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Abstract

In this thesis, we focus on large time-scale scheduling of mobile data
transfer, e.g., in minutes or hours. Such large time-scale provides signifi-
cantly more room for performance improvement in real-life scenarios, which
differs our work from most existing channel-aware scheduling studies.

In particular, we design, implement, and evaluate a framework for pro-
filing and scheduling based on Markov decision theory, using the Android
platform. Our trace-driven simulations show that mobile users in real-life
scenarios can benefit significantly from our framework. For example, 50% of
mobile users will enjoy 20%-90% throughput improvement with a deadline
guarantee of 40 minutes and an average delay of 15 minutes.

In addition, we quantify and reduce the overhead of generating model pa-
rameters of the proposed scheduling algorithms. We determine the best train-
ing window size: 30 days. We adopt various clustering algorithms to group
users in order to reduce training overhead. We empirically determine the best
system parameters of the clustering algorithms using real traces. Our clus-
tering algorithms reduce the training overhead without sacrificing too much
performance: it saves up to 59.9% of training time while incurring 18%
performance degradation.
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Chapter 1

Introduction

Consider the following scenario, we saw an interesting show on the way to the subway

station and recorded a video of it using smartphone. The phone automatically uploaded

the video to social network such as Facebook, then we can share it with our friends.

Unfortunately, the automatic upload may take more than 30 minutes and consume half

of the battery, because the video size was large and the network in subway station was

crowded. In addition, it cost a few dollars because the telecom provider no longer provides

unlimited cellular dataplan.

Ideally, the upload application could be more intelligent. For example, once detect-

ing a large video upload request, it could provide options like “Upload now”, “Within 10

minutes”, “Within 1 hour”, and “WiFi only”. Suppose that we chose the 1-hour option,

then the upload possibly happened 30 mins later when we stopped by a coffee shop where

the network condition was much better. Even better, imagine the telecom providers pro-

vide an option like “Delay for 30 mins and enjoy a 20% discount”, similar to the trial

conducted with AT&T customers in Princeton using dynamic time-dependent pricing [7].

There are a few key components in this example. First, mobile network access is

opportunistic, due to user mobility and wireless network dynamics. Therefore, the net-

work conditions, including network availability, network load, signal strength, and trans-

fer speed are various in different times and locations.

Second, a large portion of mobile traffic, such as email and user-generated multimedia

contents, can tolerate delay in different time scales, ranging from seconds to hours. We

refer to such traffic as elastic. To show the extent of such traffic, we collected data traffic

profiles from real Android users for up to 5 months. A coarse classification on

the applications shows that more than 50% users generate at least 65% (uplink) and 70%

(downlink) elastic traffic, plotted in Fig. 1.1. The analysis is similar to the observation

in [16], where analysis of logs from a cellular network shows that there is a nontrivial

time difference between multimedia content generation and upload: more than 55% mul-
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timedia contents are uploaded 1+ day after the creation time.
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Figure 1.1: The elastic traffic ratio on: (a) uplink and (b) downlink.

Third, for good user experience there should be an application-specified deadline for

content transfer. Such a deadline guarantee provides predictability user experience. For

example, once one chooses the ”1-hour” option, the user needs not to worry about it

anymore knowing that the job will finish in at most an hour.

Existing work has studied delay tolerance and channel variation for improved battery

performance and resource utilization, e.g., in [4, 14, 15]. Most of the existing works

consider small time-scale, from seconds to minutes. However, they do not leverage the

much larger optimization room that is only achievable via large time-scale scheduling. In

this paper, we consider a much larger scale, from minutes to hours.

When the users allow a large delay, e.g., 30 mins, the users may visit different loca-

tions and experience diverse network conditions. Thus, the network condition will exhibit

highly non-stationary patterns. Fig. 1.2 shows such an example where the signal strength

varies with time. Using immediate past measurements at the “current time” to predict fu-

ture network condition until the “deadline” will clearly be highly inaccurate. This figure

also emphasizes the large optimization room when we consider large time-scale schedul-

ing.

To overcome such limitation, we study a new approach of network optimization: we

schedule network access base on large time-scale user behavior and network condition

statistics. We propose and implement the User-Profile-Driven Adaptive TransfEr (UP-

DATE) framework, and make the following contributions:

We develop an optimal decision framework to schedule elastic traffic with delay

guarantees based on user profile.

The framework supports different optimization objectives including minimizing (i)

network resource consumption, (ii) energy consumption, and (iii) access cost.

2
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Figure 1.2: The cellular signal strength of a sample Android user, who has much better

reception at home than in the office.

We conduct realistic performance evaluations based on real-life traces generated by

the general public. Results show that a majority of the regular mobile users can

benefit from the UPDATE framework and significant diversity among regular users

in all aspects.

We study the overhead of training the model parameters of our framework and

derive optimal clustering schemes to reduce those overhead via extensive trace-

driven simulations.

3



Chapter 2

Related Work

2.1 Large Time-scale Transfer Scheduling

The idea of leveraging delay tolerant content transfer has been studied in the literature.

In [4], the authors used WiFi network whenever possible to offload data from 3G connec-

tions, which is achieved by analyzing recent WiFi availability to predict the future avail-

ability. In [14], the authors use a Lyapunov function based approach to schedule delay-

tolerant traffics based on network condition and queue length. We note that Lyaponov

optimization can balance the tradeoff between delay tolerance and performance improve-

ment by adjusting its control parameter. It achieves asymptotical optimality without sta-

tistical information. In comparison, we consider an optimal stopping problem that is

more suitable under deadline constraint and statistical information. In [4, 14], they use

short history to predict future network condition, which is valid for a short time scale, say

minutes.

Schulman et al. [15] used location service to derive the user paths, which are then

leveraged to predict future network condition. User paths can be considered as a special

kind of user profile although still in small time scales (minutes level).

Our work complements existing work by focusing on large time-scale (minutes to

hours) for further performance improvement. Because of the large time scale, we propose

to use historic user profiles that enables us to provide statistical prediction, which is dif-

ferent from existing work. Furthermore, deadline is not considered in the previous work,

which is the focus of this work and thus its technical contribution. Last, previous efforts

have used traces from the experiments conducted by researchers, and our evaluation is

based on real-life traces from the general public. In summary, our work compliments

existing approaches in its large time scale, deadline-driven objective, and its real-world

evaluation.
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2.2 Mobile User Clustering

There are number of existed works on mobile user behavior and mobile user clustering.

Some studies are about location and mobility of mobile users [6, 10, 11]. Bayir et al. [6]

proposed a framework to capture cellphone users mobility. In [10, 11], the authors pro-

posed user mobility model to predict the mobility of mobile users. Compared with our

work, those works studied location and mobility of mobile users.

There are works studied the relation of different user mobility [9,18,19]. Hsu et al. [9]

proposed an user similarity metric based on a matrix representation of user mobility pro-

files and its decomposition to reduce complexity of user similarity computation. Then,

they cluster users based on the proposed similarity metric to reduce the traffic load of a

campus WLAN. Ying et al. [18] proposed a potential friends recommendation algorithm

based on the GPS trajectories of mobile users. Zheng et al. [19] proposed to mine interest-

ing locations and classical travel sequences from the GPS trajectories traces of a specific

region. Compared with our work, those works studied the mobile users from a specific

region.

There are works studied mobile user behaviors except mobility, e.g., application us-

age [13, 17]. In [13], the authors proposed to prefetch mobile advertisement based on

the application usage prediction. In [17], the authors studied the prediction of mobile

application usage and proposed to prelaunch application on mobile devices to reduce the

application launching time. Different to our work, the authors did not consider the net-

work access behavior of mobile users.

In addition, there are existed works consider multiple mobile user contexts, e.g., user

interactions and locations, when mining mobile user behaviors. For example, Ma et

al. [12] proposed an approach to mine user behavior patterns and leverage the behavior

patterns for discover similar mobile users.

Different from those existing studies, our goal is to reduce the overhead of training

prediction models by cluster users with similar behavior. To our best knowledge, using

clustering to reduce the overhead has not been studied before.
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Chapter 3

Large Time-scale Transfer Scheduling

In this chapter, we introduce the design and implementation of our proposed large time-

scale transfer scheduling framework. Then, we evaluated our proposed framework via

extensive traces-driven simulations with a large amount of traces collected from real mo-

bile device users.

3.1 UPDATE Framework

The UPDATE framework runs on mobile devices and consists of two components: (i)

profiler and (ii) resource manager, as illustrated in Fig. 3.1. The profiler is an application-

layer program that collects user profiles, which are timestamped log files, including net-

work condition and application/data usage. The profiler also monitors storage usage and

feeds the resource manager the most updated profile information. Table 3.1 summarizes

the contexts collected by the profiler.

The resource manager monitors the content transfer requests and transmission. It con-

sists of (i) policy generator, (ii) scheduler, and (iii) application API. According to the

desired objective, e.g., to minimize energy consumption, the policy generator generate

scheduling policies based on user profiles. The policy generator can run on mobile de-

vices and it can also be offloaded to the cloud. Mobile applications communicate with

the UPDATE framework via the API and submit content transfer requests. Upon receiv-

ing such a request, the scheduler schedules the transmission according to the scheduling

policies.

3.2 Markov Decision Process

Markov Decision Process (MDP) is a well-known mathematical framework for modeling

decision making. The MDP can be defined as a 4-tuple: . In the
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Table 3.1: The Contexts Being Profiled on Smartphones

Context Profiling Type Period (min) Profiling Level ( )

WiFi Connectivity Event-driven - Default

3G Signal Strength Event-driven - Default

Activity Information Periodical 5 Verbose

Task Information Periodical 5 Verbose

Battery Level Periodical 5 Baseline

Network Throughput Periodical 5 Default

Application Traffic Amount Periodical 5 Default

GPS Location Periodical 30 Verbose

Neighboring WiFi AP Information Periodical 30 Verbose

Neighboring Cell Tower Information Periodical 5 Verbose

Figure 3.1: The proposed UPDATE framework.

notation: (i) is the set of possible system states, (ii) is the set of allowable actions,

(iii) is the probability that when the decision maker

chooses action in state at time , then the system will transfer to state at time

and (iv) is the reward of choosing action in state , then the system transfers

to state . The objective of MDP decision problems are to find out an optimal policy :

a function that specifies the action should be chosen when the system in state . The

policies are usually solved by value iteration or policy iteration method to provide what

action should be chosen in each state, so that it can get the largest total reward.

7



3.2.1 Optimal Stopping Problem

In particular, our problem can be formulated by an optimal stopping problem. In optimal

stopping problem, the system is an uncontrolled Markov chain with states . In each

decision epoch, there has two actions available for the decision maker: to stop or to

continue. Once he decides to stop in state , he can get the reward . If he decides to

continue, he incurs a cost and the system evolve until the next decision epoch. The

problem must be finite horizon, in which case represents the reward if the system

reach the last decision epoch without stop. When the system stop, it will stay at stop

state and with zero reward. The objective of optimal stopping problem is to maximize the

total reward.

3.3 Scheduling Algorithms

In this section, we introduce our proposed scheduling algorithms based on Markov deci-

sion theory. All of the proposed algorithms are deployed into our framework.

3.3.1 Scheduling Model

Our framework assumes a time slotted system, where the timeslot size can vary from

seconds to minutes, depending on the time horizon of the deadline and complexity toler-

able. When a transfer request arrives, the scheduler is triggered. The request specifies a

deadline, named horizon , by which the data transfer must be completed.

At each timeslot, the scheduler makes a decision Wait Transfer depending

on the current transmission cost and future estimates. Let ( ) be the transfer

cost at slot and waiting costs nothing. We assume the transmission cost is proportional

to file size, and thus files of different sizes share the same decision policies. Let be

the optimal cost to transfer data between time slot and when an optimal schedule is

applied. can be calculated using the statistics of , derived from the user profiles.

3.3.2 Optimal Stopping Scheduling (OSS)

The OSS algorithm is based on Markov decision theory, in particular, optimal stopping.

The objective is to minimize the expected transfer cost under the deadline constraint.

The principle of optimality applies as follows. If transfer cost is less or equal to the

expected optimal future transmission cost, transfer at the time slot , otherwise wait until

8



time slot . Formally, the optimal scheduler is written as:

Transfer

Wait
(3.1)

Here, the value of can be obtained by backward induction:

(3.2)

The algorithm presented in Eq. (3.1) and (3.2) is general, but may come with some

limitations. First, we need to accumulate enough samples to accurately derive

for all and . Hence, the OSS algorithm requires a long user profiles to derive model

parameters. Second, the computational complexity can be high as the horizon increases

as shown in Sec. 3.4. This is a potential concern for mobile users.

3.3.3 Lightweight Optimal Stopping Scheduling (OSSL)

To alleviate the limitation of the OSS algorithm, we propose a simplified scheme using

the light model where depends only on time. In this case, the optimal decision is

simplified as:

Transfer

Wait
(3.3)

where

(3.4)

3.3.4 Batched Optimal Stopping Scheduling (BOSS)

Next, we consider a more complex scenario where multiple jobs arrive sequentially from

the application layer. In this case, we need to consider overhead. Overhead occurs be-

cause of network setup, signaling, and tail effect. For example, in UMTS networks, the

release of radio resources is controlled by inactivity timers. It’s also known as the tail

time can be up to 17 seconds. That is a significant waste of network resource when severe

for small network traffic, prevalent in today’s mobile applications.

9



Let denote the scheduler queue at the beginning of the timeslot; the queue after

job arrivals in this timeslot; and the queue after transmitting the job with the closest

deadline.

We call a timeslot active if one or more content transfers are scheduled, otherwise

the timeslot is inactive. In an active slot, batching additional jobs incurs no additional

overhead. Denote the expected cost when using the optimal policy, starting from an

active timeslot , and that of an inactive timeslot. Let be the total amount of time

we run the scheduling algorithm. The expected costs with different actions in timeslot

are written as follows. If no job is transmitted in the current timeslot and the

scheduler goes to next timeslot , then

(3.5)

If the scheduler schedules the job with the earliest deadline in the queue and stays in the

current timeslot , then

(3.6)

1) In an inactive timeslot , if , then the decision is to transmit

no requests, and go to next timeslot; otherwise, the decision is to transmit the first request,

and stay in the current timeslot.

2) In an active timeslot , if , then the decision is to transmit

no more request, and go to the next timeslot; otherwise, the decision is to transmit the

request with the closest deadline, and stay in the current timeslot.

We note that the complexity of BOSS is very high because the number of states is

prohibitively large due to the combinatorial nature of the possible deadlines and state

transmissions. In fact, BOSS cannot be used for deadlines more than three time slots long

as shown in our evaluation.

3.3.5 Lightweight Batched Optimal Stopping Scheduling (BOSSL)

The BOSSL is a light version of BOSS where is only dependent on the time. Given

the BOSS algorithm, we can use backward induction to calculate and as:

(3.7)

and

(3.8)
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Figure 3.2: The architecture of PhotoSync.

Finally, at the end of the horizon , we have:

(3.9)

(3.10)

3.4 Trace-Driven Simulations

To evaluate our proposed framework, we implement trace-driven simulators and run sim-

ulations with a large amount of traces collected from real mobile device users. In this

section, we introduce the simulation setup and report the simulation results.

3.4.1 An UPDATE-enabled Application: PhotoSync

PhotoSync is an Android application which schedules photo uploads to Facebook auto-

matically. PhotoSync has three components: storage monitor, photo uploader, and photo

publisher, as illustrated in Fig. 3.2. The storage monitor is a background service watching

for new photos taken by users. Once a new photo is detected, the storage monitor obtains

the new photo. Then, the storage monitor calls the UPDATE API to submit the new photo

to the UPDATE scheduler queue. The UPDATE scheduler schedules the transmission and

notifies the photo uploader. Upon instructed by the scheduler, the photo uploader uploads

photo to a private photo album. Users can review the photos and publish selected photos

to their friends or to the public by the photo publisher.

3.4.2 Profiling Analysis

We published Photosync with our profiler on Google Play [1] in July 2012. There have

been more than 10,000 downloads in the first eight months. Among them, about 1700+

11



users participate in our data collection. After filtering out the profiles with zero-length

and corrupted data, we ended up with the profiles from users. Among them, we

have more than 100 users with 30+ days of profiles, which are used in our performance

evaluations.

We first compute the per-application traffic amount across all mobile users. It shows

that the top 50 applications contribute of the traffic, and the top 10 applications

contribute of the traffic. We also roughly classify the applications into two groups,

applications that generate: (i) elastic and (ii) real-time traffic. For the top ten downlink

apps, we consider dropbox, social network content pre-fetching, application update as

elastic; and android browser and youtube as real-time. For uplink traffic, we considered

dropbox, social network photo backup as elastic and others real-time including browser,

messaging, and video conferencing. Based on this classification, we compute the per-

user elastic traffic fraction of the top 50 applications (in each direction). There are on

average 65% (uplink) and 70% (downlink) elastic traffic, which shows the potential of

the UPDATE framework. We had mentioned that this is coarse classification, and delay

tolerance may differ from user to user. However, we note that the UPDATE framework

can be applied to the general scenario of different delay tolerance.

We also analyze the profiles in spatial and temporal domains and show the results in

Fig. 3.3. Fig. 3.3(a) gives the GPS locations of users who use our application. We can see

that the users are from worldwide. Fig. 3.3(b) presents the number of users who upload

profiles in each day. We find that the longest profile length is 136 days and there are up

to 500+ users in some days.From this analysis, we firmly believe that our trace-driven

simulations are representative.
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Figure 3.3: User distributions in (a) spatial and (b) temporal domain.
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3.4.3 Profiling Overhead

We next quantify the energy overhead of the profiler. We install the profiler on an HTC

Sensation XE smart phone, and connect it to an Agilent 66331D power meter [2] to mea-

sure the average power consumption with and without the profiler for an hour. To be

conservative, we killed all other tasks on the phone when measuring the power consump-

tion. We repeat this experiment five times, and report the average power consumption in

Table 3.2. The average power overhead of the profiler is merely 2.94 mW, or 6% of the

total power consumption without any other applications.

We also install the profiler on four HTC One X smart phones. We fully charge the

smart phones, and measure the time of depleting the battery with and without the profiler,

and without any other applications. Fig. 3.4 shows the battery lifetime, where, in all

cases, the battery lifetime is longer than 4.5 days, even with the profiler running. Running

the profiler only consumed 11% of the idle energy, which is a small percentage of the

actual mobile energy consumption, on average.

Table 3.2: Profiler Power Consumption

Setup Average (mW) Min (mW) Max (mW)

Baseline 48.9 47.1 50.5

UPDATE 51.84 46.9 56.3

1 2 3 4
0
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80
90

100
110
120
130
140
150

 

 

Figure 3.4: Battery life with/without our profiler.

3.4.4 Energy Model

The UPDATE framework is general, and may work with any state-of-the-art energy mod-

els to minimize energy consumption. In this paper, we focus on the communication en-

ergy, as other parts of energy consumption are not affected by scheduling. We adopt and

13



Table 3.3: Current Drawn by Network Interfaces under Different RSSI Values

WiFi Network Interface

RSSI (dBm) -81.24 -71.24 -60.94 -46.60 -36.6

Current (A) 0.28 0.26 0.25 0.24 0.23

Cellular Network Interface

RSSI (dBm) -91.65 -86.14 -73.16 -67.05

Current (A) 0.33 0.26 0.22 0.21

slightly modify the model proposed in [5], in which the energy consumption is modeled

by a linear function on the transfer time. The energy overhead due to network interface

state changes is captured by the ramp and tail energy. The ramp energy refers to the en-

ergy consumed by waking up a network interface, and the tail energy is consumed by

the timeout period before a network interface is put into asleep. In cellular networks,

the tail energy dominates the energy overhead, while in WiFi networks, the ramp energy

dominates.

To derive energy model parameters, we set up an experiment to measure the current

drawn by the network interfaces of an HTC Sensation XE phone, using an Agilent 66321D

power meter [2]. In particular, we instruct the phone to transmit large files and take current

readings. Our measurement results indicate that the current is not constant under different

signal strength in RSSI, as assumed in existing models [5]. Instead, the current depends

on the RSSI. We place the phone in locations with different RSSI values, and compute

the mean current of each location based on 100,000 samples. Table 3.3 gives the resulting

current values, which are used in our trace-driven simulations. We use the same setup

to measure the WiFi ramp and cellular tail power consumption, which are 1.02 and 0.74

watts, respectively.

3.4.5 Simulators Implementation

We have implemented a trace-driven simulator in Matlab, and run it on a Linux server

with a 2.6 GHz AMD CPU. Within the simulator, we have implemented the four pro-

posed algorithms: OSS, OSSL, BOSS, and BOSSL. We have also implemented a baseline

algorithm called instant (INS), which transfers a content upon its arrival, and an offline al-

gorithm called optimal (OPT), which assumes the availability of all future network condi-

tions and always makes the best decisions. The INS algorithm mimics the content transfer

policy used by most current applications, and the OPT algorithm gives us a performance

upper bound, although not achievable. We have also implemented two state-of-the-art
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algorithms [14, 15] for comparisons.

We consider the traffic from the seven elastic applications we had discussed as the

contents to be scheduled by the algorithms, and the real-time traffic to be immediately

transferred. In our simulations, we optimize for throughput with wireless ramp/tail over-

head of 8 secs, profile length of 22.5 days, time slot length of 5 mins, and deadline of 40

mins (8 time slots).

3.4.6 Simulation Results

We first conduct the simulations of single-job problems, and compare the performance of

INS, OSS, OSSL, and OPT. We report the sample results of the uplinks.

Complexity of f Single-job Scheduling. We study the complexity of the OSS and

OSSL algorithms under different deadlines of 2, 3, 4, 8, and 16 time slots. We randomly

choose 10 mobile users, and run the two algorithms with their profiles. We report the

average time and memory used for generating the policy tables in Table 3.4. This table

shows that the time and space complexity of the OSS algorithm is much higher: it takes

almost an hour and consumes almost 16 GB memory to generate the policy tables. In

contrast, the OSSL algorithm terminates in less than 200 msec and with 18 KB memory.

This shows that the OSSL algorithm can be run on even low-end smartphones, while the

OSS algorithm has to be offloaded to a cloud server. We emphasize that the policy table

generated by the OSS algorithm is fairly compact: it is up to 2.53 MB (with a deadline of

16), which is insignificant to smartphones. Hence, we recommend the OSS algorithm for

mobile users with access to cloud servers, and the OSSL algorithm for other mobile users.

Table 3.4: Complexity of OSS and OSSL

Time Complexity (sec)

Deadline 2 3 4 8 16

OSS 24.65 63.33 102.56 457.20 3403.38

OSSL 0.02 0.03 0.05 0.08 0.15

Memory Requirement during Computation

OSS (GB) 0.25 0.56 0.99 3.96 15.82

OSSL (KB) 2.25 3.38 4.5 9 18

Throughput Improvement. We present the results when optimized for throughput

in Fig. 3.5. Fig. 3.5(a) presents the average throughput normalized to that of the INS

algorithm from 16 users with the most complete profiles. This figure shows that OSS and

OSSL algorithms lead to throughput improvement for almost all sample mobile users, up
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to about 2.4 and 1.9 times, respectively. Fig. 3.5(b) shows the CDF of the normalized

throughput of all users. We observe that OSS and OSSL achieve comparable throughput

improvement: more than half of mobile users achieve 20+% throughput improvement.

We note that they both outperform BAR (Bartendr [15]) and SAL (SALSA [14]). Last,

Fig. 3.5(c) shows the CDF of per-user average delay. We note that (i) all the transfers are

done by the deadline as required; (ii) more than 40% mobile users complete their transfers

in 10 minutes, much earlier than the user-specified deadline; and (iii) the average delays

are 15.11 minutes for OSS and 13.85 minutes for OSSL, respectively (7.75 and 20.52

minutes for BAR and SAL). In summary, Fig. 3.5 clearly demonstrates the benefit of OSS

and OSSL algorithms.

Network Load Reduction. We have shown that the OSS and OSSL algorithms help

the mobile devices to achieve higher end-to-end throughput. Higher throughput results

in shorter transfer time, and thus lower network load for the mobile Internet service

providers. We next configure the UPDATE framework to explicitly reduce the cellular net-

work load. We define a network load metric for the cellular network symbol/sec, which

is based on the cellular network spectrum efficiency (in bits/symbol) and the measured

throughput (in bps). We follow the LTE-Advanced standards [3], and map the measured

RSSI to the proper Modulation and Coding Scheme (MCS) modes.

We plot the resulting network load in Fig. 3.6. Fig. 3.6(a) shows the network load

of 16 mobile users. This figure reveals that the OSS and OSSL algorithms reduce the

network load, compared to INS. Fig. 3.6(b) shows that the reduction could be as high

as 75%. We also plot the CDF curves of overall network load reduction in Fig. 3.6(c),

which depicts that the OSSL algorithm reduce the cellular network load: more than 40%

mobile users cut their network resource consumption by half or more. We note that this

improvement includes the benefit of both transmitting in better cellular conditions and

offloading to WiFi networks within the deadline. Last, on average, BAR and SALSA

consume comparable network resources than OSSL and OSS, respectively.

We then conduct the simulations of multiple-job problems, and compare the perfor-

mance of INS, BOSS, and BOSSL. We do not consider OPT due to the its high complexity.

Complexity of Multiple-job Scheduling. We study the complexity of the BOSS and

BOSSL algorithms, using a similar setup in single-job scheduling. We cannot run the

BOSS algorithm with deadlines because of its complexity. Table 3.5 presents the

average time and space used for generating the policy tables with different deadlines.

This table shows that the BOSS algorithm is too complex to be practically useful and

thus ignored in the rest of the section. With a deadline of 16, we observe that BOSSL:

(i)takes 2.84 hours to complete and (ii) has a policy table of 129.6 MB, which is borderline

manageable to high-end smartphones.
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Table 3.5: Complexity of BOSS and BOSS

Time Complexity (sec)

Deadline 2 3 4 8 16

BOSS 2200.23 8403.63 - - -

BOSSL 0.65 1.15 2.5 40 10229

Memory Requirement during Computation

BOSS (GB) 3.95 15.82 - - -

BOSSL (KB) 9 18 36 576 147456

Energy Consumption Reduction. We report the communication energy consump-

tion normalized to that of the INS algorithm in Fig. 3.7. Fig. 3.7(a) presents sample results

from 16 mobile users, which shows that the BOSSL algorithm outperforms the OSSL al-

gorithms for majority of the mobile users. This is because the BOSSL algorithm batches

content transfers to reduce ramp/tail energy overhead. We note that BOSSL ignores file

size in calculating its policy, and thus not always optimal, which explains the reason that

occasionally OSSL outperforms it.

Fig 3.7(b) reports the overall normalized energy consumption as CDF curves. This

figure clearly shows the benefits of batching: more than half of the mobile users achieve

more than 25% of energy saving with BOSSL, while less than half of the mobile users

achieves more than 5% of energy saving with OSSL, and even less for BAR and SAL.

We note that in our traces, a large portion of the data jobs are small. Therefore, without

batching (OSS and OSSL), although we can see more significant throughput improvement,

battery saving is not significant because of the overhead (recall the default ramp/tail time

is 8 secs). This highlights the importance of batching and the advantage of the BOSSL

algorithm.
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Figure 3.5: Throughput improvement: (a)

sample normalized throughput, (b) overall

throughput improvement, and (c) average

delay.
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Figure 3.6: Network load reduction: (a)

sample network load, (b) sample normal-

ized network load, and (c) overall normal-

ized network load.
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Figure 3.7: Energy consumption reduction: (a) sample normalized energy consumption

and (b) overall normalized energy consumption.
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Chapter 4

Quantify and Reduce Training

Overhead

In this chapter, we study the scheduling model training overhead and we also study how

to reduce the overhead without too much performance loss.

4.1 Training Window Size

In Sec. 3.4, we evaluate our proposed scheduling schemes through trace-driven simula-

tions, where the complete profiles are known to the simulator. However, in a real system,

the user profiles are accumulated daily. In this chapter, we consider a more practical

system, in which the scheduling schemes are trained with increasingly longer profiles.

In particular, we consider a system that works as follows. First, each mobile device

uploads profiles to the server every days, and the -th upload consists of the profile

collected during . This is denoted as profile upload in Fig. 4.1. Second, the

mobile device downloads the model parameters derived from the profiles collected dur-

ing training window , where the training windows size is a system

parameter. More precisely, the model parameters were derived after preceding synchro-

nization time, using days of profiles. This step is denoted as model parameter download

in the figure. Third, the server starts to derive the model parameters using the profiles col-

lected during . As illustrated in the figure, model parameter derivation

may take some time in the background, and the resulting model parameters will be down-

loaded at the next profile synchronization time.

While our system provides the freedom of choosing different training window size

. Selecting the best is no easy task, as short profiles may lead to unreliable model

parameters, but long profiles may incur too much noise. We set up a series of rigorous

evaluations. In the simulations, we adopt the Photosync traces from 1041 users. Among
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Figure 4.1: System synchronization time line.

the users, we select 10 sample users with the longest profiles, which represent 1282 days

of traces in total. We modify the simulator developed in Sec. 3.4 and run simulations with

different values. The simulation results are shown in following.

4.2 Limitations of OSS

We observe that OSS has the best performance with 15-day training window when opti-

mized for throughput. Moreover, the results show that OSS outperforms OSS in most

cases. In particular, OSS outperforms INS by 5.6 times, while OSS outperforms INS by

3.6 times on average. In addition, OSS consumes more resources compared with OSS

when training the model parameters: OSS consumes up to 3900 times longer training

time and up to 450 times larger memory. Table 4.1 summarizes the results from various

algorithms and optimization criteria. This table clearly shows that OSS leads to inferior

performance, while consumes much more resources. Hence, we do not discuss OSS in

the rest of this paper.

4.3 Implication of Training Window Size

In this section, we study the impact of training window size and determine the best train-

ing window size via traces-driven simulations.

4.3.1 Single-Job Scheduling

In Fig. 4.2, we report the results of OSSL algorithm with different values when opti-

mized for throughput and network load. In Fig. 4.2(a), we show the average throughput

normalized to INS algorithm and we also show the average model training time when opti-

mized for throughput. We make three observations from the results. First, the throughput

and model training time of OSSL increases with longer . Second, when exceeds 30

days, the model training time continuously increases but the throughput decreases. Last,

OSSL achieves the best throughput when is between 15 and 30 days, and thus we rec-
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Table 4.1: Performance and overhead of OSS, OSSL and BOSSL with optimal for OSS

Opt. for Throughput with days

Nor. Performance Training Cost

Algo. Min Mean Max Time (sec) Memory

OSS 0.01 3.56 5.55 238.67 3.96 GB

OSSL 0.01 5.55 14.16 0.06 9 KB

Opt. for Network Load with days

OSS 0.001 0.56 2.73 231.46 3.96 GB

OSSL 0.001 0.65 22.98 0.07 9 KB

Opt. for Energy with days

OSS 0.003 0.93 4.5 278.82 3.96 GB

OSSL 0.003 0.90 3.08 0.08 9 KB

BOSSL 0.001 0.47 3.28 38.96 576 KB

ommend days for OSSL when optimized for throughput. In Fig. 4.2(b),

we show the results normalized to INS algorithm when optimized for network load. We

find that the network load decreases and the model training time increases with longer

. We find the performance of OSSL with 15 and 60 days training window are similar

and OSSL has shorter model training time when is between 30 and 45 days. Hence, we

recommend days for OSSL algorithm when optimized for network load.

4.3.2 Multiple-Job Scheduling

We also show the results with batching when optimized for energy consumption in Fig. 4.3.

Fig. 4.3(a) shows that with OSS the energy consumption decreases and the model train-

ing time increases with longer . For a good tradeoff between performance and overhead,

we recommend days for OSS when optimized for energy consumption.

Fig. 4.3(b) shows that, with BOSS , the energy consumption decreases with longer .

However, different to the results from OSS , the model training time does not increase

with longer . We recommend for BOSSL algorithm when optimized for

energy consumption.

In summary, we found that: (i) OSS incurs high training overhead but results in infe-

rior performance and (ii) OSSL and BOSSL work the best with , in general. We let

in the rest of this article if not otherwise specified.
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Figure 4.2: Performance of OSSL with different training window size when optimized for

(a) throughput and (b) network load.
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Figure 4.3: Performance of (a) OSSL and (b) BOSSL with different training window size

when optimized for energy consumption.

4.4 Reducing Model Derivation Overhead

We had mentioned the two kinds of overhead when deriving the model parameters. First,

the server responsible for generating model parameters may be overloaded when the num-

ber of users is large. Second, it takes a month for new users of our system to achieve the

optimal performance. In this section, we introduce our proposed method to reduce model

parameters derivation overhead and evaluate our method via traces-driven simulations.

4.4.1 User Clustering

To mitigate the overhead, we propose to cluster users with similar behaviors in the same

group. Users in the same group share the model parameters. That is, we combine their

profiles and train a single set of model parameters for each group. We consider different
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user behaviors, referred to as contexts, when clustering users. There are many cluster-

ing techniques proposed in the data mining literature [8]. Our goal is to cluster mobile

users without scarifying the prediction accuracy too much. We add various well-known

clustering algorithms in our simulator, which are detailed below.

The updated system works as follows. First, our system runs user clustering algo-

rithms on the user profiles of 1041 PhotoSync users before the model parameters deriva-

tion. Second, our system trains the model parameters for each cluster according to the

user clustering results. We consider three different clustering algorithms: K-Means, K-

Medoids, and hierarchical clustering algorithms, and four different distances: euclidean,

cityblock, cosine and correlation distances [8]. To adopt the clustering algorithms, we

use the optimization criterion as the context when cluster users and we partition the con-

text into -sec timeslots with a vector representation. The vector representation contains

the average value of the context, i.e., throughput in each timeslots,. In order to show the

changing of the context in each timeslot, the context in our vector representation is nor-

malized to a range of . The three clustering algorithms have an input parameter: the

number of clusters . To empirically determine the best , we define clustering ratio

as the ratio between and number of users , i.e., .

4.4.2 Impact of System Parameters

To find the best system parameters: and , we design experiments to study the impact

of different and . In the experiments, we employ hierarchical clustering algorithm and

cosine distance for clustering users. In Fig. 4.4, we show the performance and models

training time saving of algorithm with user clustering when optimized for through-

put, network load and energy consumption with different timeslot size and . In

the figure, the performance and training time are normalized to the results of with-

out clustering. We make two observations: (i) the timeslot size do not impact on the

models training time saving and (ii) the best when optimized for throughput, network

load and energy consumption are 900-sec, 1800-sec and 600-sec. Based on the results,

we consider the best in the rest of our experiments. In Fig. 4.5, we show results when

optimized for throughput, network load and energy consumption with different and the

best for each optimization criteria. The simulations reveal that mobile user clustering

allows us to reduce the overhead of training prediction models yet achieving reasonable

performance. For example. with clustering can achieve 92.6% of original through-

put, 5.2% additional network load and 25.5% additional energy with only 30% of original

model parameters training time when . Based on the results, we consider

in the rest of our experiments.
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Table 4.2: The complexity of clustering algorithms

Average Running Time (sec)

Distance Hierarchical K-Means K-Medoids

Cosine 0.01 1.27 15.80

Euclidean 0.01 0.53 2.05

Cityblock 0.01 0.32 1.97

Correlation 0.01 0.86 2.13

4.4.3 Performance Impact

We first report the average running time of clustering algorithms in Table 4.2 and make

two observations. First, K-Medoids algorithm consumes the longest time and hierarchical

clustering is the fastest algorithm. Second, cosine distance consumes the longest time,

while cityblock distance consumes the shortest time when clustering users.

Next, we report the performance ratio, which describes the performance loss due to

clustering Fig. 4.6. In particular, this figure reports the performance ratio with and with-

out clustering, when optimized for throughput, network load, and energy consumption.

Fig. 4.6(a) shows that: (i) clustering may even lead to higher throughput and (ii) K-

Means algorithm with cityblock distance achieves the highest throughput improvement:

about 12%. Fig. 4.6(b) shows that K-Medoids algorithm with cityblock distance results

in the smallest performance ratio of 118%. Fig. 4.6(c) shows that K-Means algorithm

with cosine distance leads to the smallest performance ratio of 117%. In summary, we

recommend users to use: (i) K-Means/cityblock, (ii) K-Medoids/cityblock, and (iii) K-

Means/cosine when optimized for: (i) throughput, (ii) network load, and (iii) energy con-

sumption, respectively.

4.4.4 Reducing Time Overhead

Last, we report the total running time saving of the clustering algorithms and model pa-

rameter derivation. We only give the numbers for the recommended clustering algorithms

and distances. We found that the total running time savings of our user clustering algo-

rithms are 58.8%, 37.5% and 59.9% for optimizing for throughput, network load, and

energy consumption, respectively. Notice that, different to the time saving when we dis-

cuss the impact of the system parameters: and , the time consumption here includes

the clustering algorithm running time. This demonstrates the effectiveness of our over-

head reduction approach.

25



0 500 1000 1500
0.8

0.85

0.9

0.95

1

1.05

 

 

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

(a)

0 500 1000 1500 2000
1

1.2

1.4

 

 

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

(b)

0 500 1000 1500 2000
1.25

1.3

1.35

1.4

 

 

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

(c)

Figure 4.4: Performance and models train-

ing time saving when optimized for (a)

throughput (b) network load and (c) en-

ergy consumption with different clustering

timeslot size .
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Figure 4.6: Performance ratio of user clustering when optimized for (a) throughput, (b)

network load, and (c) energy consumption.
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Chapter 5

Conclusion and Future Work

In this paper, we propose and implement UPDATE, an user-profile-driven opportunistic

data transfer scheduling framework for improved battery performance and network effi-

ciency. Different to existing work, we focus on large time-scale scheduling with deadline

guarantee. Large time-scale provides more room for performance improvement, and the

deadline guarantee offers predictable user experience and thus eases user adoption.

We evaluate the performance of our proposed UPDATE framework based on real

traces from the general public. It shows that a majority of the mobile users can ben-

efit from the UPDATE framework. We also study the overhead of training the model

parameters. In order to reduce the training overhead, we propose to cluster users and train

single set of model parameters in each group. We also evaluate the reduction of training

overhead and the performance degradation with user clustering.

Future work. Our work focuses on large-time scale. When significant network

changes occur in small time scale, e.g., when walking or driving, it is desirable to carefully

study realistic implementations that span both small and large time scales in an adaptive

fashion, with low energy overhead and low computational complexity. We also plan to

consider a hybrid optimization objective in our scheduling e.g., consider network loading

information from network provider when optimized for throughput to archive better per-

formance. In our work, we only consider the transfer cost in different time. Last, we plan

to consider other contexts, e.g., location to predict transfer cost.

Moreover, we only use optimization criteria as the contexts when clustering users and

we did not consider batching when clustering users. We plan to rigorously determine the

best context for clustering users and to propose a new clustering approach that incorpo-

rates the batched transfers.
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