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中中中文文文摘摘摘要要要

如何在雲端遊戲廠商以及玩家的遊戲品質體驗之間找到一個平衡點

非常複雜，進而導致最佳化雲端遊戲體驗變成了一件不容易的工作。

我們解決了這項挑戰並且研究一個最佳化問提來最大化雲端遊戲廠商

的利益並且同時讓玩家有足夠的遊戲品質體驗。我們測量並且得到了

遊戲品質體驗以及效能的數學模型，接著我們將問題轉換為數學式並

得出最佳解，但最佳解需要指數倍的運算時間，所以我們發展一個有

效率的啟發式演算法。我們也為了封閉式的雲端遊戲環境提出了另一

項方程式以及演算法，在這個情境下利益將不被考量，我們會最大化

玩家的遊戲品質體驗。我們利用現存的虛擬化技術實作出了一個系統

雛形以及小型實驗環境來驗證我們演算法的效率以及實用性，我們的

實驗指引了雲端遊戲廠商如何創造他們自己的盈利環境。接著我們延

伸我們的實驗到擁有實際數據的模擬器上，此實驗說明了: (i)此演算

法接近最佳解， (ii) 能夠有兩萬個主機以及四萬個玩家，(iii) 比現行

的虛擬機器配置演算法效能高出許多，例如: 擁有3.5倍的利益。在解

決了虛擬機器配置問題之後，我們對最新的顯示卡進行測量，進而回

答一問提: 是否現行的顯示卡已經足夠供給雲端遊戲了呢？。與以前

的研究不同的地方，我們得到了許多違背過去常識的結果。其一，最

新的顯示卡虛擬化技術可能會使分享式顯示卡的效能比專用的顯示卡

虛擬化還好，其二，越多的工作轉換不一定會導致幀數下降。總的來

說，我們得知了最新的顯示卡虛擬化技術已經足以分享給多個需要大

量顯示卡效能的雲端遊戲玩家。最後，我們發現使用最新顯示卡的主

機的瓶頸可能會轉為處理器，而必須將影像的編碼從處理器移植到專

用的編解碼晶片上來得到較好的遊戲品質體驗。
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Abstract

Optimizing cloud gaming experience is no easy task due to the complex

tradeoff between gamer Quality of Experience (QoE) and provider net profit.

We tackle the challenge and study an optimization problem to maximize the

cloud gaming provider’s total profit while achieving just-good-enough QoE.

Moreover, we conduct expeirments using a modern GPU and a cloud gaming

platform to answer the following question: Are modern GPUs ready for cloud

gaming? For the optimization problem, We conduct measurement studies to

derive the QoE and performance models. We formulate and optimally solve

the problem. The optimization problem has exponential running time, and we

develop an efficient heuristic algorithm. We also present an alternative for-

mulation and algorithms for closed cloud gaming services with dedicated in-

frastructures, where the profit is not a concern and overall gaming QoE needs

to be maximized. We present a prototype system and testbed using off-the-

shelf virtualization software, to demonstrate the practicality and efficiency of

our algorithms. Our experience on realizing the testbed sheds some lights

on how cloud gaming providers may build up their own profitable services.

Moreover, we conduct extensive trace-driven simulations to evaluate our pro-

posed algorithms. The simulation results show that the proposed heuristic

algorithms: (i) produce close-to-optimal solutions, (ii) scale to large cloud

gaming services with 20000 servers and 40000 gamers, and (iii) outperform

the state-of-the-art placement heuristic, e.g., by up to 3.5 times in terms of

net profits. For the measurement study of modern GPU, the observations are

different from earlier studies, our measurement results reveal several findings

that are counter to common beliefs. First, with the latest GPU virtualization

technique, shared GPUs may run faster than dedicated GPUs. Second, more

context switches not necessarily lead to lower FPS (frame-per-second). In

summary, we conclude that modern GPUs are powerful enough and can be

shared by multiple GPU-intensive cloud games. Last, we present some sug-

gestions for future cloud gaming platforms, e.g., the latest GPU servers may

be CPU-bounded, which require the platforms to offload the video encoding

from CPUs to dedicated codec chips for good gaming experience.
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Chapter 1

Introduction

To offer on-demand gaming services to many gamers using heterogeneous client com-

puters, including game consoles, desktops, laptops, smartphones, and set-top boxes, in-

creasingly more service providers push computer games to powerful cloud servers and

stream the game scenes to a simple application running on client computers [37]. Such

on-demand game services are referred to as cloud gaming by various companies, such

as Gaikai, Ubitus, and OnLive. Market research predicts that the cloud gaming market

is going to grow to 8 billion USD by 2017 [12], and some leading game development

companies [9] have seriously considered this new opportunity. Therefore, we expect to

see many more cloud gaming services soon.

Offering cloud gaming services in a commercially-viable way is, however, very chal-

lenging as demonstrated by OnLive’s financial difficulty [34]. The main challenge for

cloud gaming providers is to find the best tradeoff between two contradicting objec-

tives: reducing the hardware investment and increasing the gaming Quality-of-Experience

(QoE). Satisfactory gaming QoE demands for high-end hardware, which may incur huge

financial burden; meanwhile, using low-end hardware leads to less pleasing gaming QoE,

which may drive gamers away from the cloud gaming services. Moreover, different game

genres impose diverse hardware requirements, which may result in insufficient or wasted

hardware resources if server resources are not well planned. For example, the servers

configured for cutting-edge 3D first person shooter games may be an overkill for 2D ca-

sual games. The server diversity renders the dilemma of finding the best tradeoff between

profit and QoE even harder.

Since cloud gaming services push games to cloud servers, server consolidation en-

ables dynamic resource allocation among game servers serving multiple gamers for better

overall performance and lower operational cost. In this paper, we study the problem of

efficiently consolidating multiple cloud gaming servers on a physical machine using mod-

ern virtual machines (VMs), such as VMware and VirtualBox, in order to provide high

1
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Figure 1.1: The architecture of cloud gaming services, where GS denotes cloud gaming

server.

gaming QoE in a cost-effective way, as illustrated in Fig. 1.1. We consider the VM place-

ment problem to maximize the total profit while providing the just-good-enough QoE to

gamers. This problem is referred to as provider-centric problem throughout this paper.

The considered problem is a variation of the virtual network embedding problem [1],

and thus is NP-Complete. The existing solutions for network embedded problems [1,5,6,

31, 43], however, are designed for computational/storage intensive applications, without

taking the real-time requirements of cloud gaming (and other highly interactive appli-

cations) into consideration. In particular, unlike computational/storage intensive appli-

cations that demand for high CPU/disk throughput, cloud games demand for high QoE,

in terms of, e.g., responsiveness, precision, and fairness [4, 25, 39]. Hence, the existing

virtual network embedding algorithms do not work for cloud gaming providers.

To reduce the operation costs by consolidation policy, however, results in degraded

user-perceived quality, and may drive gamers away from cloud gaming services. While

virtualizing CPUs, network interfaces, and storages is rather mature, virtualizing GPUs

is still considered experimental. In fact, several papers warn the potentially poor perfor-

mance in terms of low frame rate, high response time, and low video quality when GPUs

are shared among multiple VMs [13, 38]. For example, Shea and Liu [38] show that the

frame rate of Doom 3 is lower than 40 FPS (frame-per-second) even if Xen and KVM are

configured with one-to-one GPU pass-through, which renders sharing the GPU among

more than two VMs virtually impossible. Nonetheless, in the past couple of years, the

GPU virtualization technology has been dramatically improved, which may have solved

the performance issue of VM consolidation for computer games. To the best of our knowl-

edge, this paper is the first attempt to tackle the VM placement problem to maximize the

cloud gaming QoE and conduct a measurement study to quantify the performance of GPU

virtualization technology for cloud gaming systems.

In particular, this paper makes the following contributions:

2



• We conduct extensive measurement studies using an open-source cloud gaming

platform, GamingAnywhere [20] on two VM implementations to derive the game-

dependent parameters for QoE and performance models (Ch. 3).

• We formulate and propose two algorithms for the provider-centric VM placement

problem (Ch. 4).

• We extend the provider-centric VM placement problem into a gamer-centric prob-

lem for closed cloud gaming services, e.g., in hotels, Internet cafes, and amuse-

ment parks, where the overall gaming QoE needs to be maximized using already-

deployed infrastructures. We also propose two algorithms to solve the gamer-

centric problem (Ch. 5).

• We present a prototype system built by off-the-shelf components, and quantify the

implication of live migration, which refers to moving a running VM from one phys-

ical server to another. We augment our algorithms to accommodate to high migra-

tion overhead, resulting in efficient and practical algorithms (Ch. 6).

• Our extensive trace-driven simulations indicate that: (i) our efficient algorithms re-

sult in close-to-optimal performance, as small as 0% and 10% gaps, (ii) the efficient

algorithms scale to large cloud gaming services with twenty thousands of servers

and more than forty thousands gamers, and (iii) the efficient algorithms outper-

form a state-of-the-art algorithm by large, e.g., up to 3.5 times of net profit increase

(Ch. 7).

• we conduct real experiments using modern GPUs and a real cloud gaming plat-

form [19] to answer the following question: Are modern GPUs ready for cloud

gaming? Our experiment results reveal several insights that have never been re-

ported in the literature. For example, we observe that: (i) virtualized GPUs may

outperform pass-through GPUs, and (ii) cloud servers with modern GPUs may be-

come CPU-bounded. These observations are quite different from common beliefs.

Our experiments not only answer the above question, but also shed some lights

on better designs of future cloud gaming platforms for high user-perceived quality

(Ch. 8).

3



Chapter 2

Related Work

2.1 General Cloud Applications

Optimizing general cloud applications has been studied in cloud environments. For ex-

ample, Zaman et al. [44] propose an auction-based mechanism for dynamic provision and

allocation of VMs to maximize the provider’s profit and improves the total utilization of

cloud resources. Lin et al. [28] formulate the data replication problem in the clouds as a

mathematical optimization problem and propose several algorithms for the I/O intensive

applications. In our work, we formulate the VM placement problem of cloud gaming sys-

tems and propose optimization algorithms to solve the problem. Different from these two

studies [28, 44], we optimize the real-time cloud games with an objective of maximizing

the provider’s profit by QoE-aware algorithms while optimizing the gaming quality at the

same time.

VM migration techniques have been investigated for non real-time applications. Mar-

zolla et al. [30] utilize the live migration technology to move the VMs away from the the

lightly loaded physical servers and thus the empty servers can be switched to low-power

mode. Ferreto et al. [16] create a dynamic server consolidation algorithm with migration

control and avoid unnecessary migrations to reduce the number of powerd on servers and

migration cost. Chen et al. [3] find that virtual machines do not usually use all their re-

sources, and they create an algorithm which also considers the migration cost according

to the records of migration history for saving energy. Speitkamp and Bichler [40] present

a heuristic solution which approximates the optimal solution by not only considering the

cost but also determining whether the problem size can be optimally solved. Nathuji et

al. [46] create a performance interference model and classify the applications into dif-

ferent resource bounds using historical data. The applications are then consolidated on

physical servers for better Quality of Service (QoS). Zhu and Tung [33] also consider

the interference and implement a system to determine the placement of VMs to avoid the

4



interference and meet the desired QoS values. None of the aforementioned studies take

cloud gaming QoE levels into consideration.

2.2 Cloud Games

The benefits of game server consolidation have been studied for certain game genres.

For example, Lee and Chen [24] address the server consolidation problem for Massively

Multiplayer Online Role-Playing Game (MMORPG). In particular, they propose a zone-

based algorithm to leverage spatial locality of gamers in order to reduce the hardware

requirements at the servers. Their work is different from ours for two reasons. First,

we consider cloud gaming that streams high-quality real-time videos to gamers, while

MMORPG servers only send low bitrate status updates. Second, we explicitly optimize

gaming QoE in this paper, while they only attempt to save energy at the data centers

without taking QoE into consideration.

Duong et al. [15] and Wu et al. [42] are complementary to our work, as they concen-

trate on minimizing the queueing delay of a cloud gaming system, while we focus on the

user experience during the game sessions. For example, Duong et al. [15] develop re-

source provisioning and waiting queue scheduling algorithm to admit selective incoming

gamers for the best profit under user-specified maximal waiting times. Wu et al. [42] also

propose an online control algorithm to quickly serve users in the waiting queue. Com-

pared to their work, we optimize the gaming QoE after a user is admitted in the system;

such QoE maximization is arguably more important, as gamers typically can only tolerate

a few minutes of waiting time, but each game session may last for hours.

Most of the cloud gaming systems, including Gaikai, Ubitus, and OnLive are propri-

etary and closed, and thus measuring cloud gaming performance and QoS on them is hard,

if not impossible. We employ GamingAnywhere (GA) [20] for our experiments, which

is an open cloud gaming system. In particular, we use GA to derive the performance

and QoS models for different games on different VMs, and to develop VM placement

algorithms. Last, our initial investigations on the QoE-aware virtual machine placement

problems were reported in Hong et al. [18].

2.3 GPU Virtulization on Cloud Gaming Systems

GPU architecture has been constantly changed, which renders virtualizing GPU for con-

current access from multiple VMs rather challenging. Dowty and Sugerman [13] discuss

several GPU virtualization techniques, which can be roughly classified into software-

based and pass-through. The software-based GPU virtualization is compatible with more

5



GPU hardware, while the pass-through approach achieves better performance. The software-

based virtualization is more flexible and has been adopted by VMWare [13], and is used

in prototyping optimization algorithms for GPU scheduling [45]. The pass-through ap-

proach can further be classified into: (i) one-to-one fixed pass-through and (ii) one-to-

many mediated pass-through [13].

Until very recently, commercial products did not support mediated pass-through and

refer to fixed one-to-one pass-through as pass-through. In fact, the performance of one-to-

one fixed pass-through GPUs for cloud gaming has not been studied until late 2013 [38].

More precisely, Shea and Liu [38] conduct extensive experiments to quantify the perfor-

mance gap between native hardware (without virtualization) and pass-through GPU (with

virtualization). They find that the native hardware significantly outperforms pass-through

GPU, and conclude that sharing a GPU among multiple cloud gaming VMs will lead to

unacceptable low frame rate. Their measurement results also reveal that the low frame

rate may be partially attributed to the excessive context switches. Our current paper ex-

tends Shea and Liu [38] in the sense that: (i) we consider modern GPUs that support more

advanced pass-through approach, and (ii) we quantify the performance of GPUs shared

by multiple VMs. To our best knowledge, the performance of these modern GPUs has not

been measured in the literature.
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Figure 2.2: Measurement results for CPU utilization, GPU utilization, frame rate, and

processing delay. Sample results from Limbo.
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Chapter 3

Measurement Studies

We conduct measurement studies to model the implications of consolidating multiple

cloud gaming servers on a physical machine. We set up the GA server [20] on VMware

workstation 9 and VirtualBox 4.2.6. The GA client runs on another machine without

VMs. The two Windows 7 machines running GA server and client are connected via a

wired network, and they are equipped with Intel i7 3.4 GHz CPU and 24 GB memory,

and Intel i5 2.8 GHz CPU and 4 GB memory, respectively. We install a NVidia Quadro

6000 GPU on the GA server. We choose three games in different genres: Limbo, Sudden

Strike: Normandy (Normandy), and Police Supercars Racing (PSR), and measure various

performance metrics over 5-min game sessions with different configurations. We consider

four metrics relevant to the VM placement problem: (i) CPU utilization: the average CPU

load measured on the physical server, (ii) GPU utilization: the average GPU load mea-

sured on the physical server, (iii) frame rate: the average number of frames streamed per

second, and (iv) processing delay: the average time for the GA server to receive, render,

capture, encode, and transmit a frame, which is measured by the techniques proposed in

Chen et al. [2].

We first compare the performance of GA running on the host OS and that running

on a single VM with all available resources allocated to it. Fig. 2.1 gives some sample

results, which reveals that: (i) VMs lead to nontrivial overhead, (ii) different VMs result

in different amount of overhead, and (iii) different games incur different workloads that

may have distinct performance implications on different VMs. Hence, more extensive

measurements are required to derive the prediction model of GA performance in each

game/VM pair.

Next, we vary the number of VMs on the server, while equally dividing the 8 CPU

cores among all VMs. In particular, we conduct the measurements with 1, 2, 4, and 8

VMs. We plot the sample results from Limbo in Fig. 2.2. This figure reveals that the

CPU utilization, GPU utilization, frame rate, and processing delay can be modeled as
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Table 3.1: R-square Values of Different Games/VM

Game VM CPU GPU FPS DELAY

Limbo
VMware 0.9910 0.9837 0.9767 0.9955

VirtualBox 1.0000 0.9877 0.9933 0.9996

Normandy
VMware 0.9999 1.0000 0.9865 0.9995

VirtualBox 0.9991 0.9986 0.9764 0.9995

PSR
VMware 0.5758 0.9961 0.9917 0.9974

VirtualBox 0.9898 0.9360 0.9969 0.9943

sigmoid functions of the number of VMs on a physical server, which are also plotted in

Fig. 2.2 as the curves. We notice that several basic functions, such as ax+ b, ax2+ bx+c,

a/x, and a − a/x may also be used as the regression models [23]. After trying these

basic functions, we find that the sigmoid functions fit our measurements much better.

Therefore, we employ the sigmoid functions in this paper, and report their R-square values

in Table 3.1. The R-square values indicate how close the sigmoid functions follow the real

measurements: the deviation is smaller when the R-square value approaches 1. Hence,

Table 3.1 shows that sigmoid functions model the VM measurement results very well.

The precise fitted sigmoid models are detailed in Ch. 4.2, and the empirically derived

parameters are used in Chs. 6 and 7. We acknowledge that the model parameters depend

not only on the pairs of game/VM but also on game server specifications and operating

systems. This however is not a serious concern, as cloud gaming providers are likely to

build data centers with one or very few types of machines, which can be profiled offline

beforehand. In extreme cases where the physical servers are more heterogeneous, our

measurement approach may adopt online regression for incremental adaptations.
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Chapter 4

VM Placement Problem and Solution

We study the provider-centric problem in this section.

4.1 System Overview

Fig. 1.1 illustrates the system architecture of the cloud gaming platform, which consists of

S physical servers, P gamers, and a broker. Each physical server hosts several VMs, while

every VM runs a game and a game server (GS). Several physical servers are mounted on a

rack, and multiple racks are connected to an aggregation switch. The aggregation switches

are then connected to the Internet via a core switch. Physical servers are distributed

in several data centers at diverse locations. The gamers run game clients on desktops,

laptops, mobile devices, and set-top boxes to access cloud games via the Internet.

The broker is the core of our proposal. The broker consists of a resource monitor

and implements the VM placement algorithm. It is responsible to: (i) monitor the server

workload and network conditions, and (ii) place the VMs of individual gamers on physical

servers to achieve the tradeoff between QoE and cost that is most suitable to the cloud

gaming service. In particular, for public cloud gaming services, the provider’s profit is

more important, while for closed cloud gaming services, the gaming QoE is more critical.

We study the former case in this section, and will consider the later case in Ch. 5. The

games may have diverse resource requirements, including CPU, GPU, and memory [8],

while the paths between gamers and their associated servers have heterogeneous network

resources, such as latency and bandwidth. Moreover, gamers can tolerate different QoE

levels for different game genres [29]. Last, we note that the broker can be a virtual service

running on a server or a server farm for higher scalability.

9



4.2 Notations and Models

Table 4.1 gives the symbols used in this paper. We study the VM placement problem,

in which the VM placement decisions affect network delay, processing delay, and op-

erational cost. We write the network delay between server s (1 ≤ s ≤ S) and gamer p

(1 ≤ p ≤ P ) as es,p which is essentially the round-trip time between them. The es,p values

may be measured by various network diagnostic tools, such as Ping and King [17]. We

use fp(v) and dp(v) to denote the frame rate and processing delay when serving gamer

p with a server running v VMs, which depend on the game played by p. Fig. 2.2 re-

veals that sigmoid functions can model fp(v) and dp(v) well, and we write them as

fp(v) =
αp,1

1+e
−αp,2v+αp,3

and dp(v) =
βp,1

1+e
−βp,2v+βp,3

, where αp,1–αp,3 and βp,1–βp,3 are model

parameters derived from regression. Furthermore, we use us(v) and zs(v) to model the

CPU and GPU utilizations of server s running v VMs. Fig. 2.2 shows that us(v) and

zs(v) can also be written as sigmoid functions us(v) =
δ1

1+e−δ2v+δ3
and zs(v) =

ζ1
1+e−ζ2v+ζ3

,

where δ1–δ3 and ζ1–ζ3 are the model parameters. We denote gp as the hourly fee paid by

gamer p. We let ws(v) = cs(us(v) + zs(v)) be the operational cost of imposing CPU and

GPU utilization us(v) and zs(v) on s, where cs is a cost term consisting of various com-

ponents, such as electricity, maintenance, and depreciation. Moreover, we allocate G GB

memory to each VM, whereas physical server s is equipped with Gs GB memory. Last,

we consider GA servers to stream at B kbps. We let W be the number of data centers,

and use Sw (1 ≤ w ≤ W ) to denote the set of servers in data center w. We let Bw be the

uplink bandwidth of data center w (1 ≤ w ≤ W ). Our bandwidth model is general, as the

mapping between servers and data centers is flexible. For example, if the last-mile links

are the bottleneck, we may create a virtual data center for each server, such that |Sw| = 1,

∀w.

We next model the QoE of cloud gaming. Recent studies [25, 39] suggest that the

response time of user inputs directly affects QoE levels. The response time d̃s,p(v) is the

sum of processing delay, network delay, and playout delay. The playout delay is the time

duration of receiving, decoding, and displaying a frame at the client. Since playout delay

is not affected by VM placements, we do not include it in our model for brevity, and write

d̃s,p(v) = dp(v)+es,p. We generalize the QoE models in Lee et al. [25,39] to be a function

of both response time and frame rate. More specifically, we let qp(fp, d̃s,p) be the gaming

QoE degradation observed by gamer p with frame rate fp and response time d̃s,p. Inspired

by the linear QoE model in [25], we write qp(fp, d̃s,p) = γp,1fp + γp,2d̃s,p, where γp,1 and

γp,2 are model parameters that can be derived by the methodology presented in Lee et

al. [25]. Last, we use Qp to denote the maximal tolerable QoE degradation of gamer p.
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1: for each gamer p = 1, 2, . . . , P do

2: sort servers on network latency to p in asc. order

3: for each server s = 1, 2, . . . , S do

4: if serving p on s satisfies Eqs. (4.2)–(4.8) then

5: let xs,p = 1

6: break

7: return x

Figure 4.1: The pseudocode of the QDH algorithm.

4.3 Problem Formulation

We let xs,p ∈ {0, 1} (1 ≤ p ≤ P, 1 ≤ s ≤ S) be the decision variables, where xs,p = 1 if

and only if gamer p is served by a VM on server s. With the notations defined above, we

formulate the provider-centric problem as:

max







P
∑

p=1

S
∑

s=1

xs,pgp −
S
∑

s=1

cs(
δ1

1 + e−δ2vs+δ3
+

ζ1

1 + e−ζ2vs+ζ3
)






(4.1)

s.t. fp = αp,1

/

(1 + e−αp,2

∑S
s=1

(xs,pvs)+αp,3), ∀p; (4.2)

d̃p =
βp,1

1 + e−βp,2

∑S
s=1

(xs,pvs)+βp,3

+
S
∑

s=1

es,pxs,p, ∀p; (4.3)

vs =
∑P

p=1 xs,p, ∀s; (4.4)

1 =
∑S

s=1 xs,p, ∀p; (4.5)

Qp ≥ γp,1fp + γp,2d̃p, ∀p; (4.6)

Bw ≥ B
∑

s∈Sw

∑P
p=1 xs,p, ∀w; (4.7)

Gs ≥ G
∑P

p=1 xs,p, ∀s; (4.8)

xs,p ∈ {0, 1}, ∀1 ≤ s ≤ S, 1 ≤ p ≤ P. (4.9)

The objective function in Eq. (4.1) maximizes the provider’s net profit, i.e., the difference

between the collected fee and cost. Eqs. (4.2) and (4.3) derive the frame rate and response

time as intermediate variables. In Eq. (4.4), we define another intermediate variable vs to

keep track of VMs on each server s, and we evenly allocate the cores among all VMs on a

server. Eq. (4.5) ensures that each gamer is served by a single server. Eq. (4.6) makes sure

that the gaming QoE degradation is lower than the user-specified maximal tolerant level.

Eqs. (4.7) and (4.8) impose bandwidth and memory constraints on each data center and

sever, respectively. In summary, the formulation maximizes the provider’s profit while

serving each gamer with a (user-specified) just-good-enough QoE level.
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4.4 Proposed Algorithm

The provider-centric formulation in Eqs. (4.1)–(4.9) can be optimally solved using opti-

mization solvers, such as CPLEX [10]. We refer to the solver-based algorithm as OPT.

The OPT algorithm gives optimal solutions at the expense of exponential computation

complexity. Therefore, we use OPT for benchmarking and propose an efficient heuristic

algorithm, called Quality-Driven Heuristic (QDH), below.

The QDH algorithm is built upon an intuition: it is desirable to consolidate more VMs

on a server as long as the user-specified maximal tolerate QoE degradation is not exceed.

Fig. 4.1 illustrates the pseudocode of the QDH algorithm. For each gamer, the algorithm

first sorts all servers on the network latency to that gamer. It then iterates through the

servers in the ascending order and creates a VM for the gamer on the first server that can

support this gamer without violating constraints in Eqs. (4.2)–(4.9). It is clear that the

QDH algorithm runs in polynomial time.
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Table 4.1: Symbols Used Throughout This Paper

Sym. Description

S Number of physical servers

P Number of gamers

s Index of a physical server

p Index of a gamer

es,p Round-trip time between physical server

s and gamer p

v Number of VMs running on physical server s

fp(v) Frame rate when serving gamer p with a

server running v VMs

dp(v) Processing delay when serving

gamer p with a server running v VMs

α Frame rate model parameter

β Processing delay model parameter

us(v) CPU utilizations of server s running v VMs

zs(v) GPU utilizations of server s running v VMs

δ CPU utilization model parameter

ζ GPU utilization model parameter

gp Hourly fee paid by gamer p

ws(v) Operational cost of CPU and GPU

cs Cost term consisting of various components

G Memory size of each VM

Gs Memory size of physical server s

B Streaming bit rate of GA server

W Number of data centers

w Index of a data center

Sw Set of servers in data center w

d̃s,p(v) Sum of processing delay, network delay,

and playout delay

qp Game QoE degradation

γ QoE degradation model parameter

Qp Max tolerable QoE degradation of gamer p

xs,p Decision variable of the problem formulation

t1 Start time of migration

t2 Start time of synchronization before

end of migration

t3 End time of migration

D Probability of each gamer joins (leaves)

a gamer session

ω Normalized migration overhead
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Chapter 5

Alternative Formulation and

Algorithms for Closed Systems

The provider-centric problem presented in Ch. 4 is suitable to public cloud gaming ser-

vices. For closed cloud gaming services, e.g., in hotels, Internet cafes, and amusement

parks, maximizing the overall QoE is more important as the network bandwidth is ded-

icated to cloud gaming. Therefore, we present the gamer-centric formulation and algo-

rithms in this section. We start from the provider-centric formulation in Eqs. (4.1)–(4.9),

and we first replace the objective function in Eq. (4.1) with:

min
[

∑P

p=1 γp,1fp +
∑P

p=1 γp,2d̃p

]

, (5.1)

which minimizes the total QoE degradation. In particular, the QoE degradation is reduced

when fp increase or dp decreases as the empirically derived γp,1 is negative and γp,2 is

positive. Next, we remove the constraints in Eq. (4.6) as the new objective function has

taken the QoE into consideration. This yields the gamer-centric problem formulation. We

develop a solver-based algorithm for the gamer-centric formulation, which is referred to

as OPT′.

We also propose an alternative QDH for the gamer-centric problem, which is called

QDH′. Fig. 5.1 illustrates the heuristic algorithm. For each gamer, the algorithm first

computes its quality degradation levels on individual servers. It sorts the servers on the

quality degradation if serving that gamer using each server. Then, the algorithm iterates

through the servers and creates a VM for the gamer on the first server that can support

the gamer without violating any constraints in Eqs. (4.2)–(4.5), (4.7)–(4.8). QDH′ runs in

polynomial time.
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1: for each gamer p = 1, 2, . . . , P do

2: sort servers on quality degradation qp(·) in asc. order

3: for each server s = 1, 2, . . . , S do

4: if serving p on s satisfies Eqs. (4.2)–(4.5), (4.7)–(4.8) then

5: let xs,p = 1

6: break

7: return x

Figure 5.1: The pseudocode of the QDH′ algorithm.

GA Client

Gamer

Single Sign On Inventory Service
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Figure 5.2: The implemented prototype system.

Figure 5.3: The cloud gaming testbed in our lab.
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Chapter 6

System Implementation and Testbed

We conduct small-scale evaluations using a real testbed in the section.

6.1 Prototype Implementation

We have implemented a complete cloud gaming system consisting of a broker, physical

servers, and GA servers/clients, as illustrated in Fig. 5.2. We adopt VMWare ESXi 5.1 as

the virtualization software on physical servers. ESXi allows us to create VMs on physical

servers, and each VM hosts a GA server and a game chosen by the corresponding gamer.

We employ VMware vCenter 5.1 as the platform for our broker, which is comprised of

Single-Sign-On for user authentication and Inventory Service for managing/monitoring

the VMs on ESXi servers. The Inventory Service comes with different APIs, and we use

its Java API to interface with the vCenter on the broker so as to control ESXi servers on

all physical servers.

Fig. 5.2 shows the flow of our system. We integrate the GA client and server with

VMware ESXi and vCenter. In particular, the GA client provides an interface for gamers

to send their accounts and passwords to the broker ( 1©). Upon being authenticated ( 2©),

the GA client sends the user-specified game to the broker, and the broker determines

where to create a new VM for that game based on the status of all physical servers and

networks ( 3©). The broker then instructs the chosen physical server to launch a VM ( 4©)

and sends the VM’s IP address to the GA client ( 5©, 6©). Last, the GA client connects to

the GA server ( 7©), instructs the GA server to run the user-specified game ( 8©), and sends

the stream of game to GA Client ( 9©). This starts a new GA game session.
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6.2 Testbed and Practical Concerns

We set up a testbed using the prototype system in our lab, which is shown in Fig. 8.1.

The testbed contains an i7 3.2 GHz broker with the management web page, several i5 3.5

GHz physical servers with NVidia Quadro 6000 cards, and several i5 client computers.

The broker, physical servers and client computers are connected via Gigabit Ethernet. We

enable the CPU hardware support and conduct the following experiments.

We measure the overhead of launching a VM running Windows 7 and compare it

against that of natively booting up Windows 7 on the same machine. We found out that

both experiments take ∼50 s, showing little additional overhead due to virtualization. We

next measure the overhead of live migrations. Fig. 6.1 illustrates a sample migration of a

gamer from the source VM to the destination VM, where the areas with virtual patterns

indicate the VM currently used by the gamer. More generally, there are two types of

migrations: (i) live migration and (ii) stop-and-copy [7]. With live migration, the memory

and disk pages of the source VM are first copied over to the destination VM. Meanwhile,

the gamer still connects to the source VM and may produce dirty memory and disk pages.

The system iteratively copies those dirty pages to the destination VM until either there

is no more dirty pages, or the number of new dirty pages is more than the number of

copied dirty pages. Next, the synchronization starts: (i) the system freezes both VMs,

(ii) the system copied over the remaining pages, and (iii) the gamer is then served by the

destination VM. We let t1 and t3 be the start and end times of the migration procedure,

and t2 be the time synchronization starts. Using the notations, live migration copies pages

between t1 and t2 without stopping gamers from using the VMs, and freezes VMs between

t2 and t3. Our testbed supports live migration and we conduct diverse experiments to

quantify the migration overhead.

We discover that the live-migration time t1 to t3 of 20, 30, and 40 GB VM images are

about 6, 9, and 11 minutes in our testbed. In addition, the frozen time t2 to t3 are always

less than 3 seconds. These three various VM image sizes are roughly mapped to the

three considered games: Limbo, PSR, and Normandy. Given that the migration time are

Source

Destination

Time

t1 t2t3
Idle

Copying

Frozen

Figure 6.1: Live migration.
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Figure 6.2: Comparisons between QDHL/QDH′

L and QDH/QDH′: (a) net profits and (b)

quality.

non-trivial, recomputing the VM placement problems for all gamers (including those with

ongoing sessions) may lead to unacceptable QoE degradation even with live migration.

The major cause of the QoE degradation is the duplicated resource reservations: when

migrating a gamer, both the source and destination VMs consume resources as shown

in Fig. 6.1. Hence, we propose an migrationless version of the proposed QDH/QDH′

algorithms, which do not migrate the running VMs to avoid the degradation caused by

migration time. We denote the new algorithms as QDHL/QDH′

L, which only intelligently

place the VMs of incoming gamers that have not started the game sessions. That is, by

getting rid of the outermost loops in Figs. 4.1 and 5.1, we never migrate the ongoing game

sessions. Intuitively, QDHL/QDH′

L run faster, yet achieve better performance as the high

migration time are avoided. Moreover, QDH′

L is an optimal migrationless algorithm. We

will show this in evaluation sections (Chs. 6.3 and 7).
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6.3 Experiment–Performance Gains of the Migrationless

Algorithms

Setup. To quantify the QDHL/QDH′

L algorithms, we employ a testbed with 9 physical

servers, 15 gamers, and 3 games–Limbo, PSR, and Normandy. In every minute, each

gamer joins (leaves) a game session with a probability of D% (1 − D%), where D is a

system parameter. Each simulation lasts for T minutes. We assume that each physical

server can serve up to two VMs and each VM launches a randomly selected game. In

each simulation, we measure the fps and processing delay, and use them in the quality

model. Also, we measure the CPU and GPU utilizations, and use them in the profit

model. We inject realistic network latency (see Sec. 7.1) using dummynet [14]. Last, we

set D = 90%, T = 15 minutes and consider the two performance metrics:

• Net profit. The total provider profit in every minute.

• Quality of Experience. The gaming QoE normalized in the range of [0%, 100%].

Results. We make three observations on the performance of the QDHL/QDH′

L algo-

rithms. First, QDHL/QDH′

L outperform QDH/QDH′. In particular, Figs. 6.2(a) and 6.2(b)

show that the gains between QDHL/QDH′

L and QDH/QDH′ are up to 396 dollars and 4%

QoE. A closer look reveals that the performance gains are due to high migration overhead.

Due to the increasingly higher computing power, the migration overhead will be grad-

ually reduced and the performance gains of QDHL/QDH′

L may be diminishing. To better

understand the trend, we let ω be the normalized migration overhead, where 0 ≤ ω ≤ 1.

For example, setting ω = 1/3 means the migration overhead becomes 1/3 of the current

one. We vary different ω values and plot the average results in Fig. 6.3. This figure reveal

that the migrationless algorithms QDHL/QDH′

L still outperform the ordinary algorithms
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QDH/QDH′ even when ω = 25% and ω = 5%. However, such a steep technology ad-

vance is less likely to become a reality in the short term. Hence, we no longer consider

the QDH/QDH′ algorithms in the rest of this thesis.

Last, we compare the QDHL/QDH′

L algorithms against the migrationless optimal so-

lution that exhaustively checks all servers for each new gamer. We refer to the migra-

tionless optimal solutions as OPTL/OPT′

L. Fig. 6.4 reports the average performance over

time. Fig. 6.4(a) shows that QDHL and OPTL result in similar net profit.

More specifically, the OPTL algorithm outperforms the QDHL algorithm in the first

half of the experiment, but the QDHL occasionally performs better in the second half.

A closer look indicates that since both algorithms are migrationless, once game sessions

start, they will be executed until the gamers leave. Therefore, even though OPTL selects

the best VM placements for the incoming gamers, it cannot foresee the future (e.g., when

will the gamers leave), and thus its profit may be lower than that of the QDHL algorithm.

Nonetheless, the overall profit of QDHL is still 10% lower than the optimum.

A closer look depicts that the optimization gain of QDHL is merely 10%. Fig. 6.4(b)

reveals that QDH′

L leads to exactly the same (optimal) performance in QoE, compared to

OPT′

L. Fig. 6.4 shows the merits of QDHL and QDH′

L.
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Chapter 7

Trace-Driven Simulations

In this section, we consider large-scale evaluations using detailed simulations.

7.1 Setup
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Figure 7.1: Fairness in QoE levels on different game genres.

We have built a simulator for the VM placement problem using a mixture of C/C++,

Java, and Matlab. We have implemented the QDHL/QDH′

L algorithms in our simulator.

For comparisons, we have also implemented a VM placement algorithm that places each

VM on a random game server that is not fully loaded and in the data center geographically

closest to the gamer. This baseline algorithm is referred to as Location Based Placement

(LBP) algorithm. We collect gamer and server IP addresses and the latency between

each gamer/server IP pair in order to drive our simulator. For servers, we use DigSites-

Value [11] to obtain the IP addresses of OnLive data centers in Virginia, California, and

Texas. For gamers, we develop a BitTorrent crawler using libtorrent [27] to collect peer

IP addresses and then use them as gamer IP addresses. Since OnLive only hosts game
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servers in the US, we filter out non-US gamer IP addresses using ip2c [21]. We ran our

crawler on August 13, 2013 with 4494 torrents downloaded from IsoHunt [22], which

gave us 22395 IP addresses and 5875 US IP addresses. Next, we measure the network

latencies among gamer/server IP pairs using King [17], since we have no control over

neither end systems. We drop the IP addresses without complete latency results to all

servers, which leads to 412 gamer IP addresses.
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Figure 7.2: Simulation results with WoW traces: (a) net profits, (b) used servers, and (c)

QoE levels.

We conduct a three-day simulation for each scenario using different algorithms. The

gamers arrive at the broker following a Poisson process with a mean time interval of 4

minutes and each gamer plays for a duration uniformly chosen from {300, 600, 1200,

2400, 4800} minutes. In addition to the synthetic gamer arrival traces, we also employ

real World of Warcraft (WoW) traces [41] in our simulations. Each gamer plays a game

randomly chosen from Limbo, PSR, and Normandy. We also vary the number of servers

S ∈ {192, 384, 768, 1536, 3072} and the migration overheads of 6, 9, and 11 minutes for

Limbo, PSR, and Normandy respectively. During each simulation, we run the schedul-

ing algorithm once every minute and we report the mean performance results among all

gamers, and 95% confidence intervals whenever applicable. If not otherwise specified, we

set S = 192, γp,1 = −0.1, γp,2 = 0.1, gp = 1, and cs = 2. We conduct all the simulations

on an Intel i7 3.4 GHz PC. We consider the following performance metrics:

• Net profit.

• Quality of Experience.

• Running time. The time of executing each algorithm.

• Number of used servers. The number of servers that serve at least one gamer.

7.2 Results

Performance of QDHL/QDH′

L. We plot the provider-centric results in Fig. 6.5(a), which
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gorithms.
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Figure 7.4: Impacts of number of gamers on: (a) net profits and (b) QoE levels.

shows that QDHL significantly outperforms LBP: up to 3.5 times difference. This can

be explained by Fig. 6.5(b), which shows that QDHL turns on fewer servers to achieve

higher net profits. We plot the gamer-centric results in Fig. 6.6, which reveals that QDH′

L

constantly outperforms LBP: up to 5% QoE gap. Moreover, the confidence intervals show

that QDH′

L leads to more consistent QoE levels among individual gamers, achieving better

fairness. Fig. 7.1 plots the aggregate QoE of three games, which shows that both QDH′

L

and LBP are relatively fair to different game genres, while QDHL maximizes the net

profits by devoting more resources to less complicated games.

Performance results from WoW traces. In the following, we report results from

the WoW traces. We plot the provider-centric results in Fig. 7.2(a), which shows that

QDHL always outperforms LBP with the difference between the two algorithms up to

20+ thousand dollars. And in the first quarter of the simulation, LBP runs into a big

deficit problem. This can be explained by Figs. 7.2(b) and 7.4(b), which reveals that

while QDHL shutdown more servers and it always allow all gamers meets 60+% QoE

which is the just-good-enough QoE level. Fig. 7.2(c) shows that QDH ′

L outperform LBP

up to 130%.

Scalability. We plot the running time in Fig. 7.3, which shows the QDHL/QDH′

L
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Table 7.1: Running Time in Seconds

# of Servers
QDHL QDH′

L

Mean Max Mean Max

5000 0.215 0.853 0.02 0.05

10000 0.379 0.967 0.05 0.07

15000 0.557 1.9 0.07 0.12

20000 0.819 2.52 0.12 0.23

algorithms terminate in real time: < 1.5 ms. We then increase the number of servers

S, and report the average running time with two assumptions that all gamers which we

get from WoW trace will not leave the game session and we repeat the WoW trace 30

times to scale up the number of total gamers in our system. Table 7.1 shows that it

takes QDHL/QDH′

L at most 2.5s to solve a VM placement problem with more than 20000

servers and 40000 gamers. This is relatively short compared to the initialization time of

modern computer games.

Number of gamers. The number of gamers in WoW traces is varying in time, and we

present two scatter plots in Figs. 7.4(a) and 7.4(b) to study the relation between the perfor-

mance and number of gamers. This figures show that more gamers lead to higher profits

and lower QoE levels, and QDHL/QDH′

L successfully achieve their design objectives.
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Chapter 8

GPU Consolidation for Cloud Games

We have formulated the VM placement problem and proposed algorithms to maximize

cloud providers’ profit while achieving just-good-enough QoE for gamers, or maximize

the QoE for gamers without consider the profit. After that, in this chapter, we conduct

experiments using a modern GPU and a cloud gaming platform to answer the following

question: Are modern GPUs ready for cloud gaming?

8.1 Methodology

In this section, we present the methodology to measure the performance of modern GPUs.

8.1.1 Workload Generators

We generate GPU workload using two kinds of applications within Windows 7 running

as the guest OS. The details are given below.

• Game. Three games are chosen from all game genres: Fear2, which is a first-

person shooter game, LEGO Batman, which is an action game, and Limbo, which

is a scroll-based puzzle game.

• Benchmark. We use Sanctuary for overall GPU benchmark and Cadalyst for de-

tailed (2D versus 3D) GPU benchmark.

We use tinytask to record the mouse and keyboard inputs of each game play for 3

minutes. We then replay the same user inputs in multiple experiments with different con-

figurations to ensure fair comparisons. The game graphics detail levels are kept as default.

The Sanctuary benchmark gives an FPS number as the overall score. The Cadalyst bench-

mark gives four 2D scores on ortho lines, radial lines, texts/blocks, and erase/zoom, and

we denote them as 2D1, 2D2, 2D3, and 2D4 in the figures. The Cadalyst benchmark also
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gives four 3D scores on rotate wireframe, rotate hidden, rotate conceptual, and rotate real-

istic, which are referred to as 3D1, 3D2, 3D3, and 3D4 in the figures. We set the resolution

to 1920x1200.

Table 8.1: Specifications of Two GPUs.

GPU Year Core Memory No. Inst. vSGA vGPU

Quadro 6000 2010 448 6 GB 1 Yes No

K2 2013 3072 8 GB 2 Yes Yes

8.1.2 Experiment Setup

We setup a XenServer 6.2 with a Xeon 2.1 GHz 16-core CPU and 64 GB memory for

the cloud gaming server. We conduct experiments with two GPU cards: Nvidia Quadro

6000 (released in 2010) and Nvidia K2 (released in 2013). Their specifications are given

in Table 8.1. The K2 GPU has two physical GPU instances, and each instance can be

configured to be in one of the following modes: (i) pass-through, (ii) vGPU with up to 8

VMs, (iii) vGPU with up to 4 VMs, and (iv) vGPU with up to 2 VMs. vGPU is the latest

Nvidia GPU virtualization technique realizing mediated pass-through [13]. We refer to

these modes as: PassThrough, vGPU2, vGPU4, and vGPU8, respectively. Quadro 6000

GPU does not support vGPU and only works with vSGA, which is software-based GPU

sharing. By default, the XenServer allocates 1 CPU core and 2GB memory to Dom0,

which is responsible for managing VMs. The remaining CPU cores and memory are

equally divided among the VMs running Windows 7.

8.1.3 Performance Metrics

In addition to the scores given by Sanctuary and Cadalyst benchmark, we also consider

the following performance metrics.

• FPS. The number of rendered frames per second.

• Context Switch. The number of context switches in Dom0.

• CPU Utilization. The CPU load of Dom0 (CPUdom0) and each VM (CPUvm).

• GPU Utilization. The load of GPUs.

8.1.4 Measurement Utilities

XenServer is based on CentOS Linux, and Linux utilities may be compiled on XenServer.

For example, we tried to compile PAPI and Perf. However, they do not work on XenServer
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even after being compiled, because the XenServer kernel has been patched. We end up

with the following utilities.

• Fraps. To measure the FPS of the foreground window.

• Sar. To measure the number of context switches.

• Xentop. To measure the CPU utilization of Dom0 and VMs.

• Nvidia-smi. To measure the GPU utilization under vGPU.

• GPU-Z. To measure the GPU utilization of pass-through GPUs.

Figure 8.1: Our testbed with a cloud game server (right) and four game clients (left),

connected by a Fast Ethernet switch (middle).
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Figure 8.2: Comparing the pass-through and vGPU: (a) resulting FPS, (b) 2D benchmark

scores, and (c) 3D benchmark scores.

8.2 Measurement Results

Performance edge and scalability of vGPU. We set up a cloud gaming testbed [19]

as illustrated in Fig. 8.1, and compare the performance of Quadro 6000 (software-based
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Figure 8.3: GPU consolidation overhead: (a) resulting FPS with various numbers of VMs,

(b) fully loaded time ratio from vGPU8, and (c) CPUvm from vGPU8.
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Figure 8.4: End-to-end performance of a cloud game platform: (a) resulting FPS, (b)

CPUvm utilization with pass-through GPU, and (c) CPUvm utilization with vGPU2.

vSGA) and K2 (mediated pass-through vGPU). We report the achieved average FPS from

Limbo on the clients in Table 8.2. This table shows that K2 outperforms Quadro 6000 with

up to 3.87 times of FPS increases. Furthermore, the FPS achieved by K2 does not drop

too much even with 8 VMs, which shows its scalability. This experiment demonstrates the

huge edge of vGPU (mediated pass-through) over vSGA (software-based virtualization).

Hence, we no longer consider Quadro 6000 and vSGA in the rest of this thesis.

Independence of the two K2 GPU instances. We use Sanctuary to measure the FPS

of pass-through, vGPUs, and mixed configurations. To isolate the performance measure-

ment on GPUs, we conduct the next 4 measurements on the cloud game server. We report

the average results in Table 8.3, which shows that the two GPU instances of K2 operate

independently, as the FPS values are pretty stable. Without loss of generality, we only

enable a GPU instance in the remaining experiments.

Table 8.2: Achieved frame rates on two considered GPUs
# of VMs Quadro 6000 K2 Speed-up (times)

2 VMs 22.3 32.8 1.47

4 VMs 13.1 26.9 2.05

8 VMs 7.0 27.1 3.87
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Table 8.3: Sanctuary Scores in FPS from Diverse GPU Configurations

GPU Configuration PassThrough vGPU

1 PassThrough on 1 Instance 150.4 x

2 PassThrough on 2 Instances 146.6 x

1 PassThrough + 4 vGPU4 142.7 45.9

4 VMs with vGPU4 on 1 Instance x 42.7

8 VMs with vGPU4 on 2 Instances x 42.8

Shared GPUs may outperform dedicated GPUs. We next compare the perfor-

mance of pass-through, vGPU2, vGPU4, and vGPU8 using Sanctuary, Fear2, Batman,

and Limbo, where pass-through refers to one-to-one fixed pass-through. We plot the re-

sulting FPS in Fig. 8.2(a). This figure reveals a surprising observation: vGPU results in

higher FPS than pass-through when executing Limbo and Fear2. This is different from the

common belief. We therefore take a step further by running Cadalyst and reporting the 2D

and 3D scores in Figs. 8.2(b) and 8.2(c). These two figures show that vGPU2 outperforms

pass-through in all 2D operations by up to 15%. Moreover, vGPU2 also leads to better

scores than pass-through when executing some 3D operations (two out of four scores).

Similar observations are also true for vGPU4 and vGPU8. Such observations explain the

inferior FPS of pass-through GPUs: Limbo and Fear2 heavily rely on 2D operations; in

contrast, the 3D-intensive Batman performs better on pass-through GPUs. The take-away

of this experiment is that state-of-the-art vGPU virtualization technique has been well

optimized and works better than pass-through GPUs for some game genres. In fact, we

believe that sharing a GPU among multiple VMs running games is now a reality.

Table 8.4: Relation Between FPS and Number of Context Switches

Game
FPS No. Context Switches

vGPU8 vGPU4 Ratio vGPU8 vGPU4 Ratio

Fear2 45.8 64.9 0.7 9472 14149 0.67

Batman 43.3 41.6 1.04 4325 3991 1.08

Limbo 39.2 64.8 0.6 10700 13927 0.76

The performance of modern GPUs is no longer dominated by the overhead due

to context switches. An earlier study [38] reports that more context switches incur higher

overhead and reduce the rendered FPS. We try to reproduce this by running three games

on vGPU4 and vGPU8, and measure the resulting FPS and number of context switches

in Dom0. We report the results in Table 8.4, which shows that the FPS is proportional

to the number of context switches. That is, more context switches indicate that VMs

are busier rendering at higher FPS. This is quite different from the earlier study [38].

Another interesting observation is that vGPU never results in FPS > 68 throughout our

experiments. This shows that an FPS-aware GPU scheduling algorithm, similar to Zhang
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et al. [45], has been implemented in vGPU, making it suitable for sharing GPUs among

VMs running cloud games.

Consolidation overhead and root cause analysis. Next, we quantify the consol-

idation overhead by configuring the K2 GPU into vGPU8, and gradually adding more

VMs (from 1 to 8). We then measure the FPS, CPUdom0, CPUvm, and GPU utilization

under Sanctuary and different games. We plot the resulting FPS in Fig. 8.3(a). This

figure shows that Limbo does not suffer from consolidation overhead, while all other

games/benchmark do. We then compute the fraction of time each resource is fully loaded,

and refer to it as fully loaded time ratio in %. We plot the sample ratio from vGPU8 in

Fig. 8.3(b), which shows that Sanctuary is bounded by GPU, while Fear2 and Batman are

bounded by CPUdom0. Moreover, as emphasized in Fig. 8.3(c), the CPUvm never reaches

100% under vGPU8. Our observations show that allocating more CPU cores to Dom0 in

XenServer will alleviate the high consolidation overhead for more complex games.

Importance of hardware codecs. Last, we measure the end-to-end cloud gaming

performance. We configure the server for pass-through and vGPU2, assign 8 CPU cores

to each VM, and measure the rendered FPS at clients and the CPU utilization at the server.

We report the resulting FPS values in Fig. 8.4(a), which are between 20 and 42. The FPS

results are less ideal to high-quality cloud gaming, and a closer look indicates that this

is because of limitations of XenServer and Windows 7. In particular, because the cloud

game server [19] relies on the CPUs for real-time video encoding, more CPU cores mean

higher encoding speed. However, the free version of XenServer only supports exposing

multiple virtual CPUs, rather than CPU cores, to each guest OS, and Windows 7 supports

up to 2 CPUs. Hence, the guest Windows 7 only schedules the tasks to 2 CPUs while

leaving the other 6 CPUs idle (see Figs. 8.4(b) and 8.4(c)), which renders lower FPS

values. We note that K2 GPUs come with hardware H.264 codecs, and how to leverage

these codecs for higher cloud gaming FPS is an interesting future task.
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Chapter 9

Conclusion and Future Work

We studied the VM placement problems for maximizing: (i) the total net profit for service

providers while maintaining just-good-enough gaming QoE, and (ii) the overall gaming

QoE for gamers. The former problem is more suitable for public cloud gaming systems,

while the later problem is more suitable for closed systems. We conducted extensive ex-

periments using a real cloud gaming system [20], and two VMs to derive various system

models. We formulated the two problems as optimization problems, and proposed optimal

and efficient algorithms to solve them. After that, we designed and carried out a measure-

ment study to understand whether the state-of-the-art GPU virtualization techniques are

ready for cloud gaming. Different from earlier measurement studies [13, 38], we have

found that the mediated pass-through GPU virtualization implemented in the latest GPUs

enables efficient GPU sharing among multiple VMs.

Via testbed, extensive trace-driven simulations, and a measurment study of modern

GPU, we demonstrate that: (i) the efficient algorithms achieve up to 90% (provider-

centric) and 100% (gamer-centric) performance compared to the optimal algorithms, (ii)

the efficient algorithms constantly outperform the state-of-the-art algorithm, e.g., up to

3.5 times in net profits, (iii) the efficient algorithms terminate in < 2.5 s on a commod-

ity PC even for large services with 20000 servers and 40000 gamers, (iv)shared GPUs

may outperform dedicated GPUs, and (v) they are rather scalable to the number of VMs.

Hence, modern GPUs can be shared by VMs running GPU-intensive computer games.

This work can be extended in several directions: (i) we may develop more comprehen-

sive system models, which may take other types of resources and heterogeneous server

types into consideration, and support online parameter adaptation. (ii) we also observed

that CPUs may become the bottleneck on cloud gaming servers, e.g., the cloud gam-

ing platform [19] achieves less ideal FPS because the guest Windows 7 can only utilize

up to 2 CPU cores, and leveraging the hardware H.264 codecs becomes crucial to build

commercially-viable cloud gaming platforms. (iii) We may consider the individual QoE
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of the gamers while we maximize the total QoE. (iv) About the higher performance of

vGPU, we could analyze not only the 2D/3D operations but also the low-level instruc-

tions to know precise factors which result in the observation. (v) in the VM replacement

algorithm, we may consider the gamer requirements to make the results more close our

objective. (vi) The shared network storage may reduce the migration time. The most im-

portant future work is the six point. For our observation, if we can speed up 4 times of the

total live migration time, the performance of QDH will be the same as the migrationless

algorithm. We may leverage the shared network storage while we migrate the VMs in the

same datacenter. With shared network storage, we can only migrate the memory instead

the whole image of the VMs . If we allocate 4GB memory and 20GB disk to each VM,

we can speed up 5 times with the memory-only migration skill. It will make our QDH

algorithms become useful and outperform the migrationless algorithms.
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Virtualization

There are several different virtualization technologies, such as JVM, virtual storage, vir-

tual machines, have been proposed in the literature [26, 32, 35, 36]. These technologies

can be roughly classified into the following 6 kinds:

• Application Virtualization (AV): We can utilize this technique to virtualize an en-

vironment designed for an application to make it work on different systems. Take

JVM for example, with JVM, we can execute a Java program on different envi-

ronments, such as Windows, Linux, and OS X. On the other hand, if we want to

execute a C program on those systems, we need to recompile it and import a great

number of libraries to make this program work. Another example is Wine, an ap-

plication installed on Linux, which can make Windows executables work on Linux

machines.

• Resource Virtualization (RV): RV is a technique in which specific host resources,

such as CPU, network, and memory will be virtualized for guests. Take Gluster for

example, it is one of resource virtualization techniques called virtual storage (VS).

Gluster is constructed by some bricks. Each of them can be assigned to storage

devices of different types and from different manufacturers, and those bricks will

be combined into a single volume that guests use without any knowledge of storage

devices.

• Operating System Level Virtualization (OSLV): OSLV enables multiple guests run-

ning on a single operating system kernel. This technique has the performance close

to native machine, and dynamic resource management is feasible. On the other

hand,it does not allow to run different kernels, so if a guest performs a system call

and crashes, it may affect other guests. Also, it cannot create guest with Windows

if the kernel system is UNIX-based. Examples: FreeBSD Jail, Solaris Zones, and

OpenVZ.
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• Para-virtualization (PARA): Para-virtualization is not full software virtualization.

Without binary translation, it modifies guests OS’s to make directly communicating

with hardware whenever feasible. Because it requires modified guest OS, it can

only create virtual machines with open source operating system such as, Linux and

FreeBSD.

• Hardware Virtual Machine (HVM): We also call it virtualization with hardware

assistance. Popular virtualization solutions, such as VMware, Xen, KVM, and

VirtualBox, are all implemented with it. Without modified operating system and

binary translation, this technique leverages the CPU (Intel-VT, AMD-V) virtualiza-

tion supports and enable the guests to directly communicate with hardware.

• Full Virtualization (Full): With software, this virtualization technique can com-

pletely virtualize the environment to support guests, so we do not need to worry

about what operating system guest want to create. When guests send a kernel call,

virtual machine monitor (VMM) will receive it and, as a communicating bus, sends

the request to hardware with binary translation mechanism. But, because of the

software virtualized environment and complex translation mechanism, significant

performance degradation exists on guests.

In Fig. 1, we sort these virtualization techniques according to their level of virtualiza-

tion, where techniques on the right have higher virtualization levels. The aforementioned

six techniques can be further grouped into two types, as illustrated in Fig. 2. The first type

(Fig. 2(a)) enables multiple guests running on the same OS kernel; therefore, the kernel

calls from different guests may affect each other. The AV, RV, and OSLV belong to this

type. The second type (Fig. 2(b)) isolates guests from each other by running each guest

in its own OS.

Our cloud gaming testbed is built upon type-2 HVM solutions, such as VMware,

which are more flexible at the expense of slightly higher virtualization overhead. To

reduce the virtualization overhead, type-1 solutions may be adopted, which however may

require more customizations in game software.

Figure 1: Levels of virtualization.
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Figure 2: Two types of virtualization: (a) multiple guests with a single operating system

and (b) multiple guests with individual operating systems.

40


