streaming to-mobile-devices.over httpPrivc. of IEEE Conference
on Multimedia and Expo (ICME'13), San Jose, CA, July 2013.

[16] C. Mueller, D. Renzi, S. Lederer, S. Battista, and C. Timmerer. dJsitalable
video coding for dynamic adaptive stfeaming over HTTP in neobnvironments.
In Proc. of European Sgnal Procng Conference (EUSIPCO’ 12), pages 2208—
2212, Bucharest, Romania, August 2012.

[17] C. Muller and C. Timmerer. A test-bed for the dynamic adaptiveastring over
HTTP featuring session mobility. Froc. of ACM Multimedia Systems (MMSys' 11),
pages 271-276, San Jose, CA, February 2011.

[18] H. Richter, B. Stabernack, and E. Muller. Adaptive mali#aded H.264/AVC de-
coding. InProc. of Asilomar Conference on Sgnals, Systems, and Computers (Asilo-
mar’ 09), pages 886-890, Pacific Grove, CA, November 2009.

[19] H. Schwarz, D. Marpe, and T. Wiegand. Overview of thelage video coding
extension of the H.264/AVC standartEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103-1120, September 2007.

[20] C. Sieber, T. Hossfeld, T. Zinner, P. Tran-Gia, and C. Temnen. Implementation and
user-centric comparison of a novel adaptation logic fohdagh svc. InProc. of
|EEE Integrated Network Management (IM’ 13), pages 1318-1323, Ghent, Belgium,
May 2013.

41

[21] W. Song, D. Tjondronegoro, and M. Docherty. Savingdigrvs. pleasing users:
Where is the break-even point in mobile video quality?Ptoc. of ACM Multime-
dia' 11, pages 403-412, Scottsdale, AZ, November 2011.

[22] G. Sullivan, G. Bjontegaard, and A. Luthra. Overview bétH.264/AVC video
coding standardlEEE Transactions on Circuits and Systems for Video Technology,
13(7):560-576, July 2003.

42

