
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

在軟體定義網路中負載平衡的影音群播系統

A Load-Balanced Video Multicast Routing System in
Software-Defined Networks

李孟葳

Meng-Wei Lee

指導教授：徐正炘博士

Advisors: Cheng-Hsin Hsu, Ph.D.

中華民國 104年 10月
October, 2015

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

在
軟
體
定
義
網
路
中
負
載
平
衡
的
影
音
群
播
系
統

李
孟
葳
撰

104
10

中中中文文文摘摘摘要要要

由於傳統的群播技術(IP multicast)需要高效能的路由設備以及許多
複雜的設定， 對於網路營運商而言，傳統的群播技術成效不彰。 在

本篇論文中，我們實做了一個基於SDN架構的群播路由系統。針對
群播路徑的建立， 我們討論影音串流的多路徑群播樹於軟體定義網

路(Software-Defined Networks)的問題。我們的目標是建立一個健全、
負載平衡、具可適性且相容於軟體定義網路的影音群播路由。 我們

將此群播路由問題轉換為一個最佳化的數學問題，得出一個針對鏈結

負載的min-max最佳解， 並取名此演算法為Robust Multipath Multicast
Routing (RMMR*)，但此演算法為了求得最佳解而需耗時較久，所以
我們另外設計了一較有效率的啟發式演算法。 我們將這兩個演算法

實作在群播路由系統並安裝在OpenFlow控制器中。我們在真實系統架
設的測試平台以及利用Mininet模擬器擬真出的網路中分別做實驗，測
試群播系統的可行性、效能以及可擴展性。 在測試平台的環境中，

我們測量到的系統對於群播流的設置時間都小於5毫秒，而對於群播
收看者的偵測時間皆小於0.15秒。在模擬器中所做的實驗，以下幾點
能發現我們的演算法更優於IP Multicast: (i)降低了19%到95%的幀遺失
率、 (ii)影像品質提高了4 dB到15 dB、 (iii)影片收看者的輸送量增加
了25%到66%、 (iv)最大鏈結使用率降低了15%到50%。另外我們也權
衡了我們設計的兩個演算法的最佳性以及所費時間，找出他們所適合

的網路環境。最佳解演算法較適合比較小而且更穩定的網路環境，而

啟發式演算法則較適合使用於更大且常有變動的網路環境中。

i

Abstract

IP multicast in traditional networks, dictates high-end routers and incurs
high administrative overhead, which is no longer suitable for deployment due
to its complicated operations. In this thesis, we implement a multicast rout-
ing system based on SDN framework. For computing the multicast routes, we
study the problem of establishing multipath multicast routing for streaming
videos in Software-Defined Networks (SDNs). The objectives of the con-
sidered problem are robustness, load balance, adaptiveness, and SDN com-
patibility. We formulate the multicast routing problem into a mathematical
optimization problem and propose a min-max link load multicast routing al-
gorithm, called Robust Multipath Multicast Routing (RMMR∗). We further
design a heuristic algorithm to obtain the multicast trees efficiently. We im-
plement our proposed algorithm in our multicast routing system on OpenFlow
controller. We conduct the experiments in real testbed and Mininet emulator
to demonstrate the practicality, performance and scalability. In the experi-
ment of real testbed, we measure the response time of our system: (i) all
operations of flow-entries insertion are completed in less than 5 milliseconds,
(ii) the detection time of all clients are no more than 0.15 second. In the
experiments in Mininet emulator, we compare our algorithms with IP mul-
ticast. The results show the merits of our algorithms over the IP multicast,
e.g., we observe: (i) frame loss rate reduction between 19% and 95%, (ii)
video quality improvement between 4 dB and 15 dB, (iii) sink throughput
increase between 25% and 66%, and (iv) maximal link utilization reduction
between 15% and 50%. We also show the tradeoff between optimality and
running time of the two proposed algorithms: one of them is more suitable
for smaller and more static networks, and the other one is more suitable for
larger and more dynamic networks.

ii

Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1
1.1 Contributions and Organization . 3

2 Related Work 5
2.1 Multiple Description Coding . 5
2.2 Software-Defined Networks . 5
2.3 Multicast in SDNs . 6
2.4 Multipath Multicast Routing in SDNs 7

3 System Architecture 8
3.1 Routing Mechanisms . 10

4 Problem Formulations and Proposed Solutions 12
4.1 Notations and System Models . 12
4.2 Multipath Multicast Routing . 14
4.3 Optimal Algorithm for Robust Multipath Multicast Routing: RMMR∗ . . 15
4.4 Efficient Algorithm for Robust Multipath Multicast Routing: RMMR . . 15

5 Implementation 17
5.1 Overview on Ryu . 17
5.2 Enhancement on Ryu to Support Multicast Routing 18
5.3 Multicast and Unicast Routing Applications 20

6 Experiments in Real Testbed 22
6.1 Setup . 22
6.2 Results . 25

7 Experiments using Mininet 29
7.1 Setup . 29
7.2 Results . 31

8 Conclusion and Future Work 43

Bibliography 45

iii

List of Figures

1.1 Sample usage scenarios: (a) video surveillance networks and (b) video
conferencing services. 1

3.1 The proposed multicast system architecture overview. 8
3.2 System architecture to support multicast in SDNs. 9

4.1 The RAH heuristics of RMMR. 16

5.1 Architecture overview of Ryu SDN framework. 17
5.2 Component digram of our proposed multicast system 18

6.1 The network topology of the testbed in our Lab. 22
6.2 Our testbed running video streaming experiments. 23
6.3 The videos for streaming server and captured videos from sinks. 24
6.4 The overall mean/max link utilization of streaming of (a) 30 fps video,

(b) 60 fps video. 25
6.5 The video packet transmission delay of streaming of (a) 30 fps video, (b)

60 fps video. 26
6.6 The CDF of flow-entry insertion time. 27
6.7 The CDF of IGMP response time of report/leave messages. 28

7.1 A sample network topology andmulticast routes generated by the RMMR∗

algorithm. 30
7.2 The proposed algorithms are bandwidth-aware and lead to almost zero

frame loss rate: (a) mean/min/max frame loss rates across all sinks, (b)
average frame loss rates of individual sinks, (c) detailed frame loss rates
from sink 5, and (d) average frame loss rates from different videos. 32

7.3 The proposed algorithms result in lower maximal link utilization: (a)
mean/max link utilization across all links, (b), (c) two bottleneck links
under the IPM, and (d) average maximal link utilization from different
videos. 33

iv

7.4 The proposed algorithms achieve higher video quality: (a) mean/min/max
video quality, (b), (c) detailed video quality of sinks 1 and 5, and (d)
average video quality from different videos. 34

7.5 Our proposed algorithms are robust against switch failures: (a) throughput
and (b) video quality. 35

7.6 The IPMmay result in lower/higher throughput at sinks: (a) mean/min/max
throughput, (b), (c) detailed throughput of sinks 1 and 2, and (d) average
throughput from different videos. 36

7.7 Implication of initial buffering time on video quality. 37
7.8 The scalability of the proposed algorithms: (a) various numbers of switches,

(b) various numbers of video sources, and (c) various numbers of video
sinks. 38

7.9 The frame loss rates in the large topology: (a) Mobile and (b) all videos. 39
7.10 The video quality in the large topology: (a) Mobile and (b) all videos. . 39
7.11 The throughputs in the large topology: (a) Mobile and (b) all videos. . . 40
7.12 The tradeoff between RMMR∗ and RMMR: (a) optimality and (b) running

time. 41
7.13 The tradeoff of different period parameter. 42

v

List of Tables

4.1 Symbols Used Throughout This Paper 13

6.1 Response Time of Flow-Entry Insertion 27
6.2 Response Time of IGMP Packets . 27

7.1 Per-sink Video Quality Achieved by Different Algorithms while Link Down 35

vi

Chapter 1

Introduction

High-quality videos have become very popular in recent years, people can easily create,
upload, and share the videos through the Internet. A forecast report [5] shows that 80%
of network traffic would be video by 2019. Receivers acquire the videos by either down-
loading or subscribing the streaming from video source over the network. Among all
kinds of video traffic around the Internet, real-time streaming imposes strict constraints
on network conditions to guarantee the Quality-of-Service (QoS).

Fig. 1.1 shows two usage scenarios of video streaming. In the first scenario, video
surveillance networks are deployed in power plants, campuses, or cities, where IP cameras
are video sources, whereas client computers and the video server are video receivers. The
video server archives the surveillance videos. The users use the portal server to subscribe
video(s) from one or multiple IP cameras. In the second scenario, video conferencing ser-
vices are deployed in campuses, corporates, or inter-campuses, where client computers

(a) (b)

Figure 1.1: Sample usage scenarios: (a) video surveillance networks and (b) video con-
ferencing services.

1

(including desktops and laptops) are video receivers, and the webcams on them are video
sources. The users use client computers to connect to the lobby server, in order to set up
conference calls among them. In both usage scenarios, multiple video sources concur-
rently stream videos to multiple video receivers over a potentially dedicated network, and
each video sink may subscribe one or multiple videos.

IP multicast is a well-known method of one-to-many delivery, which reduce the traffic
load by transmit only one copy in the network rather than multiple streams of content.
However, IP multicast requires high-end router which support distributed protocols such
as IGMP, PIM, RIP, MOSPF, and DVMRP. The complicated multicast routing protocols
cause too much overhead on the routers [11]. The costly devices and complex operations
make the IP multicast hard to deploy with scalability and adaptability. It incurs high
maintenance/administrative complexity (high OPEX) and much expense (high CAPEX)
while deploy IP multicast.

The emergence of Software-Defined Networks (SDNs), which decouples the control
plane and data plane in networks, provides the centralized control and network pro-
grammability. Network administrator can manage their infrastructures through high-
level functionality. Moreover, SDN architecture is open standards-based and vendor-
neutral. OpenFlow is a most popular south-bound API in SDN architecture, which pro-
vides vendor-neutral standard communications interface between the control plane and
data plane. In SDNs, network providers can realize multicast with lower cost on both
CAPEX and OPEX. Through the centralized control of SDNs, it become possible to op-
timize the routing problems for different objectives with the global view of all network
infrastructures. Some of works [22, 25] consider layer-2 multicast in SDNs, but the
solutions are not sufficient when multicasting the videos, which have strict deadlines and
complex interdependency [14]. Hence, we study video streaming that leverages multipath
to deliver multicast streams for higher throughput, lower link utilization, and better error
resilience, which in turns leads to higher streaming quality. Multiple description coding
(MDC) segments the frame into multiple substreams called descriptors. Any descriptor
received can be reconstructed as video with lower quality which is acceptable and all de-
scriptors received with full quality. Enable the video to use multiple description coding
would significantly reduce the link utilization over the Internet and avoid the probability
of link congestion, which may cause the severe latency and fail to reach the streaming
deadline. In our previous work [19], we consider the multipath multicast routing in SDNs
and significantly improve the load balancing in link utilization. Based on the multipath
multicast routing we proposed, we extend the work and implement the multicast routing
system as a regular controller which is able to handle the traffic for both multicast and
unicast.

2

In this thesis, we aim to balance the overhead on the network links causing by stream-
ing in order to avoid the network congestion. Meanwhile, the video quality of receivers
should not be degraded. However, there are few challenges to handle the multicast stream-
ing with high performance in the dynamic networks. We list the following features for a
desirable multicast system:

1. Robustness. The delivery of the video should not be interrupted even the network
is not stable.

2. Load balancing. The system should balance the overhead among the network re-
sources to avoid any overload on a single switch or link.

3. Adaptation. The system has to dynamically adaptive to network changes such as
link or switch failure.

4. SDN Compatible. There are limited numbers of flow-entries on SDN switches,
which is the hardware limitation, so the system must come up with the routes satisfy
such constrains.

5. Reliability. The system should be able to handle the situations if network failure
and rapidly recovery the service of streaming.

1.1 Contributions and Organization

The followings are the contributions of this thesis:

• We design and implement a multipath multicast routing system based on SDN con-
troller which support video streaming with multiple description coding. The system
works as a regular SDN controller which are able to support multicast and unicast
routing simultaneously.

• We propose the optimized algorithm and corresponding heuristic algorithm in terms
of load-balancing on link utilization. The outcome performance of optimized algo-
rithm is better, while the heuristic algorithm is more quickly. We further discuss the
situations suitable for each algorithm.

• We build up a real testbed in our Lab, adopt our system to validate the practicality,
and proof the performance of our proposed multicast system.

• We conduct extensive emulation experiments to evaluate the performance and scal-
ability of our proposed multicast routing algorithms. The experiment results show

3

our algorithms outperform the IP multicast in terms of frame loss rate, video quality,
sink throughput, and load balancing.

The rest of the thesis is organized as follows. We review the related work in Chapter 2.
We present the system overview in Chapter 3. This is followed by the problem statement
and our solution in Chapter 4. We then describe the implementation of our system in
Chapter 5. We present our real testbed in Chapter 6 and emulation result in Chapter 7.
Then we conclude this thesis in Chapter 8.

4

Chapter 2

Related Work

2.1 Multiple Description Coding

Multipath multicast routing leads to higher network throughput and balanced link utiliza-
tion, and has been studied in the literature. For example, Rahimi et al. [28] study how
to maximize the multicast throughput of several multicast sessions, while the network
bandwidth is fairly distributed across multicast sessions. Several distributed round-robin
algorithms are proposed, and one of the algorithms achieves up to 90% of the theoretic
bound on the throughput. However, their solution is for generic IP multicast without con-
sidering the property of real-time coded videos. Tamma et al. [33] study the multipath
multicast routing problem in wireless ad hoc networks, which suffer from dynamic net-
work conditions. They employMDC and route each descriptor over a multicast tree. They
consider a single video source, and strive to ensure the multicast trees are mutually vertex-
disjoint in order to maximize the robustness of their distributed protocol. Vertex-disjoint
trees, although adequate to ad hoc networks, are probably overkills to less dynamic wired
networks and may result in degraded network throughput.

The major drawback of the distributed protocols proposed in [28,33] and other similar
work is their high maintenance overhead. In contrast, our work leverages SDNs for a
logically centralized algorithm that is friendly to network administrators.

2.2 Software-Defined Networks

Software-defined networking (SDN) is an network paradigm emerges in recent years that
separates the control logic from the forwarding devices. The concept of OpenFlow is first
mentioned in [23]. It proposes to separate the data plane and the control plane of the
legacy network devices and use a logically centralized controller to dynamically program
the network devices for lower OPEX. Furthermore, it promotes to use off-the-shelf mer-

5

chant silicon to drive down CAPEX. So far, OpenFlow has attracted great attentions from
the network vendors and service providers. Since that traditional IP networks are com-
plicated and hard to manage the extremely increasing devices and services nowadays [6],
SDN is considered to be the solution to enable scaling, efficiency, and easier network
management. There are more and more network applications in both wired and wireless
adopt SDN to improve their services. For example, [21] propose an SDN architecture for
Vehicular Ad Hoc networks (VANETs) to reduce control overhead, bandwidth consump-
tion, and latency. [9] propose a framework in SDN for wireless sensor network (WSN) to
improve management of energy saving and topology discovery. [18] propose an approach
to raise the utilization of networks by enabling traffic engineering of inter-DC WAN.

2.3 Multicast in SDNs

There are some recent papers discuss the multicast in SDNs. Nakagawa et al. [25] and
Matias et al. [22] study efficient layer-2 multicast in OpenFlow networks. [25] enables
IP multicast in overlay networks using OpenFlow by mapping multicast group in proper
VXLAN (Virtual eXtensible LAN). [22] implements the multicast in OpenFlow with
Layer 2 prefixes, which provides several virtual networks depending on MAC source
and destination. In their works, they realize multicast in SDNs, but there are still rooms
to improve the multicast routing by utilizing the global view of SDNs. In [20], they
focus on customizing the multicast services and discuss the performance of existing tree
constructed algorithms such as Shortest-Path tree and Steiner tree in SDNs.

Moreover, there are some papers design the centralized multicast routing algorithm in
SDNs to improve the performance of multicast. Zhao et al. [37] propose a multicast multi-
party video conferencing system in SDNs, which aims to reach higher network bandwidth
and lower latency. They propose a multicast tree construction and packing method to es-
tablish multicast tree to achieve their goal. In [17], they propose the routing algorithm
to minimize the size of multicast tree and increase the path diversity to avoid congestion.
They focus on networks of data center topology like Fat-tree and tree structure. In con-
trast, we model the general topology and design the algorithms which are efficient enough
to deploy in different environments. Freris et al. [16] propose one Branch-Aware Steiner
Tree Algorithm and one corresponding approximation algorithm for multicast routing in
SDNs. Their goal is to minimize the numbers of edges and branch nodes in the multi-
cast tree. There algorithms aim to reduce more bandwidth consumption over the network
than the Shortest Path tree and become more scalable than traditional Steiner trees. On the
other hand, we do not focus on minimize the bandwidth consumption, but utilize MDC for
multipath multicast routing to balance link overhead in the networks. In [32], they design

6

a reliable multicast routing algorithm in SDNs. Their approach is to deploy some recov-
ery nodes over the network, which cache a few packets for recovery. The goal of their
routing problem is to minimize the tree cost and recovery cost of multicast tree, called
Recover-aware Steiner Tree (RST). They proof that RST problem is NP-Hard then design
an approximate algorithm. The objective of our proposed algorithm is not to reduce the
recovery cost. However, one of the benefits using MDC to encode video is to provide
better error resilience. Additionally, we use the mechanism in our system to fast-recovery
the multicast tree while the link or switch in the routes is down.

2.4 Multipath Multicast Routing in SDNs

There are some works leverage multipath to improve the performance of the multicast
system. In [30], Julius et al. propose an approach called Software-Defined Multicast
(SDM) to enable the Internet Server Providers (ISPs) to provide network layer multicas-
ting support for over-the-top (OTT) live streams. In there later work [29], they propose a
mechanism to utilize group table feature in OpenFlow to distribute multicast traffic over
multiple trees. They define the edge weight by setting parameters of different metrics
such as bandwidth, utilization, delay, loss rate, and failure rate then construct multiple
multicast trees by Minimum Spanning Tree (MST) or Shortest Path Tree (SPT). They set
multiple action buckets at the first switch of multicast trees and use select feature to
split the traffic into substreams, which are distributed into individual multicast trees. In
contrast, we focus on robust multipath multicast routing using multiple description coding
(MDC) to achieve better link load-balancing. In [36], Liao et al. study on implementation
of Scalable Video Coding (SVC) multicast streaming in SDNs that satisfied the hetero-
geneous devices in different video qualities. SVC encodes video into one based layer
which provides basic quality and multiple enhancement layers with incremental qual-
ity. In contrast, we use MDC in our system to balance link overhead over the networks.
Noghani et al. [26] also distribute the multicast videos with MDC. They leverage the ben-
efits of MDC, which provides potential of lower link utilization and better error resilience
in transmission. They compare three routing algorithm, respectively for minimum hop,
shortest path, and min-max hop. Additionally, we leverage the centralized view of SDN
to design the optimal solution and its corresponding heuristic to improve the multicast
routing algorithms for link load balancing.

7

Chapter 3

System Architecture

Network

OF Control
Channel

IP-in-IP
Tunnel

Sink1 Sink2 Sink3

OF Controller

OF Switch
HTTP

Connection

SourcePortal
Server

Figure 3.1: The proposed multicast system architecture overview.

We give a high-level system overview of our proposed multicast system in Fig. 3.1.
Our system adopts hybrid SDNmodel, in which the OpenFlow-enabled switch and legacy
routers work together enabling incremental deployments. Non-OpenFlow switches are
supported in multicast by setting some routing policy to become forwarding devices. All
OpenFlow-enabled switches are controlled by a logically-centralized controller build on
the OpenFlow controller platforms, such as Ryu [31], Floodlight [13], and NOX/POX [27].
The portal server connects with OpenFlow controller and video sources/sinks through
HTTP connections to maintain the group informations.

Fig. 3.2 shows our proposed system architecture which supports multicast in SDNs.

8

OpenFlow Switch OpenFlow Switch

South-bound:
OpenFlow

Multicast Request

Control Layer

Topology Monitor

Multicast Routing Application

Robust Multipath Multicast Routing Algorithms

ARP Proxy

Controller-to-
Switch Message

Asynchronous
Message

Symmetric
Message

Multicast Management

Multicast Path

Forwarding Agent

North-bound
API

Figure 3.2: System architecture to support multicast in SDNs.

The system includes three layers, which are infrastructure layer, controller layer, and
application layer. On the bottom is infrastructure layer, which are OpenFlow-enabled
switches. The communications between switches are IP-in-IP tunnels. In the middle is
control layer, which consists of the following functionalities: as the following:

• TopologyMonitor: The component achieve the topology informations such as switch
and link location and monitor the traffic in the topology.

• Forwarding Agent: The component carries unicast traffic and takes responsibility
for establishing end-to-end routes.

• ARP Proxy: The component tackles with ARP packet-in, builds up the ARP table,
and answers the ARP reply in the system.

• Multicast Management: The component collects the informations such as bit rate
and group information including video source IP, multicast group IP, and video
sink IP. There are two mechanisms to maintain such information. One is to build
up portal server with RESTful interface for video sources/sinks to launch/subscribe
the video streams. Another is to enable IGMP in the system and capture the IGMP
report and leave messages sent by video sources/sinks.

Controller layer communicates with network devices via OpenFlow protocol, which
is a south-bound API. The channel between OpenFlow controller and OpenFlow switch is
either encrypted using Transport Layer Security (TLS) or TCP. According to OpenFlow

9

protocol, the communication messages between control layer and infrastructure layer are
controller-to-switch, asynchronous, and symmetric message. These messages carry infor-
mations or instructions from controller to switch, in conversely, or both directions. On
the top of control layer is Multicast Routing Application. We install the multicast routing
algorithms here, which takes responsibility for computing the multicast routes. The com-
munications between control layer and application layer is via well-defined north-bound
API.

3.1 Routing Mechanisms

We define two routing modes in our system. One is event-driven mode and another is
periodic mode. If the event-driven mode is on, the system would update the multicast
routes whenever a sink joins/leaves or topology changes. If the periodic mode is on, the
routing algorithm would be called periodically to compute new multicast routes. More-
over, we design a fast re-route mechanism to recovery the multicast routes while any
port/link/switch down in the current path. There are two situations of port/link/switch
down, one is that someone shutdown the port/link/switch. Controller is able to no-
tice this circumstance by setting the handler for such events. The other situation is
that the port/link/switch crashed without notification. We can only notice that there is
port/link/switch disappeared by periodically check the current topology with previous
one. In our system, we detect the such topology change and decide to re-route the video
if there is any topology change happened in the current multicast routes.

We use an example here to demonstrate the operations of our proposed system while
setting multicast:

1. After the system is launched as an OpenFlow controller, the OpenFlow switches
setup the connections with controller.

2. Topology Monitor then periodically achieves topology connection and bandwidth
information. ARP Proxy answers the reply if there is any ARP packet-in.

3. When a video streaming server starts to send the video, Multicast Management will
detect the group IP with its IP address as a new source.

4. Once there are video sinks subscribe the certain video streaming, Multicast Man-
agement will detect sinks joining with their IP addresses. Multicast Management
then make the decision whether to pass the multicast request to the Multicast Rout-
ing Application depends on the routing mode.

10

5. Multicast Routing Algorithm then starts to compute multicast routes according to
the request input and return the answer to Multicast Management.

6. After the multicast routes is returned, Multicast Management converts the routes
into flow-entries and inserts them into corresponding switches to complete the mul-
ticasting.

11

Chapter 4

Problem Formulations and Proposed
Solutions

In this chapter, we first define the symbols and system models. We then present the
formulation and proposed algorithms.

4.1 Notations and System Models

Table. 4.1 gives the symbols used in this thesis. We consider a video multicast system
with S video sources, such as IP cameras, and C video sinks, such as client computers,
connected to an IP network. This system is modeled as a directed graph with V vertices
and E edges. Each vertex could be a video source, a switch, or a video sink. Each edge
represents a network link between two vertices. A video source s (1 ≤ s ≤ S) encodes
the captured video in real-time into K descriptors using Multiple Description Coding
(MDC) [35], and sends each descriptor over a multicast tree. With MDC, a video sink
with one or multiple descriptors can render the received descriptors to its user, and more
descriptors lead to higher video quality. The mean bit rate of video s (1 ≤ s ≤ S) is Rs

kbps, and the mean bit rate of each descriptor of s is Rs/K kbps. Both K and Rs are
system parameters.

Each user uses a video sink to selectively subscribe videos from some of the video
sources, and a video sink receives each video from multiple multicast trees for the sake of
robustness and load balancing. For similar reasons, each switch may participate in up to
K − 1 multicast trees from each video source, so that a single switch failure would never
break all K multicast trees of a video sink. Hence, all video sinks can receive at least
one descriptor for basic video quality in such unfortunate situations, while the controller
would quickly update the multicast trees to accommodate the topology change. Each
vertex v (1 ≤ v ≤ V) only supports up to fv active flows at any moment due to hardware

12

limitations. For each v we use Iv and Ov to denote the ingress and egress edges1. Each
link e (1 ≤ e ≤ E) has a bandwidth of be kbps. Edge e is also denoted as (ϵe, ζe), where
edge e goes from vertex ϵe to vertex ζe.

We consider the problem of computing the optimal routes for a given network topol-
ogy, which is solved by an algorithm running on the OpenFlow controller. The optimiza-
tion goal is to minimize the maximal link utilization across all edges, i.e., in a min-max
load balancing fashion. More specifically, our problem is to compute the multicast trees
for optimal min-max load balancing, without violating the constraints on: (i) vertices
(number of flows per switch), (ii) edges (bandwidth of each network link), and (iii) tree
robustness (a switch can participate in up to K − 1 multicast trees for each video). The
precise formulation is given in the next section.

Sym. Description
S Number of video sources
s Index of a video source
C Number of video sinks
c Index of a video sink
K Number of descriptor using MDC
Rs Mean bit rate of video s
V Number of vertex in the network
v Index of a vertex
E Number of edge in the network
e Index of an edge
Iv Ingress edges of node v
Ov Egress edges of node v

(ϵe, ζe) Another representation of edge e, which goes from vertex ϵe to vertex ζe
fv The flow capacity of vertex v
be The link bandwidth of edge e
σs Vertex index of video source s
τs Vertex set of s’s sink, which τs = {τs,t | 1 ≤ t ≤ |τs|}

xs,k
v1,v2

Decision variable of the problem formulation

Table 4.1: Symbols Used Throughout This Paper

1Throughout this thesis, we use bold font to represent matrices/vectors.

13

4.2 Multipath Multicast Routing

We let σs (1 ≤ σs ≤ V) be the vertex index of video source s (1 ≤ s ≤ S). Let
τs = {τs,t | 1 ≤ t ≤ |τs|} be the vertex indexes of s’s video sinks. Both σs and τs

are inputs to our routing algorithm. We define the 0-1 decision variables as xs,k
v1,v2

for
1 ≤ s ≤ S, 1 ≤ k ≤ K, and 1 ≤ v1 ̸= v2 ≤ V , where xs,k

v1,v2
= 1 if edge (v1, v2) is on the

multicast tree of video s’s descriptor k; xs,k
v1,v2

= 0 otherwise.
With the notations defined above, we mathematically formulate our considered prob-

lem as:

minimize max
1≤e≤E

S∑

s=1

Rs

K

K∑

k=1

xs,k
ϵe,ζe

/be (4.1a)

s.t.

∑

e∈Iσs

xs,k
ϵe,σs

= 0, ∀s ∈ [1, S], k ∈ [1, K]; (4.1b)

∑

e∈Oσs

xs,k
σs,ζe

= 1, ∀s ∈ [1, S], k ∈ [1, K]; (4.1c)

∑

e∈Iτs,t

xs,k
ϵe,τs,t

= 1, ∀s ∈ [1, S], k ∈ [1, K], t ∈ [1, |τs|]; (4.1d)

∑

e∈Oτs,t

xs,k
τs,t,ζe

= 0, ∀s ∈ [1, S], k ∈ [1, K], t ∈ [1, |τs|]; (4.1e)

∑

e′∈Iv

xs,k
ϵe′ ,v

≤ 1, ∀s ∈ [1, S], k ∈ [1, K], v ∈ [1, V],

v ̸= σs, v /∈ τs; (4.1f)

xs,k
v,ζe

≤
∑

e′∈Iv

xs,k
ϵe′ ,v

, ∀s ∈ [1, S], k ∈ [1, K], v ∈ [1, V],

v ̸= σs, v /∈ τs, e ∈ Ov; (4.1g)
∑

e∈Ov

xs,k
v,ζe

≥
∑

e′∈Iv

xs,k
ϵe′ ,v

, ∀s ∈ [1, S], k ∈ [1, K], v ∈ [1, V],

v ̸= σs, v /∈ τs; (4.1h)
S∑

s=1

K∑

k=1

∑

e∈Ov

xs,k
v,ζe

≤ fv, ∀v ∈ [1, V]; (4.1i)

S∑

s=1

Rs

K

K∑

k=1

xs,k
ϵe,ζe

≤ be, ∀e ∈ [1, E]; (4.1j)

K∑

k=1

∑

e∈Iv

xs,k
ϵe,v

≤ K − 1, ∀s ∈ [1, S], v ∈ [1, V]. (4.1k)

xs′,k′

v1,v2
∈ {0, 1}, ∀v1, v2 ∈ [1, V], s′ ∈ [1, S], k′ ∈ [1, K]. (4.1l)

The objective function in Eq. (4.1a) minimizes the maximal edge utilization. The con-
straints in Eqs. (4.1b)–(4.1e) ensure that the video sources and sinks are indeed the roots

14

and leaves of the multicast trees. The constraints in Eq. (4.1f) allow the intermediate ver-
tices to avoid receiving duplicated descriptors from multiple links, and the constraints in
Eq. (4.1g) ensure that a vertex sends a descriptor only if it’s received, and the constraint in
Eq. (4.1h) ensures that a vertex must send a descriptor once it’s received. The constraints
in Eqs. (4.1i), (4.1j), and (4.1k) impose limitations due to switch capability, link capacity,
and tree robustness, respectively.

4.3 Optimal Algorithm for Robust Multipath Multicast
Routing: RMMR∗

The formulation Eq. (4.1) is an Integer Programming (IP) problem and can be solved
using commercial solvers, such as IBM CPLEX [8]. We refer to the optimal algorithm
as RMMR∗. However, the formulation does not prevent cycles, the solution may result
in multicast trees with cycles. We adopt the following approach [15, 34] to eliminate
cycles. Upon the RMMR∗ algorithm produces the multicast trees, we check whether
there exists any cycles. For each cycle with length l, we generate l new formulations,
where each formulation explicitly prohibits a link of that cycle from being part of the
corresponding multicast trees. We then solve all the l formulations again, and check if
there are additional cycles. For any remaining cycles, we again generate new formulations
with explicit constraints to get rid of the cycles. Once we solve all the formulations, we
return the solution with the best objective function value. We have integrated this cycle
elimination approach in the RMMR∗ algorithm.

4.4 Efficient Algorithm for Robust Multipath Multicast
Routing: RMMR

Although the RMMR∗ algorithm gives the optimal routes, running it on a large network
too often incurs excessive computational overhead. Such negative impact is amplified
when the network condition largely remains the same: the new optimal routes will be
very similar to the old ones. Hence, in such situations, some lightweight route adaptation
heuristics may be applied to quickly revise the existing multipath multicast trees for a
reasonably good solution. We call these heuristics Route Adaptation Heuristics (RAHs),
and we propose two such heuristics for video sink dynamics. When a video sink joins,
for each descriptor, we perform Breadth-First Search (BFS) from the sink to find the
shortest path to reach the existing multicast tree for that descriptor. When traversing
through new vertices, the heuristic makes sure that the constraints in our formulation are

15

satisfied. Upon reaching the existing tree, we then search for all shortest paths with some
length. Among these shortest paths, we select one which maximal link utilization along
the path is minimize and attach this path to the multicast tree of that descriptor. When a
video sink leaves, for each descriptor, we traverse from the sink toward the source, and we
remove an edge from the multicast tree if there is no video sink in the edge’s down-stream.
The heuristic ends after the first edge is kept, because it has at least one down-stream
video sink. These two RAHs, as summarized in Fig. 4.1, impose very low computational
complexity. We integrate them with RMMR∗ for an efficient RMMR algorithm, which:
(i) runs RAHs when video sink joins/leaves for fast route adaptation and (ii) calls RMMR∗

every P minutes for optimal multicast trees, where P is a system parameter.

1: function JOIN(video sink c, video s)
2: for all descriptor k = 1, 2, . . . , K do
3: perform BFS from c for the paths with shortest distance to tree k
4: add the shortest path with minimum maximal link utilization to tree k
5: function LEAVE(video sink c, video s)
6: for all descriptor k = 1, 2, . . . , K do
7: loop switches from c to the root of tree k
8: reduce the count of down-stream video sinks
9: remove the switch with 0 count from tree k

Figure 4.1: The RAH heuristics of RMMR.

16

Chapter 5

Implementation

We present the detailed implementation of our proposed multicast routing system in this
chapter. Our proposed system works as a regular OpenFlow controller, which is able to
handle the traffic for both multicast and unicast.

5.1 Overview on Ryu

User Applications

Ryu SDN Framework

Built-in Apps: Tenant isolation, L2 switch …

Libraries: OF REST, Topology, Firewall …

OF Protocols
Parser/Serializer:
OF, OF-Config

Non-OF Protocols
Parser/Serializer:

Netconf, VRRP, SNMP,
Packet lib …

OpenFlow Switch

Existing
IP Networks

User-defined API

OpenFlow

Figure 5.1: Architecture overview of Ryu SDN framework.

Our multicast routing system is implemented in SDN controller on top of Ryu. Ryu is
an open source software written in Python. Ryu provides the component-based framework

17

with well defined API for customers to develop their own SDN applications. Ryu supports
various protocols for managing network infrastructures includes OpenFlow, Netconf and
OF-config. Fig. 5.1 shows the overview of Ryu SDN framework. There are some built-in
applications and libraries in Ryu such as tenant isolation, L2 switch, OF REST, topology
discovery, firewall, etc. For example, we can directly achieve the topology connection
between OpenFlow switches through the library topology discovery in Ryu. There are
also OpenFlow protocols and Non-OpenFlow protocols implemented in Ryu for user to
communicate with network devices. Developers are able to combine/modify the existing
components or add new components to build up their own applications.

5.2 Enhancement on Ryu to Support Multicast Routing

In this section, we describe the detailed component implementation in our system. We
modify some existing components in Ryu then build up our multicast routing system with
five components and two applications. As illustrated in Fig. 5.2, the five components are
Event Dispatcher, Topology Monitor, ARP Proxy, Multicast Management, and Forward-
ing Agent. Ryu use the term event as the message between entities.

Optimal Robust Multipath
Multicast Routing

(RMMR*)

Efficient Robust Multipath
Multicast Routing

(RMMR)

Multicast Routing Application

Multicast Management

Multicast Packet-In
Handler

IGMP Packet-In Handler

Report Message Handler

Leave Message Handler
Topology Monitor

Topology Discovery

Traffic Monitor

ARP Proxy

Forwarding Agent

IP Packet-In Handler

Path Finding Application

Shortest Path Algorithm -
Dijkstra's Algorithm

Multicast Path
(dpid, inport, outport)

Group (source ip, group ip, sink ip),
Video (bit rate),
Topology (V, E)

Event Dispatcher

(src ip, dst ip)
Topology (V, E)

End-to-end Path
(dpid, inport, outport)

Topology
(V, E)

Figure 5.2: Component digram of our proposed multicast system

18

• Event Dispatcher. We implement all the event handler required in the system at
this component. Event Dispatcher collects the events from switches and then dis-
patch them into the corresponding components. For example, the IGMP/multicast
packet-in messages would be passed to Multicast Management; IP packet-in mes-
sages other than multicast packets would be passed to Forwarding Agent; and ARP
packet-in message would be passed Topology Discovery and ARP Proxy.

• Topology Monitor. In order to acquire the information required by multicast rout-
ing, there are two main function implemented in Topology Monitor, Topology Dis-
covery and Traffic Monitor. We extend the Topology Discovery which is already
in implemented in Ryu. Ryu implement their topology discovery using Link Layer
Discovery Protocol (LLDP), which is a layer 2 protocol. LLDP is used by network
devices to advertise informations such as MAC address, chassis id, port id and so
on with their neighbors. By collecting these informations from switches, controller
is able to build up a topology.

The original Topology Discovery only discover the link and switch, we also dis-
covery the host location by ARP packet-in message to complete the topology infor-
mation. Meanwhile, in Traffic Monitor, we achieve the current link utilization by
link bandwidth in curr speed of OFPMP PORT DESCRIPTION and link con-
suming in rx byte of OFPMP PORT STATS. By periodically running these pro-
cedure, we achieve the latest topology information includes network connection,
link utilization, and host location.

• ARP Proxy. We implement a ARP proxy in our system to answer the ARP reply.
This component listens on ARP packet-in messages and build up an ARP table.
The ARP table records the MAC address and the forwarding port for each switch
while receiving corresponding destination IP address. If the ARP destination is in
the ARP table, ARP Proxy then answer the ARP reply directly. Otherwise, the
component instructs the switch to flood the ARP message to other switches.

• Multicast Management. This component collects the multicast groups and video
information required for multicast routing. We maintain the multicast source by
listening on multicast packets-in messages. Once the multicast packet-in handler
receive the multicast packet with valid destination IP, we add the source with its IP
address and multicast destination IP. If there is no other sink subscribe this desti-
nation IP, we set a drop action on the switch. Then we achieve the value of video
bit rate from the byte count of flow state reply for certain multicast IP
address. We maintain the multicast sink information by supporting Internet Group
Management Protocol (IGMP). The module listens on Report/Leave messages of

19

IGMPv2 [12] to add/delete the sink from certain multicast group. There are two
mechanism for multicast routing, periodic mode and event-driven mode. If the
periodic mode is on, the Multicast Management would call Multicast Routing Ap-
plication periodically to setup the multicast routing. Otherwise, Multicast Routing
Application would be triggered whenever there is any source/sink change or topol-
ogy change. The component then pass the multicast group information, topology
information, and video information as the request to Multicast Routing Application
and ask for the routes. While Multicast Routing Application returns the answer
of multicast routes, Multicast Management then converts the multicast routes into
flow entries by setting the action with multiple outgoing ports and inserts it into
corresponding switches to complete the multicasting.

• Forwarding Agent. This component maintains all the unicast routes. It carries
the traffic of IP packet-in other than multicast packets then call Path Finding Ap-
plication and get the end-to-end route for the source/destination pair. After that,
Forwarding Agent inserts the flow-entries into switches to setup the unicast rout-
ing.

5.3 Multicast and Unicast Routing Applications

In this section, we describe the multicast and unicast application in our system.

• Multicast Routing Application. This application takes responsibility for com-
puting the multicast routes. We implement two robust multipath multicast routing
algorithms (RMMR∗/RMMR) described in Chapter 4. The application takes the fol-
lowing inputs from Multicast Management: (i) group information including source
IP address of video source, multicast group destination IP, and all the sinks IP ad-
dresses which subscribe the certain multicast group. (ii) video information, which
is the estimated bit rate of each multicast streaming. (iii) topology information in-
cluding vertices, which are switches and hosts and their flow capacities and edges,
which are the network links and their link bandwidth/consuming. Once the Multi-
cast Routing Application is called, the informations would be updated. The appli-
cation maintains one instance of multicast routing information, including the data
just mentioned and the current multicast routes. This application then chose one al-
gorithm to compute the multicast routes. The optimal Robust Multipath Multicast
Routing algorithm (RMMR∗) is realized in python and CPLEX [8]. The efficient
Robust Multipath Multicast Routing algorithm (RMMR) is written in python. Once
the algorithm achieves the new multicast trees, the application then saves the new

20

answer and compares it with the previous multicast trees to get the modified multi-
cast branches. Finally, the application return these modified branches to Multicast
Management to setup the routes.

• Path Finding Application. This application takes responsibility for computing
the end-to-end path for unicast. Path Finding Application takes input of source IP,
destination IP address and topology information. We implement Dijkstra’s algo-
rithm [10] and set the weight of the edge to be inverse of link bandwidth. Dijkstra’s
algorithm computes the shortest path between the source and destination. After
that, the application return this end-to-end path to Forwarding Agent to setup the
unicast route.

21

Chapter 6

Experiments in Real Testbed

6.1 Setup

We present the real experiment running on physical machine with our multicast routing
system in this chapter. We set up a testbed in our Lab with a small network topology to
demonstrate the practicality of our proposed system. Fig. 6.1 illustrates the testbed setup,
which consists of 4 OpenFlow switches, 1 OpenFlow controller, 1 layer 2 switch and 4
hosts for video server and clients.

Video Streaming
Server

Video
Sink 2

Video
Sink 1

Video
Sink 3

OpenFlow
Controller - Ryu

L2 Switch

Pica8 P-3297 Pica8 P-3297

Pica8 P-3297Pica8 P-3297

VLS
Desc. 1

VLS
Desc. 2

Control Plane

Data Plane

Figure 6.1: The network topology of the testbed in our Lab.

22

4 OpenFlow switches are Pica8 P-3297 installed PicOS 2.4 and running in OVSmode.
We install the bridge in secure fail-mode and connect it to the specific controller IP ad-
dress, then turn on the interfaces we need on to the bridge. For configuring the link band-
width, we set the link speed feature on interface by OVS command. The OpenFlow
controller runs in a virtual machine installed Ryu and our proposed multicast applica-
tion. The ethernet port of virtual machine is bridged to the physical ethernet port. We
use out-of-band control management and connect the controller with all Pica8 switches’
management port through a layer 2 switch for saving port occupied of controller. The
video server and clients are running in virtual machines and connect to the corresponding
port of each switch. We use VideoLAN Server (VLS) and VideoLAN Client (VLC) to
stream and capture the video streams, which are open source tools and can be found in
[3]. We stream 2 videos from streaming server simultaneously to represent 2 descriptions
of one video. Fig. 6.1 is the picture of our testbed in our Lab.

Pica8 P-3297

Layer 2 Switch

Server runs streaming
server, clients, and

OpenFlow controller

Figure 6.2: Our testbed running video streaming experiments.

To evaluate the performance of our proposed system and algorithms, we conduct the
following experiments. We stream 2 1920x1080 videos with 30 fps and 60 fps (frame-
per-second) [7]. The bit rate of videos are 3Mbps and 4Mbps. We set the bandwidth
of links between switches as 10Mbps. The bandwidth of links connect to the hosts are

23

1Gbps. Video streaming server streams videos inMPEGTransport Stream format. Clients
capture the videos by converting the RTP multicast streaming into MPEG-4. We run our
multicast system in event-driven mode with RMMR∗ and RMMR algorithms. That is,
RMMR algorithm runs RAH when the video sink joins or leaves except the first round.

Fig. 6.3 shows the streaming videos and the captured videos from sinks of testbed
experiment.

Streaming Server - Video 1

Client 1 – Video 2Streaming Server - Video 2

Client 2 – Video 1Client 1 – Video 1

Client 3 – Video 2Client 2 – Video 2

Client 3 – Video 1

Figure 6.3: The videos for streaming server and captured videos from sinks.

We consider the following performance metrics in the testbed experiment:

• Link utilization. We achieve the link utilization of each link from Topology Discov-
ery module of our multicast system.

• Video transmission latency. We capture the video packets from the interface of each
host to measure the transmission latency of video.

• Flow insertion time for multicasting. We send barrier request from con-
troller to switch right after the multicast flow-entry insertion message is sent and
listen to the barrier reply with corresponding xid. By collecting these two
types of message, we measure the time cost for switch to insert the multicast flow-
entry.

• Controller response time. We capture the IGMP packets from the interface of each
host and record the time that the controller receive the IGMP packet-in messages to
measure the time cost for our system to detect the sinks join and leave.

24

To evaluate the overall time cost of our multicast system, we divide all processes of
multicasting into three parts: i) controller response time, ii) algorithm running time, and
iii) flow insertion time. We measure the controller response time and flow insertion time
in our testbed and evaluate the algorithm running time for different algorithms in next
section.

6.2 Results

0 20 40 60
0

20

40

60

80

100

L
in
k
U
ti
liz
at
io
n
(%

)

Time (sec)

RMMR
RMMR*

(a)

0 20 40 60
0

20

40

60

80

100

L
in
k
U
ti
liz
at
io
n
(%

)

Time (sec)

RMMR*
RMMR

(b)

Figure 6.4: The overall mean/max link utilization of streaming of (a) 30 fps video, (b) 60
fps video.

RMMR∗ prevents high link utilization. We launch the OpenFlow controller with
our multicast system to let switches connect to it. Then we multicast two videos with
multicast IP addresses 224.1.1.1 and 224.1.2.1 simultaneously from streaming
server. Then Sink 1, Sink 2, and Sink 3 capture the multicast videos from these two IP
addresses. We plot the overall mean/maximal link utilization of streaming 2 different
videos in Fig. 6.4. In the case of 30 fps video, which is illustrated in Fig. 6.4(a), both

25

algorithms are able to control the overall maximal link utilization less than 60%. The
difference of the utilization of RMMR and RMMR∗ is less than 3% in this case. The data
rate of the video is higher then average between [20, 30) and reduces at 40 sec. In the
other case of 60 fps video, illustrated in Fig. 6.4(b), the maximal link utilization of the
RMMR is up to 100% in [20,30), while the RMMR∗ can reduce maximal link utilization
to 78%.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

L
at
en
cy

(s
ec
)

Time (sec)

RMMR
RMMR*

(a)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

L
at
en
cy

(s
ec
)

Time (sec)

RMMR*
RMMR

(b)

Figure 6.5: The video packet transmission delay of streaming of (a) 30 fps video, (b) 60
fps video.

High link utilization cause longer video latency. We also plot the overall video
transmission delay in Fig. 6.5. Fig. 6.5(a) shows that all packets of 30 fps video are
delivered to the destination within 0.3 sec. In Fig. 6.5(b), the case of 60 fps video, the
packets latency of RMMR is up to 0.6 sec between (0, 30]. Correspond to the maximal
link utilization in Fig. 6.4(b), it shows that there are links overloaded which cause the link
congestion and longer video latency. While the latency of RMMR∗ increases a little in
first 30 sec, but it still no longer than 0.3 sec.
Our multicast system incurs short flow install time. We plot the CDF of flow-

26

entries insertion time in Fig. 6.6. Next, we list the average flow-entry insertion time of
each switch in Table. 6.1. It shows that all the switches are able to finish flow-entry
insertion within only 5 milliseconds.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

C
D
F

Flow insertion time (ms)

Figure 6.6: The CDF of flow-entry insertion time.

Switch Response Time (ms)
Switch 1 1
Switch 2 3.6
Switch 3 2.9
Switch 4 3.7
Average 2.5

Table 6.1: Response Time of Flow-Entry Insertion

Our multicast system incurs short response time for sinks join/leave. We plot the
CDF of IGMP messages response time in Fig. 6.7 and then we list the average IGMP
packet response time of our multicast system in Table. 6.2. It is the time cost for our
system to response the sinks join or leave. The Fig. 6.7 shows that the response time for
both packets are all less than 0.15 sec. The average response time is 0.071 sec for IGMP
Report and 0.084 sec for IGMP Leave.

Host IGMP Report (sec) IGMP Leave (sec)
Client 1 0.087 0.104
Client 2 0.07 0.062
Client 3 0.056 0.085
Average 0.071 0.084

Table 6.2: Response Time of IGMP Packets

27

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

IGMP response time (sec)

C
D
F

Report
Leave

Figure 6.7: The CDF of IGMP response time of report/leave messages.

28

Chapter 7

Experiments using Mininet

We evaluate the performance and scalability of our proposed multicast system since that
the testbed presented in Chapter 6 is fairly small, which is not sufficient for conducting
large scale experiments. We adopt Mininet [24], an emulator, in this chapter to conduct
the experiment.

7.1 Setup

We adopt Mininet to emulate large OpenFlow networks, which are hard to set up as real
testbeds. We instruct Mininet to read a manifest file that describes the network topology,
including vertices and edges, and the network conditions, such as link bandwidth, network
latency, and packet loss rate. The switches in Mininet is configured as OVS Kernel

Switch and support OpenFlow 1.3 protocol. We setup the link conditions by enabling
the TCLink (Traffic Control Link) in Mininet. Each vertex in the is either a video source,
a video sink, or a switch; all switches are connected to a controller running our multicast
system. For comparisons, we also set up IP multicast in Mininet using XORP [4], and
denote its results as IPM. We configure XORP to run PIM-SM (Protocol Independent
Multicast Sparse Mode). PIM-SM builds the multicast tree from source to receivers based
on the topology information supplied by RIP (Routing Information Protocol).

We implement a topology generator script to create the manifest files with different
numbers of video sources, video sinks, switches, and descriptors. The topology generator
also takes several settings to randomly create link conditions. If not otherwise specified,
the following settings are used in our experiments: (i) the link bandwidths are uniformly
chosen between 1 and 5 Mbps, (ii) the link delays are uniformly chosen between 5 and
25 ms, (iii) the link packet loss rates are set to zero, (iv) the sink leave/join rates are 2 per
minute, and (v) the sink initial buffering time is 1 sec. Two randomly generated manifest
files are used throughout the experiments: (i) a small topology with 1 source, 9 switches,

29

6 sinks, and 2 descriptors, and (ii) a large topology with 4 sources, 24 switches, 12 sinks,
and 4 descriptors. Fig. 7.1 shows the small topology with sample optimal routes computed
by RMMR∗. We consider four videos [2]: Mobile, Highway, Paris, and Tempete,
with 2 to 16 descriptors. In our experiments, we stream each video with 2 descriptors in
the small topology, and stream all four videos with 4 descriptors in the large topology.

Source 1

Sink 1 Sink 2 Sink 3 Sink 5Sink 4 Sink 6

sw1 sw2 sw3

sw4 sw5 sw6sw9 sw8 sw7

Link :
Desc. 1 :
Desc. 2 :

Figure 7.1: A sample network topology and multicast routes generated by the RMMR∗

algorithm.

We have also implemented two utilities for experiments in Mininet: the sender and
receiver using Python for UDP video streaming. The sender multicasts video packets fol-
lowing the video traces from Arizona State University [2]. The destination multicast IP
addresses are uniquely determined based on the video v (1 ≤ v ≤ V) and descriptor k
(1 ≤ k ≤ K), in particular, the sender uses 224.1.v.k as the destination IP address
of descriptor k of video v. The receiver receives the UDP packets belonging to the core-
spondent video v, e.g., with IP addresses of 224.1.v.*. Both sender and receiver save
packet-level logs with timestamps for performance analysis by Tcpdump [1].

We consider the following performance metrics:

• Frame loss. The ratio of lost video frames at each video sink. A frame is considered
lost if any of its packet gets lost.

• Throughput. The received data rate at each video sink.

• Link utilization. The load of each link.

• Video quality. We employ Peak Signal-to-Noise Ratio (PSNR) [35] as the quality
metric. The video frames missing their playout deadlines are not decodable and the

30

last received frames are replayed to conceal undecodable frames. We also conceal
the frame losses using the same approach.

• Running time. The execution time of the RMMR∗ and RMMR algorithms.

We conduct 10-min experiments with the RMMR∗, RMMR, and IPM. We set our system
to use periodic mode in all Mininet experiments and set the interval as 1 minutes. If
not otherwise specified, we set P = 10 minutes. That is, RMMR∗ and RMMR would
be triggered to compute the multicast routes every minute. RMMR computes optimal
solution at first minute, then update the routes by RAH in the remaining time. We collect
the performance of each video sink (or link). We also calculate the average performance
across all video sinks (or links) over time. Last, we compute the overall performance of
each experiment over the 10-min duration. In the figures and tables, we give min/max
intervals whenever applicable.

7.2 Results

Bandwidth-awareness of our proposed algorithms. We multicast each of the four
videos in the small topology. We present: (i) detailed results from Mobile and (ii) over-
all results from all four videos in Fig. 7.2. In particular, we plot the mean/min/max per-
min frame loss rates of all sinks receiving Mobile in Fig. 7.2(a), which shows that the
proposed RMMR∗ and RMMR algorithms result in almost zero frame loss rates among
all sinks. In contrast, the IPM leads to nontrivial and diverse frame loss rates: between
0% and 60%. We next plot the 10-min average frame loss rate of individual sinks in
Fig. 7.2(b), which reveals that, with the IPM, sinks 1 and 5 suffer from high frame loss
rates. We zoom into sink 5 and plot its per-sec frame loss rate in Fig. 7.2(c), which
shows that, with the IPM, sink 5 experiences very high frame loss rates when network
is congested. Such inferior performance of the IPM can be attributed to the fact that IP
multicast does not take the available link bandwidths into consideration when construct-
ing multicast trees. Therefore, some links may become bottleneck links with high packet
loss rates, which lead to high frame loss rates. We will plot the link utilization of these
bottleneck links below. Last, we plot the average frame loss rates in Fig. 7.2(d). This
figure shows that the IPM suffers the most under Mobile and Tempete. A closer look
indicates that the mean bit rates of the four 2-descriptor videos are: 1.27 Mbps (Mobile),
0.92 Mbps (Tempete), 0.51 Mbps (Paris), and 0.20 Mbps (Highway). The diverse
bit rates explain why the Mobile and Tempete result in much higher frame loss rates
under the IPM. Our proposed algorithms, however, are bandwidth-aware and work for all
four videos.

31

0 2 4 6 8 10
0

20

40

60

80

100
F
ra
m
e
L
os
s
R
at
e
(%

)

Time (min)

RMMR*
RMMR
IPM

(a)

1 2 3 4 5 6
0

10

20

30

40

F
ra
m
e
L
os
s
R
at
e
(%

)

Sink

RMMR*
RMMR
IPM

(b)

0 2 4 6 8 10
0

20

40

60

80

100

F
ra
m
e
L
os
sr
at
e
(%

)

Time (min)

RMMR*
RMMR
IPM

(c)

Mobile Hway Paris Tempete
0

5

10

15

20

F
ra
m
e
L
os
s
R
at
e
(%

)

Video

RMMR*
RMMR
IPM

(d)

Figure 7.2: The proposed algorithms are bandwidth-aware and lead to almost zero frame
loss rate: (a) mean/min/max frame loss rates across all sinks, (b) average frame loss rates
of individual sinks, (c) detailed frame loss rates from sink 5, and (d) average frame loss
rates from different videos.

Our algorithms balance the link utilization. We analyze the link utilization of mul-
ticasting each of the four videos in the small topology. The idling links with zero utiliza-
tion are not reported in the figures. We first plot the per-min mean/max link utilization
from Mobile in Fig. 7.3(a). This figure shows that the RMMR∗ and RMMR algorithms
result in much lower mean and maximal link utilization, compared to the IPM. This can
be partly attributed to the multi-tree design of RMMR∗/RMMR, which provides room
for load balancing. Moreover, the RMMR∗/RMMR algorithms systematically reduce the
maximal link utilization by using it as the objective function in Eq. (4.1), which further
capitalizes the optimization room for better load balancing. Next, we take a closer look at
the per-sec link utilization of individual links, and we identify the two bottleneck links that
cause the high frame loss rates of sinks 1 and 5 (see Fig. 7.2(b)). We plot their per-sec link
utilization over time in Figs. 7.3(b) and 7.3(c), which correspond to link (sink 1, switch 4)
and (switch 2, switch 5) in Fig. 7.1. These two figures demonstrate the high loads caused

32

by the IPM: as high as 90% link utilization, which explain the high frame loss rates of
sinks 1 and 5. Last, we report the average maximal link utilization in Fig. 7.3(d). This
figure shows that, compared to the IPM, our proposed RMMR∗ and RMMR algorithms
reduce the maximal link utilization by half for Highway, Paris, and Tempete.

0 2 4 6 8 10
0

20

40

60

80

100

L
in
k
U
ti
liz
at
io
n
(%

)

Time (min)

RMMR*
RMMR
IPM

(a)

0 2 4 6 8 10
0

20

40

60

80

100

L
in
k
U
ti
liz
at
io
n
(%

)
Time (min)

RMMR*
RMMR
IPM

(b)

0 2 4 6 8 10
0

20

40

60

80

100

L
in
k
U
ti
liz
at
io
n
(%

)

Time (min)

RMMR*
RMMR
IPM

(c)

Mobile Hway Paris Tempete
0

20

40

60

80

100

M
ax

im
al

U
ti
liz
at
io
n
(%

)

Video

RMMR*
RMMR
IPM

(d)

Figure 7.3: The proposed algorithms result in lower maximal link utilization: (a)
mean/max link utilization across all links, (b), (c) two bottleneck links under the IPM,
and (d) average maximal link utilization from different videos.

Our algorithms achieve higher video quality. Next, we compute the video quality
in PSNR after concealing the lost and late frames. We report the results from the small
topology. We first plot the per-min mean/min/max video quality of all sinks receiving
Mobile in Fig. 7.4(a). This figure shows that the RMMR∗ and RMMR algorithms con-
stantly achieve high video quality, while the IPM suffers from lower video quality: about
5 dB different in terms of mean video quality is observed. We also plot the per-sec video
quality of sinks 1 and 5 in Figs. 7.4(b) and 7.4(c). Notice that, sink 1 leaves the multicast
groups between [2, 3) and [5, 6) mins, and sink 2 leaves between [4, 5), [7, 8), and [9, 10)
mins. These two figures show that the IPM leads to quality fluctuations: at most 10 dB,
which greatly degrade the viewing experience. Last, we plot the average video quality of

33

individual videos in Fig. 7.4(d). We observe non-trivial gaps between our proposed algo-
rithms and the IPM with Mobile (4dB) and Tempete (1dB). There are no clear gaps
for Highway and Paris because their bit rates are much lower and thus do not overload
the bottleneck links. Fig. 7.4 reveals that our proposed algorithms achieve higher video
quality than the IPM.

Time (min)
0 2 4 6 8 10

P
S
N
R

(d
B
)

10

15

20

25

30

35

RMMR*
RMMR
IPM

(a)

0 2 4 6 8 10
0

10

20

30

40

P
SN

R
(d
B
)

Time (min)

RMMR*
RMMR
IPM

(b)

0 2 4 6 8 10
0

10

20

30

40

P
SN

R
(d
B
)

Time (min)

RMMR*
RMMR
IPM

(c)

Mobile Hway Paris Tempete
20

25

30

35

40

P
S
N
R

(d
B
)

Video

RMMR*
RMMR
IPM

(d)

Figure 7.4: The proposed algorithms achieve higher video quality: (a) mean/min/max
video quality, (b), (c) detailed video quality of sinks 1 and 5, and (d) average video quality
from different videos.

Our proposed algorithms are robust against switch failures. The IPM multicasts
the whole video over a single multicast tree, and any link and switch failures may cause
video outage at some sinks. To validate this, we conduct a 2-min experiment using
Mobile and small topology. We then instruct Mininet to tear down switch 1 at 65
sec. We calculate the throughput and video quality of individual sinks under RMMR∗,
RMMR, and IPM, and plot the results from sink 5 in Figs. 7.5(a) and 7.5(b). We observe
that, with IPM, sink 5 does not receive any packets after 65 sec (Fig. 7.5(a)), and thus
its video quality drops significantly (Fig. 7.5(b)). In contrast, our proposed RMMR∗ and
RMMR algorithms only suffer from minor throughput and video quality drops after 65

34

0 1 2
0

0.5

1

1.5

2

T
hr
ou

gh
pu

t
(M

bp
s)

Time (min)

RMMR*
RMMR
IPM

(a)

0 1 2
0

10

20

30

P
SN

R
(d
B
)

Time (min)

RMMR*
RMMR
IPM

(b)

Figure 7.5: Our proposed algorithms are robust against switch failures: (a) throughput
and (b) video quality.

Video Quality in PSNR (dB)
Algorithm Minute Max Mean Min

RMMR∗
1 32.58 32.57 32.54

2 32.00 32.00 31.99

RMMR
1 32.58 32.54 32.51

2 32.28 32.26 32.25

IPM
1 32.58 26.00 20.77

2 32.49 26.00 11.41

Table 7.1: Per-sink Video Quality Achieved by Different Algorithms while Link Down

35

sec, as our algorithms ensure all the sinks would receive at least one descriptor. More-
over, our algorithms quickly recompute the multicast trees, and the throughput and video
quality bounce back a few seconds after the switch failure. Table 7.1 gives the per-min
video quality, which clearly shows that the RMMR∗ and RMMR outperform the IPM by
up to 6 dB in terms of mean PSNR.

0 2 4 6 8 10
0

0.5

1

1.5

T
hr
ou

gh
pu

t
(M

bp
s)

Time (min)

RMMR*
RMMR
IPM

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

T
hr
ou

gh
pu

t
(M

bp
s)

Time (min)

RMMR*
RMMR
IPM

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

T
hr
ou

gh
pu

t
(M

bp
s)

Time (min)

RMMR*
RMMR
IPM

(c)

Mobile Hway Paris Tempete
0

0.5

1

1.5

T
h
ro
u
gh

p
u
t
(M

b
p
s)

Video

RMMR*
RMMR
IPM

(d)

Figure 7.6: The IPM may result in lower/higher throughput at sinks: (a) mean/min/max
throughput, (b), (c) detailed throughput of sinks 1 and 2, and (d) average throughput from
different videos.

The IPM may incur higher/lower sink throughputs. We compute the per-sink
throughput when multicasting each video over the small topology. We first plot the
mean/min/max per-min throughput of all sinks receiving Mobile in Fig. 7.6(a). This fig-
ure shows that the proposed RMMR∗ and RMMR algorithms result in uniform throughput
at all sinks. In contrast, the IPM results in huge variations on throughput among sinks.
We then zoom into two sample sinks with lower throughput (sink 1) and higher through-
put (sink 2) with the IPM, and plot their per-sec throughput in Figs. 7.6(b) and 7.6(c).
Fig. 7.6(b) reveals that: (i) with the IPM, sink 1 misses many packets and suffers from
lower throughput and (ii) the IPM takes some time to react to the departure of sink 1

36

between [5, 6) min and even longer between [2, 3) min. Fig. 7.6(c) shows that, with the
IPM, sink 2 receives at about 1.4 Mbps on average, which is even higher than the mean
video bit rate (1.27 Mbps). This is because sink 2 receives some duplicated packets under
the IPM, contributing to the high link utilization. With the IPM, sink 1 (Fig. 7.6(b)) and
sink 2 (Fig. 7.6(c)) suffer from degraded video quality and high network load. Last, we
report the average per-sink mean/min/max throughputs in Fig. 7.6(d), which shows that
the RMMR∗ and RMMR algorithms lead to the sink throughputs very close to the video
bit rates, while the IPM incurs diverse throughputs (due to packet losses or duplicated
packets).

0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

35

P
SN

R
(d
B
)

Initial Buffering Time (sec)

RMMR*
RMMR
IPM

Figure 7.7: Implication of initial buffering time on video quality.

The proposed algorithms require short initial buffering time. The RMMR∗ and
RMMR algorithms minimize the maximal link utilization and thus may lead to packet
deliver time later than that of the IPM. To quantify this issue, we multicast Mobile
multiple times with different initial buffering times and compute the average video quality
of individual sinks in the small topology. We plot the mean/min/max sink video quality in
Fig. 7.7. The figure shows that the RMMR∗ and RMMR algorithms only need very short
initial buffering time to maintain the full video quality: (i) with a short buffering time
≥ 0.25 sec, all the sinks receive the video at the full quality and (ii) with a buffering time
≥ 0.125 sec, the worst case sink video quality of the RMMR∗ and RMMR algorithms are
only 0.30 dB and 0.75 dB lower than the full quality. This figure shows that our proposed
algorithms work with fairly short buffering time, yet achieve much higher video quality
than that of the IPM.
The scalability of our proposed RMMR algorithms. Next, we generate larger net-

work topologies and measure the average execution time of the RMMR∗ and RMMR
under different numbers of switches, video sources, and video sinks. We start from the

37

0 50 100 150 200
0

2

4

6

8

R
un

T
im

e
(m

in
)

Number of Switches

RMMR*
RMMR

(a)

0 2 4 6 8 10
0

5

10

15

20

R
un

T
im

e
(m

in
)

Number of Sources

RMMR*
RMMR

(b)

0 20 40 60 80 100
0

1

2

3

R
un

T
im

e
(m

in
)

Number of Sinks

RMMR*
RMMR

(c)

Figure 7.8: The scalability of the proposed algorithms: (a) various numbers of switches,
(b) various numbers of video sources, and (c) various numbers of video sinks.

38

large network topology, and vary one of the parameters each time. For each configuration,
we generate 10 random topologies, and measure the running time on an Intel i7 3.4 GHz
Linux PC. We report the average/max running time in Fig. 7.8. The RMMR algorithm
always terminates in < 200 ms, although this is not visible in the figure because of the
y-axis scale. This figure shows that the RMMR∗ algorithm has 1+ min running time with
125+ switches, 5+ video sources, or 70+ video sinks. This figure demonstrates that the
RMMR algorithm scales to larger networks, while the optimal RMMR∗ algorithm can be
used with smaller network topology.

0 2 4 6 8 10
0

20

40

60

80

100

F
ra
m
e
L
os
s
R
at
e
(%

)

Time (min)

RMMR*
RMMR
IPM

(a)

Mobile Hway Paris Tempete
0

20

40

60

80

100

F
ra
m
e
L
os
s
R
at
e
(%

)

Video

RMMR*
RMMR
IPM

(b)

Figure 7.9: The frame loss rates in the large topology: (a) Mobile and (b) all videos.

0 2 4 6 8 10
0

10

20

30

40

P
SN

R
(d
B
)

Time (min)

RMMR*
RMMR
IPM

(a)

Mobile Hway Paris Tempete
0

10

20

30

40

P
SN

R
(d
B
)

Video

RMMR*
RMMR
IPM

(b)

Figure 7.10: The video quality in the large topology: (a) Mobile and (b) all videos.

Our algorithms outperform the IPM in the large topology. Next, we conduct the
experiments with the large topology, in which all four videos are concurrently streamed
by four different video sources. Each sink randomly decides to join/leave the multicast
group of each video once every minute, and on average there are about 10 video sinks
watching every video at any moment. We compute the per-sink performance in terms of

39

0 2 4 6 8 10
0

0.5

1

1.5
T
hr
ou

gh
pu

t
(M

bp
s)

Time (min)

RMMR*
RMMR
IPM

(a)

Mobile Hway Paris Tempete
0

0.5

1

1.5

T
hr
ou

gh
pu

t
(M

bp
s)

Video

RMMR*
RMMR
IPM

(b)

Figure 7.11: The throughputs in the large topology: (a) Mobile and (b) all videos.

frame loss rates, video quality in PSNR, and throughput. We then report results from sinks
watching Mobile in Figs. 7.9(a), 7.10(a), and 7.11(a), and overall results in Figs. 7.9(b),
7.10(b), and 7.11(b). These figures clearly show that the IPM results in high frame loss
rates (up to 95%), low video quality (up to 14 dB lower then RMMR∗/RMMR), and low
throughput (as low as 1/3 of the bit rate). Compared to the results from small topology,
the gap between the RMMR∗/RMMR and IPM is larger. This shows the potentials of
deploying the RMMR∗ and RMMR algorithms in larger network topologies, as these
topologies have more room for optimization.

The tradeoff between optimality and run time. The efficient RMMR algorithm re-
sults in close-to-optimal maximal link utilization in the small topology, compared to the
RMMR∗ algorithm. The performance gap, however, may be bigger in the large topol-
ogy. We plot the per-min maximal link utilization of multicasting the four videos in the
large topology in Fig. 7.12(a). This figure shows that the RMMR∗ algorithm constantly
maintains maximal link utilization at about 82%, while the RMMR algorithm leads to up
to 88% maximal link utilization. We also plot the running time of the two algorithms in
Fig. 7.12(b). This figure shows that the RMMR∗ algorithm may take up to 8 sec to com-
plete, whereas the RMMR algorithm terminates in < 50 ms except in the first minute.
It is because the RMMR algorithm invokes the RMMR∗ algorithm to compute the op-
timal multicast trees every P = 10 minutes, and the remaining invocations rely on the
efficient RAH heuristics. Next, we plot the per-min maximal link utilization and run-
ning time of multicasting the four videos in the large topology with different P value in
Fig. 7.13. Fig. 7.13(a) shows that RMMR∗ keeps overall maximal link utilization around
50%. The RMMR with larger P value prone to suffer from higher maximal link utiliza-
tion. Fig. 7.13(b) shows the constant result with Fig. 7.12(b) that RMMR∗ takes up to 12
seconds to compute the routes, while the RMMR is able to terminate in only 0.01 sec-

40

0 1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

M
ax

im
al

L
in
k
U
ti
liz
at
io
n
(%

)

Time (min)

RMMR*
RMMR
IPM

(a)

0 1 2 3 4 5 6 7 8 9

10−2

10−1

100

101

R
un

T
im

e
(s
ec
)

Time (min)

RMMR*
RMMR

(b)

Figure 7.12: The tradeoff between RMMR∗ and RMMR: (a) optimality and (b) running
time.

ond if the RAH is invoked. Fig. 7.12 demonstrate the tradeoff between the RMMR∗ and
RMMR algorithms: the RMMR∗ algorithm is preferred when optimality is crucial, and
the RMMR algorithm is preferred when the networks are large. We note that by changing
the P value in the RMMR algorithm, we may better exercise the tradeoff in finer gran-
ularity. Designing an adaptive algorithm to pick the most suitable P value is one of our
future tasks.

41

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

M
ax

im
al

L
in
k
U
ti
liz
at
io
n
(%

)

Time (min)

RMMR*
RMMR(p=2)
RMMR(p=5)
RMMR(p=10)

(a)

1 2 3 4 5 6 7 8 9 10
10−2

100

102

R
un

T
im

e
(s
ec
)

Time (min)

RMMR*
RMMR(p=2)
RMMR(p=5)
RMMR(p=10)

(b)

Figure 7.13: The tradeoff of different period parameter.

42

Chapter 8

Conclusion and Future Work

Supporting video streaming using IP multicast incurs high network infrastructure expense
(CAPEX) and administrative expense (OPEX). In contrast, leveraging SDNs may not only
reduce the expenses but also offer more room for optimization due to the global view of
the networks. In this thesis, we studied the problem of multipath multicast routing for
MDC videos, and strived to be robust against switch/link failures, load-balanced across
all links, compatible to SDNs, and adaptive to topology changes. We proposed two al-
gorithms, RMMR∗ and RMMR, to solve the problem. Our algorithms employ multipath
multicast for robustness, mathematical optimization for load balancing and SDN compli-
ance, and lightweight routing heuristics for adaptability. We have implement a system
based on Ryu [31] and install our proposed two algorithms to support the multicast rout-
ing. We set up a real testbed and conduct the experiment using 4 Pica8 P-3297 OpenFlow
switches and several PCs to run as video streaming server/client, which demonstrates the
practicality of our algorithms. The experiment in testbed shows that (i) the video trans-
mission latency raise extremely if the link is overload, (ii) it takes less than 5 milliseconds
for system to insert the multicast flow on each switch, (iii) it takes no longer than 0.15
second for system to detect the video sinks change. We also used Mininet to emulate large
network topologies for extensive experiments, and compared the performance of the pro-
posed algorithms against the IP multicast. The experiment results show that, compared to
the IP multicast, our algorithms: (i) lead to almost no frame loss and high video quality,
(ii) minimize the maximal link utilization, (iii) avoid the duplicated packets, and (iv) are
robust against switch failures. The performance gaps between our algorithms and the IP
multicast are as high as: (i) 95% in frame loss rates, (ii) 15 dB in video quality, (iii) 2/3
in sink throughput, and (iv) 50% in maximal link utilization. Such clear performance
gaps can be attributed to the fact that our algorithms are bandwidth-aware, mathemati-
cally rigorous, and mutlipath-enabled. Among the two proposed algorithms, the RMMR∗

algorithm results in optimal multicast trees (in terms of maximal link utilization), but may

43

take long to terminate; the RMMR algorithm runs fast at the expense of lower optimal-
ity. We recommend the RMMR∗ algorithm for smaller and more static networks, and the
RMMR algorithm for larger and more dynamic networks. This work can be extended as
the following: (i) Our multicast routing system does not consider the background traffic
on the links. We may measure the background traffic from current link consuming and
current multicast traffic on the link. The challenge is how to measure these values pre-
cisely to improve the performance. (ii) In RMMR, we decide to update the optimal routes
by setting system parameter P . We may further design an adaptive algorithm to measure
the difference between current solution and optimal one then determine whether update
the routes by optimal solution.

44

Bibliography

[1] Tcpdump home page. http://www.tcpdump.org/.

[2] Video trace files and statistics. http://trace.eas.asu.edu.

[3] VideoLAN home page. http://www.videolan.org/.

[4] XORP home page. http://xorp.org.

[5] Cisco visual networking index: Forecast and methodology, 2014–2019.
http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/ip-ngn-ip-next-generation-network/

white_paper_c11-481360.pdf, 2015.

[6] T. Benson, A. Akella, and D. A. Maltz. Unraveling the complexity of network
management. In NSDI, pages 335–348, 2009.

[7] Big Buck Bunny home page. https://peach.blender.org/.

[8] IBM ILOG CPLEX optimizer. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

[9] A. De Gante, M. Aslan, and A. Matrawy. Smart wireless sensor network manage-
ment based on software-defined networking. InCommunications (QBSC), 2014 27th
Biennial Symposium on, pages 71–75. IEEE, 2014.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[11] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues for
the ip multicast service and architecture. Network, IEEE, 14(1):78–88, Jan 2000.

[12] W. C. Fenner. Internet group management protocol, version 2. 1997.

[13] Floodlight home page. http://www.projectfloodlight.org/

floodlight/.

45

[14] N. Freris, C. Hsu, J. Singh, and X. Zhu. Distortion-aware scalable video streaming
to multi-network clients. IEEE/ACM Transactions on Networking, 21(2):469–481,
April 2013.

[15] P. Holub, H. Rudová, and M. Liška. Data transfer planning with tree placement for
collaborative environments. Constraints, 16(3), July 2011.

[16] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang. Scalable and bandwidth-
efficient multicast for software-defined networks. In Global Communications Con-
ference (GLOBECOM), 2014 IEEE, pages 1890–1896. IEEE, 2014.

[17] A. Iyer, P. Kumar, and V. Mann. Avalanche: Data center multicast using software
defined networking. In COMSNETS, pages 1–8, 2014.

[18] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software
defined wan. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 3–14. ACM, 2013.

[19] M.-W. Lee, Y.-S. Li, X. Huang, Y.-R. Chen, T.-F. Hou, and C.-H. Hsu. Robust
multipath multicast routing algorithms for videos in software-defined networks. In
Quality of Service (IWQoS), 2014 IEEE 22nd International Symposium of, pages
218–227. IEEE, 2014.

[20] S. Liao, X. Hong, C.Wu, B.Wang, andM. Jiang. Prototype for customized multicast
services in software defined networks. In Software, Telecommunications and Com-
puter Networks (SoftCOM), 2014 22nd International Conference on, pages 315–
320. IEEE, 2014.

[21] Y.-C. Liu, C. Chen, and S. Chakraborty. A software defined network architecture
for geobroadcast in vanets. In Communications (ICC), 2015 IEEE International
Conference on, pages 6559–6564. IEEE, 2015.

[22] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo. Implementing layer
2 network virtualization using OpenFlow: Challenges and solutions. In Proc. of
European Workshop on Software Defined Networking (EWSDN’12), pages 30–35,
Darmstadt, Germany, October 2012.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks.
SIGCOMM Computer Communication Review, 38(2):69–74, Apr. 2008.

46

[24] Mininet home page. http://mininet.org/.

[25] Y. Nakagawa, K. Hyoudou, and T. Shimizu. A management method of IP multi-
cast in overlay networks using OpenFlow. In Proc. of the ACM Workshop on Hot
Topics in Software Defined Networks (HotSDN’12), pages 91–96, Helsinki, Finland,
August 2012.

[26] K. A. Noghani andM. Oguz Sunay. Streaming multicast video over software-defined
networks. InMobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th Interna-
tional Conference on, pages 551–556. IEEE, 2014.

[27] NOX/POX home page. http://www.noxrepo.org.

[28] M. Rahimi, A. Bais, and N. Sarshar. On fair and optimal multi-source IP-multicast.
Journal of Computer Networks, 56(4):1503–1524, March 2012.

[29] J. Rückert, J. Blendin, R. Hark, T. Wächter, and D. Hausheer. An extended study of
dynsdm: Software-defined multicast using multi-trees. Technical report, 2015.

[30] J. Rückert, J. Blendin, and D. Hausheer. Software-defined multicast for over-the-top
and overlay-based live streaming in isp networks. Journal of Network and Systems
Management, 23(2):280–308.

[31] Ryu SDN Framework Home Page. http://osrg.github.io/ryu/.

[32] S.-H. Shen, L.-H. Huang, D.-N. Yang, and W.-T. Chen. Reliable multicast routing
for software-defined networks.

[33] B. Tamma, A. Badam, C. Murthy, and R. Rao. K-Tree: A multiple tree video
multicast protocol for ad hoc wireless networks. Journal of Computer Networks,
54(11):1864–1884, August 201).

[34] P. Troubil and H. Rudová. Integer linear programming models for media streams
planning. Lecture Notes in Management Science, 2011(3), August 2011.

[35] Y. Wang, J. Ostermann, and Y. Zhang. Video Processing and Communications.
Prentice Hall, 2001.

[36] E. Yang, Y. Ran, S. Chen, and J. Yang. A multicast architecture of svc streaming
over openflow networks. In Global Communications Conference (GLOBECOM),
2014 IEEE, pages 1323–1328. IEEE, 2014.

47

[37] M. Zhao, B. Jia, M. Wu, H. Yu, and Y. Xu. Software defined network-enabled
multicast for multi-party video conferencing systems. In Communications (ICC),
2014 IEEE International Conference on, pages 1729–1735. IEEE, 2014.

48

