
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

使用感興趣片段優化之遊戲實況服務

Optimizing Live Game Streaming Platforms Using

Segment-of-Interests

范姜陶亞

Tao-Ya Fan Chiang

學號：103062586

Student ID:103062586

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 105年 07月

July, 2016

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

使
用
感
興
趣
片
段
優
化
之
遊
戲
實
況
服
務

范

姜

陶

亞

撰

105
07

Acknowledgments

I would like to express my gratitube toward all the people whohelped
me in the past two years. I wouldn’t be able to finish my thesis were it not
for your help along the way. I want to thank my parents specifically, for it is
they who provided me with the firm support and stand behind my decisions. I
would also like to thank my labmates in Networking and Multimedia Systems
Laboratory, especially Hua-Jun Hong, who helped me a great deal in the
course of my research. Lastly, I would like to express my gratitude toward
my adviser: Prof Cheng-Hsin Hsu. Without the guidance and thesuggestion
I received from him, I would not be able to accomplish what I have done and
learn so much in the past two years.

i

致致致謝謝謝

在此我要感謝在過去兩年中所有幫助過我的人，如果沒有你們的

幫助我一定沒有辦法順利完成我的論文。 在此我要特別感謝我的父

母，他們提供我堅定不移的支持，同時也支持我所作的每一個決定。

我也要感謝網路與多媒體系統實驗室的同學們，特別是洪華駿在過去

兩年的研究中幫助我非常的多。最後，我要感謝我的指導教授：徐正

炘教授。如果沒有他的給予我的指導以及建議，在過去的兩年內我一

定沒辦法完成如此多的事情以及學到如此多的東西。

ii

中中中文文文摘摘摘要要要

近年來遊戲實況串流平台大為流行，然而從近來的研究中顯示這一

些平台需要使用大量的網路流量，間接的導致不易提高使用者體驗。

在這一篇論文中我們提出了使用『感興趣片段』之概念的遊戲實況串

流平台， 並以此概念對平台進行優化。 我們的平台使用從實況主以

及觀眾電腦中收集來的特徵，結合當前最優秀之機器學習模型來自動

化的偵測 目前實況影片的片段是不是會吸引觀眾的注意。 在決定了

當前實況影片片段的重要性之後，系統中可以使用的頻寬會以一個利

用『資料率失真理論』進行最佳化的方式來分配給感興趣的觀眾，其

中會使用影片的片段重要性來作為要傳輸的影片品質依據。在這個系

統運作背後的理念為：唯有在觀眾正在注意實況影片時，才會發生降

低使用者體驗的情況。在我們的使用從現實世界中收集來的數據進行

的模擬顯示，在使用10次交叉驗證的條件下， 我們的SoI偵測演算法

在使用分類器偵測『感興趣片段』的F度量高達0.96，在使用迴歸器下

的平方度量高達0.87。而在針對資源分配的模擬實驗中我們的資源分

配演算法可以達到：(i)增進影片品質高達 5 dB， (ii) 最高可以節省 50

Gbps的頻寬使用率，以及(iii)該演算法可以有效率的完成資源分配決

定，並且可以承受巨量的使用者。我們在本篇論文中介紹的平台是一

個開源平台，可以被眾多研究者以及工程師使用來改進現有的遊戲實

況串流平台。

iii

Abstract

Live game streaming is tremendously popular, and recent reports indi-
cate that such platforms impose high traffic volume, leadingto degraded user
experience. In this thesis, we propose a Segment-of-Interest (SoI) driven
platform, so as to optimize live game streaming. Our platform uses various
features collected from streamers and viewers combined with sophisticate al-
gorithms empowered by stat-of-the-art machine learning models to determine
if the current segments of gameplays attract viewers. Upon determining the
importance of individual segments, the limited bandwidth is allocated to the
interested viewers in a Rate-Distortion (R-D) optimized manner, where the
levels of segment importance are used as weights of game streaming quality.
The underlaying intuition is: viewer experience is degraded only when the
game streaming degradation is noticed by viewers. Evaluation results using
real world traces shows that our SoI detecting algorithms can correctly detect
SoI with up to 0.96 F-measure in classifier variant, and up to 0.87 R-squared
score in regressor variant using 10-fold evaluation. Simulation results show
the benefits of our proposed resource allocation solution: (i) it improves view-
ing quality by up to 5 dB, (ii) it saves bandwidth by up to 50 Gbps, and (iii)
it efficiently performs resource allocation and scales to many viewers. Our
presented testbed is opensource and can be leveraged by researchers and en-
gineers to further improve live game streaming platforms.

iv

Contents

Acknowledgments i

致致致謝謝謝 ii

中中中文文文摘摘摘要要要 iii

Abstract iv

1 Introduction 1

2 Proposed Architecture 5

3 Research Problems 7
3.1 Notations . 9
3.2 SoI Detection . 10
3.3 Resource Allocation . 10

4 SoI Detector 11
4.1 Solution Approach . 11
4.2 Dataset . 12
4.3 Features . 13
4.4 Optimal Hyperparameter . 14
4.5 SoI Detecting Algorithm . 23

5 Resource Allocator 26
5.1 Formulation . 26
5.2 Proposed Algorithm . 27
5.3 Analysis . 28
5.4 Leveraging Features From Viewer .. 29

6 An Opensource Testbed 32

7 Evaluations 40
7.1 SoI Detector Evaluation .40

7.1.1 Evaluation Setup . 40
7.1.2 Results FromDe,R AndDe,C . 40
7.1.3 Results From SoI Simulator . 41

7.2 Resource Allocator Evaluation .. 42
7.2.1 Simulation Setup . 42
7.2.2 Results . 43

v

8 Related Work 45
8.1 General Live Gaming Streaming Related Research 45
8.2 Large Scale Transcoding . 46
8.3 Video Summarization, Highlight Detection and ROI 46

9 Conclusion and Future Work 47

Bibliography 49

vi

List of Figures

1.1 A typical live game streaming platform, using Twitch forillustrations. . . 1

1.2 Life cycle of a live game streaming session. 3

1.3 The architecture of our proposed live game streaming platform. 4

3.1 Interactions among the core components of the server. 7

4.1 Results with different number of tree in GBTC: (a) accuracy,(b) precision

rate, (c) recall rate, (d) F-measure, and (e) training time.. 16

4.2 Results with different shrinkage in GBTC: (a) accuracy, (b)precision rate,

(c) recall rate, (d) F-measure, and (e) training time. 17

4.3 Results with different maximum tree depth in GBTC: (a) accuracy, (b)

precision rate, (c) recall rate, (d) F-measure, and (e) training time. 18

4.4 Results with different subsample in GBTC: (a) accuracy, (b)precision

rate, (c) recall rate, (d) F-measure, and (e) training time.. 19

4.5 Results with different number of tree in RFC: (a) accuracy, (b) precision

rate, (c) recall rate, (d) F-measure, and (e) training time.. 20

4.6 Results with different maximum number of feature in splitting in RFC: (a)

accuracy, (b) precision rate, (c) recall rate, (d) F-measure, and (e) training

time. 21

4.7 Results with different maximum depth in RFC: (a) accuracy, (b) precision

rate, (c) recall rate, (d) F-measure, and (e) training time.. 22

4.8 Results with different number of tree in GBTR: (a) R-squared,(b) training

time. 23

4.9 Results with different shrinkage in GBTR: (a) R-squared, (b)training time. 23

4.10 Results with different maximum depth in GBTR: (a) R-squared, (b) train-

ing time. 24

4.11 Results with different subsample in GBTR: (a) R-squared, (b) training time. 24

4.12 Results with different number of tree in RFR: (a) R-squared,(b) training

time. 25

vii

4.13 Results with different maximum number of feature in splitting in RFR:

(a) R-squared, (b) training time. 25

4.14 Results with different maximum depth in RFR: (a) R-squared,(b) training

time. 25

5.1 Modified SMPlayer is used to mark SoI as ground truth. 29

5.2 The Web interface of the server in our testbed. 30

5.3 Screenshot of the modified SMPlayer. 30

5.4 Screenshot of the modified OBS. 31

6.1 Results evaluation on, (a) SoIR, (b) SoIC, and (c) training time of all

algorithms. 33

6.2 Evaluation result of SoIC problem using RFC-based algorithm, (a) accu-

racy rate, (b) precison rate, (c) recall rate, (d) F-measureand (e) training

time. 34

6.3 Evaluation result of SoIC problem using GBTC-based algorithm, (a) ac-

curacy rate, (b) precison rate, (c) recall rate, (d) F-measure and (e) training

time. 35

6.4 Evaluation result of SoIR problem using RFR-based algorithm, (a) R-

squared score, (b) training time. .35

6.5 Training time in SoIR problem using GBTR-based algorithm,(a) R-squared

score, (b) training time. 36

6.6 Total consumed bandwidth with diverse: (a) arrival rate, (b) total band-

width, and (c) number of streams. 37

6.7 Average viewing quality with diverse: (a) arrival rate,(b) total bandwidth,

and (c) number of streams. 38

6.8 Sample consumed bandwidth over time from round1. 39

6.9 Algorithm runtime with diverse: (a) arrival rate and (b)number of streams. 39

7.1 Implications of algorithm interval on: (a) consumed bandwidth, (b) av-

erage viewing quality, and (c) network overhead; (d) network overhead

under different number of streams. .44

viii

List of Tables

3.1 Symbols Used Throughout This Paper 7

ix

x

Chapter 1

Introduction

In the recent years, there is a rapid growth in live game streaming business. Corporations

such as Twitch.tv, UStreaming thrives in this trend. Among them Twitch is reported

to be the most successful one. In 2014, Twitch is the4th largest traffic on the Internet

during peak hour in United States [31], trailing behind Netflix, Google and Apple, 43%

of the live video streaming traffic volume is produced by Twitch service [2]. According

to Twitch official blog, in 2013 and 2014 the monthly unique viewer number doubled

in each year, which reach over 100 million in 2014 [33, 34]. In2015, Twitch have over

550,000 concurrent viewer on average, with over 2 million peak concurrent viewers and

over 30000 concurrent broadcasters running live on the system [35]. Twitch is also the

de-facto standard broadcast platform for numerous E-sporttournament and charity event.

Seeing the potential and rapid growth of live game streaming, Amazon acquired Twitch

for 970 million in 2014 [2], Youtube also launched it’s own live game streaming service

in August, 2015 [38].

Twitch Viewers
Content Delivery

Networks Twitch Streamers

RTMP/HLS

Streams

Video Servers

RTMP/HLS

Streams

RTMP/HLS

Streams

Content Delivery
Networks

RTMP/HLS

Streams

Figure 1.1: A typical live game streaming platform, using Twitch for illustrations.

This section gives a general idea on how live game streaming works. Fig. 1.1 illus-

trates the overall architecture of typical live game streaming platforms, such as Twitch.

Twitch streamers use broadcasting software, such as Open Broadcast Software (OBS) [22],

to capture the game screens, and send the videos to servers. The videos are sent using

off-the-shelf protocols, like Real Time Messaging Protocol(RTMP) [25] and HTTP Live

1

Streaming (HLS) [11] protocol. Videos from webcams of streamers can also be sent using

picture-in-picture effects, so that viewers can better interact with streamers. Video servers

may transcode the videos before streaming them to the viewers. Viewers use streaming

clients, native or web-based, to render live game streams. Given the time sensitive nature

of live game streaming, Twitch employ several Content Delivery Networks (CDNs) for

lower latency and higher bandwidth.

While live game streaming services have seen a steady growth,there are still prob-

lems lying in the current state-of-the-art approach that needs to be addressed. Live game

streaming itself consumes a considerable amount of resource, Twitch uses over 1.5 Tbps

at peak hours with over 1 Tbps average bandwidth usage, reported by Pires et al [24].

According a work by Zhang et al [39], the viewers may perceived latency up to 12 sec-

onds, which hampers the sense of interactivity between streamer and viewers. In order

to maintain a reasonable user experience, Twitch doubled it’s edge capacity in CDN in

Europe region [34], Twitch also opened up new transcoding clusters to provide video

with different quality to viewers [32]. These expansion would hurt the profit margin for

the company, which is bad for the business. These sign clearly shows that the current

implementation of live game streaming system have rooms forimprovements.

Based on a critical observation: differentsegmentsof each live game stream have

different importance to viewers, we proposed the concept called Segment of Interest (SoI).

By asegment, we refer to a continuous time period in a live game streamingvideo. Fig. 1.2

depict the life cycle of a live game streamingsession, which refer to the continuous time

between the start and end of a stream from a streamer. Each stream is consist of one or

multiple gameplays, which refers to the continuous time of a match or a round of game.

At the beginning of each gameplay, the streamer sets up gears, waits to join a server,

and stuck at the loading screen when the level is still loading. Viewers probably would

not be upset if the game stream quality is degraded at this time. In other words,viewer

experience is degraded only when the game streaming quality degradation is noticed by

viewers. If we lower the video quality when viewers are not paying attention, we save

resources and may support more viewers at better video quality. Therefore, we cansave

bandwidth without degrading viewer experience.

In this work we aim to solve the following problems:

• How to efficiently detect SoI in a live game streaming environment?

• How to dynamically allocate resources between ongoing streams?

using the concept of SoI-driven streaming,

In this work we developed efficient SoI detecting algorithmsempowered by stat-of-

the-art machine learning models Random Forest and Gradient Boosting Tree. The algo-

2

Time

Gameplay Gameplay Gameplay

Not SoI (loading screen) Not SoI (collecting items) SoI (battles)

Figure 1.2: Life cycle of a live game streaming session.

rithms leverage features that can be collected, process andused in prediction in a real-time

fashion, which is crucial for a live game streaming platform. We also developed an SoI

driven resource allocator, which allocate resources amongdifferent streams currently on

the system in a Rate-Distortion optimized manner, with the SoI as the weights of stream-

ing quality. We then speed up the resource allocator by developing a real-time version

of the resource allocating algorithm with a controllable error, which would be useful in a

practical scenario.

In the evaluation of our system, we achieved up to0.96 in terms of F-measure using

classifier variant of our SoI detector and up to0.87 in terms of R-squared score in the

regressor variant. In a simulation using real world SoI traces collected on our platform,

the result shows that our resource allocating algorithm outperforms the state-of-the-art by

up to 5 dB in PSNR metric in terms of view quality, and up to 50 Gbps reduction in terms

of bandwidth usage. While in the same time complete the resource allocating under2 ms

when there are256 streams with over 100+ thousands viewers in the system.

The rest of this thesis is organized as follows. Sec. 2 presents the system architecture

we propose in this work. Sec. 3 describe the research problems we solved in our work.

Sec. 4 and Sec. 5 describe the design of the core component of our system in detail. Sec. 6

presents the implementation of our live game streaming testbed and the methodology used

in collecting the data. This is followed by the experiment setup and discussion of results

in Sec. 7. We survey the related work in the literature in Sec.8. Sec. 9 concludes this

paper and discussed the future work.

3

Feature

Collector

Feature

Collector

Feature

Sender

Audiovisual

Capturer

Audiovisual

Encoder

Audiovisual

Sender

Audiovisual

Decoder

Audiovisual

Receiver

Audiovisual PlayerGame

Audiovisual

Receiver

Audiovisual

Sender

Feature

Receiver

Transcoder
SoI

Detector

Streaming Software Server Viewer

Resource Allocator

Video Flow
Feature FlowInternet/CDN

Control Flow

Feature

Sender

Figure 1.3: The architecture of our proposed live game streaming platform.

4

Chapter 2

Proposed Architecture

In this chapter we give an overview of the architecture of ourproposed system and intro-

duce the component in the system. Live game streaming platforms contain three major

software components: streaming software, server, and viewer, which are summarized in

Fig. 1.3 and detailed below.

• Streaming software runs on the streamer’s computer along with the game itself.

The streaming software captures game screens, and sends them to the server. The

streaming software consists of audiovisual capturer, encoder, and sender.

• Server relays the game streams to viewers, and performs transcoding if necessary.

The server consists of audiovisual sender, receiver, and transcoder.

• Viewer receives the live game stream from the server, and playbacks audio/video.

The viewer consists of audiovisual receiver, decoder, and player.

As emphasized in Fig. 1.3, there are five unique components for SoI driven live game

streaming: feature collector, feature sender/receiver, SoI detector, , resource allocator and

Adaptive transcoder. We present them below.

• Feature collector collects features, such as CPU utilization, GPU utilization, key-

board/mouse inputs, and webcam images from both streamer and viewers’ comput-

ers.

• Feature sender/receiver transfers captured features fromstreamers and viewers to

the server.

• SoI detector leverages the collected features to determinewhether the stream is in

the middle of an SoI or not.

• Resource allocator uses the output of SoI detector to allocate resources, so as to

optimize the overall performance under resource constraints.

5

• Adaptive transcoder perform transcoding on the stream video according to the de-

cisions given by resource allocator.

We next use several usage scenarios to illustrate how the proposed live game streaming

platform works. When a streamer starts streaming, the rendered screens are captured

by audiovisual capturer, sent to audiovisual encoder, and then streamed to the server by

audiovisual sender. The feature collectors collect several features, and send the collected

feature to the server using the feature sender.

When the audiovisual receiver in the server receives game streams, the server passes

the video to transcoder and waits for requests from viewers.The feature received by

feature receiver is sent to SoI detector to determine whether the stream is in the middle

of an SoI. The result is sent to the resource allocator for optimally allocating resources

among all viewers. In particular, the resource allocator decides the coding parameter of

each viewer depending on whether the stream is in an SoI or notand the current status of

the whole system. Last, the resource allocator instructs the audiovisual sender to send the

transcoded stream.

When the audiovisual receiver in the viewer gets the game stream, it passes the game

stream to audiovisual decoder and then audiovisual player for display. The feature collec-

tor collects the features, and sends them to the server usingfeature sender. In the server,

the features are passed to the resource allocator.

6

Chapter 3

Research Problems

In the chapter we describe and formulate the research problems we solve in this thesis,

namely SoI detecting problem and resource allocating problem.

Fs, Fs,v
SOI

Detector
SOI

Detector

ws

Resource

Allocator

Transcoder
Transcoder

Transcoder
osSoI

Detector

rs

is

R

Figure 3.1: Interactions among the core components of the server.

Table 3.1: Symbols Used Throughout This Paper

Symbol Description

S Number of stream

s Index of stream

ls Length video recorded from streams

t Current timestamp

Vs Number of viewer in streams

v Index of viewer

R Outbound bandwidth of the server

Fs Set of feature collected from streamers

bs Streaming bitrate feature for streamers

ks Mouse/key event feature for streamers

ps Face presence feature for streamers

uC
s CPU usage feature for streamers

uG
s GPU usage feature for streamers

7

ns Foreground window name feature for streamer

n′s Boolean indicator of whether the game is in foreground windowfor

streamers

ts Tag suggesting that the current segment is in SoI given by streamers

Fv,s Set of features collected from viewerv of streamers

nv,s Foreground window name feature for viewerv of streamers

pv,s Face presence feature for viewerv of streamers

tv,s Tag suggesting that the current segment is in SoI given by viewer v of

streamers

ˆws,R SoI weight result from SoIR algorithms for streams

ˆws,C SoI weight result from SoIC algorithms for streams

ws SoI weight used in resource allocator for streams

α Index of stream videos used in evaluation

β Index of timestamp in stream video
ˆtv,α,β Tag suggestingβ second inα video is in SoI

V̂α Number of viewers that have marked videoα

Gα Aggregated array of all ˆtv,α,β for videoα ground truth

Gα,R Ground truth for videoα in SoIR problem

gα,β,R Ground truth for videoα atβ second in SoIR problem

Gα,C Ground truth for videoα in SoIC problem

gα,β,C Ground truth for videoα atβ second in SOIC problem

DR Dataset for SoIR problem

DC Dataset for SoIC problem

De,R Evaluation dataset for SoIR problem

De,C Evaluation dataset for SOIC problem

Dt,R Training dataset for SoIR problem

Dt,C Training dataset for SoIC problem

D̂t,R Actual training dataset for SoIR problem used in 10-fold cross valida-

tion

D̂t,C Actual training dataset for SoIC problem used in 10-fold cross valida-

tion

Dv,R Validation dataset for SoIR problem used in 10-fold cross validation

Dv,C Validation dataset for SoIC problem used in 10-fold cross validation

N Hyperparameter: number of trees

H Hyperparameter: maximum depth for trees

X Hyperparameter: maximum number of features for splitting

E Hyperparameter: shrinkage

8

M Hyperparameter: subsample rate

is Video segment from streams

os Output video segment for streams

qs Video quality for streams

rs Available bandwidth for each viewer of streams

D0,s, R0,s, θ0,s R-D model parameters for streams

ds Distortion for video segment of streams

λ Lagrangian multiplier

λ∗ The optimal Lagrangian multiplier

r∗s The optimal bandwidth for each viewer of streams

ǫ The error betweenλ andλ∗

3.1 Notations

Fig. 3.1 shows the interactions among the core components ofour server. We considerS

streamers withV viewers in our system. The total outbound bandwidth of our server isR.

From each streamerss at timet, we collect a feature setFs with the following features:

streaming bitratebs, keystroke per secondks, CPU utilizationuC
s , GPU utilizationuG

s ,

face presence in webcamps ∈ {0, 1}, in-game sound amplitudezGs , microphone sound

amplitudezMs , foreground window namens, and a tagts ∈ {0, 1}. The tagts is an

indicator coming from streamers suggesting of whether the current segment is an SoI.

In the implementation it can be manually marked by streamers using predefined hotkey,

automatically detected by an extra component in streaming software, or even generated

by game engine. From each viewerv of streamers, we collect feature setFv,s, with the

following features: foreground window namenv,s, face presence in webcampv,s, and a

tag tv,s ∈ {0, 1}. tv,s is given by viewerv of streams using either the manual way or

automatically detected using extra component in the video player, indicating if he/she is

interested in.

In the streaming server there are multiple SoI detectors andtranscoders, each is in

charge of a streamers. At t second, the SoI detector periodically receivesFs andFv,s

from the streamer and viewer. It uses the features to derive the SoI weightŵs ∈ R+∪{0}

for the current segment from streamers, where0 indicates completely uninteresting. The

derivedŵs for each streams on the system is then sent to the resource allocator, which

will be detailed in Sec. 3.3 after necessary post-processing. After resource allocator make

the allocation decision for the system, each transcoder receives the encoding bitraters

for stream s from the resource allocator. The transcoder then usesrs to encode the video

segmentsis for streamers, and generates the transcoded video segmentos, which is sent

9

by the audiovisual sender. Notice that, for brevity, the considered resource allocator only

produces encoding bitraters, while more comprehensive encoding parameters, including

frame rate, resolution, and quantization parameter, can also be intelligently chosen by the

resource allocator for better user experience.

3.2 SoI Detection

Leveraging featuresFs andFv,s periodically collected from streamerss and his/her audi-

ence at timet, the SoI detection problem is to determineŵs ∈ R+ ∪ {0} with 0 indicate

the current segment holds not importance to viewers at all and 1 indicate current video

segment is crucial to the viewing experience.ŵs serves as the decision variable in this

problem. This problem is solved independently for each streams on currently residing in

the system. Then̂ws for all streams are sent to the resource allocator after post-processing

intows to help it make decisions on how to allocate resource among there streams.

3.3 Resource Allocation

At time t with ws for all s = 1, 2, ..., S, and available bandwidthR, the resource allocation

problem is to distributeR among all live game streamss in order to maximize the viewing

quality. For concreteness, we use Peak Signal-to-Noise Ratio (PSNR) to quantify the

viewing qualityqs of streams. Nonetheless, our proposed algorithm is general, and can

utilize other quality metrics with monotonically increasing (or decreasing) property. We

take bitraters of streams as the decision variables.

10

Chapter 4

SoI Detector

In this chapter we describe the design of our SoI detector, which detect Segment-of-

Interest from the collected features. We also lay out our design philosophy and the way we

determine the hyperparameter in the machine learning algorithms we use in our solution.

4.1 Solution Approach

The main goal of SoI detector is to answer the following question: is the segment at

time t from streamers interesting to his/her viewer? The most intuitive approachfor SoI

detector is to gather the information from viewers. However, either through manually

or automatically means, this approach is hard in a practicalscenario. Few viewer would

be willing to shift their attention from the content of the stream to constantly mark SoI

information with high precision. As for automatically detection, it would require massive

deployment on heterogeneous devices, and privacy issue mayrise if we gather information

on viewer devices such as webcam.

In this work we focus detecting SoI from information gathered from streamers. There

are already existing research that perform highlight detection using content-based fea-

ture [6]. While content-based features have the potential ofproviding further insight into

the context of the game, extracting content-based featuresare often computationally ex-

pensive, which is not suitable for systems that require interactivity such as live game

streaming platforms. Therefore we aim to leverage featuresthat can be extracted and

process in real time in our solution to detect SoI.

We formulate the SoI detecting problem as a regression problem, with historical data

set of SoI information on past video segments, we also developed a classification variant

of the module to adapt to different kinds of application. In the rest of this thesis, we

will refer the regression variant of the SoI detecting problem as SoIR problem, and refer

to the classification variant as SoIC problem. Then we solve the problem using state of

11

the art machine learning models to design our SoI detecting algorithm. The two learning

models we choose are Gradient Boosting Tree (GBT) and Random Forest (RF). These

two learning models are both popular and have been applied tovarious fields with good

performance [10]. The two selected learning models have different approach on learning

from the given data. GBT uses multiple decision tree as a weak learning model, each

aims to perform predict from the residuals of the preceding tree. These trees are then

combined using sophisticated weighting scheme to form a single consensus. Random

forest also leverage decision trees, but these trees were grew independent of each other

using randomly sampled data, the results of these tree are then combined together through

means such as majority vote.

We develop our algorithms with the two selected learning models using open source

packages [26, 37], these packages provide classifier and regressor version of both the

selected learning model. In the rest of this thesis, we referto the algorithm based on Gra-

dient Boosting Tree regressor as GBTR-based algorithm, and theone based on classifier

version as GBTC-based algorithm. Similarly we refer to the algorithm based on Ran-

dom Forest regressor as RFR-based algorithm, and the one basedon classifier version as

RFC-based algorithm.

4.2 Dataset

We collected traces from a tournament of famous MOBA game League of Legends in a

local event. The reason we choose to capture League of Legends first is that, it has been

the most popular games on Twitch since 2013 [7,33,35], and byitself alone, take the 29%

of the viewer in Twitch platform [7].

In the tournament the game is run on PC equipped with Intel I5-4570 CPU, Intel

HD4600 Graphic and 8 GB RAM. The game is captured with OBS 0.653busing X264

encoder. Both the game resolution and capture resolution areset to 1920X1080, with 30

frame per second capture and no resolution downscale. The encoder is set to use variable

bitrate (VBR) with 8 as quality balance factor. The maximum bitrate is set to 10 Mbps,

note that this limit is much higher than the actual bitrate consumption.

The tournament is consist of 10 match, with each match there are 10 players. We

collected 100 traces from all 10 players in each match. Afterwe filtered out the corrupted

files, there are 81 valid files with 162841 samples.

We selected one video from each match in the tournament, and recruited 16 viewers

to watch the collected videos, and manually mark Segment of Interest tagˆtv,s for us using

a modified video player, we then collect these SoI trace files from them. In each SoI trace

file, each second of the video is marked witĥtv,s equals to1 or 0, with 1 means the re-

12

cruited viewer thinks the current second is in an SoI,0 means otherwise. We collected 64

of such trace files, which covers 27010 samples in the overalldata traces, these traces are

used as ground truth in the hyperparameter tuning and the evaluation of our SoI detector

module.

4.3 Features

For each samples in the collected data trace, we record the CPUusage, context switch

numbers, GPU usage, mouse/keyboard input event, microphone volume, system volume,

streaming bitrate, number of faces detected in webcam imageand foreground window

name. We also modeled the device capability using Novabench[20], which perform

benchmarking on the system and give different score in CPU, GPU, RAM and harddrive

category. In our collected data GPU usage was not available due to API issue, and face

number detected by webcam suffer from low high noise due to ambient lighting in the

tournament ground. Therefore GPU usage and number of faces detected were not used in

our hyperparameter tuning in Sec. 4.4 and evaluation in Sec.7.1.

Besides the raw feature numbers we collected exceptns, for each sample we also

calculated the minimum, maximum, mean, variance, dynamic range (maximum minus

minimum) based on the historic data of this ongoing stream alongside the moving average

with window size of 5 seconds. We also compare the foregroundwindow namens with the

name of the current game being played, then we generate an′s ∈ 0, 1, with n′s = 1 if the

game window is the foreground window, andn′s = 0 if otherwise. Then all the features

including the numbers reported from the Novabench benchmark are concatenated into a

single sample with60 in length.

For the SoI trace we collected from the recruited viewers, weprocessed them in two

different ways according to the variant of the SoI detector.In each stream videoα with a

duration oflα seconds, assume there areV̂α viewers who marked the video. Each viewer

v ∈ V̂α will mark the video withlα tag ˆtv,α,β = 1, if viewer v thinks the video segment

of β second is in an SoI, otherwiseˆtv,α,β = 0. For each video, all the ˆtv,α,β are then

aggregated together by summing up all thêtv,α,β, ∀v ∈ V̂α for each secondβ to form an

arrayGα consists oflα integers.

In the SoIR problem, we take the mean of̂tv,α,β collected fromV̂α viewer to generate

the ground truthGα,R for videoα, i.e., secondβ in videoα havegα,β,R =
∑

v∈V̂α
ˆtv,α,β

V̂α

as the SoI ground truth, withgα,β,R ∈ R+ ∪ {0}. As for the SoIC problem, we perform

majority vote among thêVα viewers to form consensus on whether each secondβ in the

video is in SoI or not, i.e., for eachgα,β,C ∈ Gα,C , gα,β,C = 1, if
∑

v∈V̂α
ˆtv,α,β ≥

V̂α

2
.

The resultGα,R andGα,C are then concatenated with the 60-column samples to form

13

the dataDα from videoα. We then concatenate all theDα together to form the data set

DR andDC , with Gα,R andGα,C serve as the ground truth.

4.4 Optimal Hyperparameter

Hyperparameters refer to the parameters that can not be learned during the training phase

by the machine learning model. Therefore they need to be chosen manually beforehand.

To find the optimal hyperparameters, we conduct 10-fold cross-validation to find out

the optimal hyperparameter using grid search technique forGBTR-based, GBTC-based,

RFR-based and RFC-based algorithm.

We first partition 10% of the data in datasetDR,DC into evaluation datasetDe,R,De,C

and the rest 90% of the data into training datasetDt,R andDt,C . The data inDe,R and

De,C will be used in the evaluation of the performance of the algorithm in Sec. 7.1. The

rest of the data in training dataset are then used in 10-fold cross validation to derive the

optimal hyperparameter set. In 10-fold cross validation, the data in the training dataset

Dt,R are further divided into 10 equal share, and each share take turns to be the validation

setDv,R with the rest 9 share being the actual training setD̂t,R. TheD̂t,R are then used

to train model, with the data inDv,R to validation the result. After the10 rounds of

validation, the performance metrics are then averaged thenreported as output. The same

procedure is also conducted on the hyperparameter trainingof SoIC problem usingDt,C ,

with the validation set beingDv,C and actual training set bêDt,C . In our dataset, the size

of Dv,R = Dv,C = 2076 and the size ofD̂t,R = D̂t,C = 18677.

For RFR- and RFC-based algorithm there are three hyperparameters to be chosen:

(i) N , the number of trees, (ii)X, maximum number of considered feature in splitting,

and (iii) H, maximum depth of the tree. We perform grid search on space whereN =

{30, 60, 120, 240, 480}, X = {5, 10, 20, 40}, H = {10, 20, 40, 80, 160} to find out the

optimal parameter for RFR- and RFC-based algorithm.

For GBTR- and GBTC-based algorithm there are four hyperparameters to be chosen:

(i) N , the number of tree, (ii)E,the shrinkage, which is the learning rate, (iii)H, the maxi-

mum depth of each tree, and (iiii)M , the subsample rate. We perform grid search on space

whereN = {5, 10, 20, 40, 80}, E = {0.01, 0.05, 0.1, 0.2, 0.4}, H = {5, 10, 20, 40, 80},

M = {0.5, 0.6, 0.7, 0.8, 0.9} to find out the optimal hyperparameter for GBTR- and

GBTC-based algorithm.

To quantify the performance of SoI detection algorithms, wetake R-square score and

F-measure as the performance metrics in SoIR and SoIC problem respectively. We choose

our hyperparameter with these metrics as the optimization objective. In SoIC variant we

also calculate precision and recall rate alongside accuracy. We also record the training

14

timeγ in both problems.

We plot the result from 10-fold cross-validation in Figs. 4.1 to 4.14. We pickN = 120,

X = 10, H = 40 andN = 20, E = 0.1, H = 20, M = 0.7 as the default hyperparameter

setting for Random Forest based and Gradient Boosting Tree based algorithms, and plot

figures altering one hyperparameter at a time.

Here we make a few observation on the more notable results from the figures, and

give basic guidelines on how to choose some of the hyperparameters.

Pick the highestN with acceptableγ for both RF-based and GBT-based algo-

rithms. From Fig. 4.1, Fig. 4.5, Fig. 4.8 and Fig. 4.12 shows that higher N generally

achieve better performance at the cost of significantly longerγ, From Fig. 4.8 and Fig. 4.5

we can see the marginal gain of higherN , may drop rapidly onceN exceeds a threshold.

Therefore we should pick the highestN with acceptableγ.

High E may leads to overfitting in the model for GBT-based algorithms. From

Fig. 4.2 we can see that higherE help the algorithm to adapt to the trait of the dataset

more rapidly, which would yield better result. However, Fig. 4.9 shows that if theE is

too high, it may lead to overfitting in the model and hurt the performance in the end.

Pick a reasonableH using cross validation to avoid overfitting for both RF-based

and GBT-based algorithm. The maximum depth of the trees dictate how complex each

tree can be, if theH is too low, the trees may be too simple to capture the behaviorof

the dataset. However, if theH is too high, the model may overfit thêDt, as shown in

Fig. 4.10, whenH = 80 the performance decreases comparing toH = 40. Fig. 4.14 also

shows overfitting whenH = 160.

High X in RF-based algorithms may not help the performance.Fig. 4.13 and

Fig. 4.6 shows that highX may hurt the overall performance, while significantly increase

the training time for the algorithms.

15

0 20 40 60 80 100
0.92

0.93

0.94

0.95

0.96

A
cc
u
ra
cy

(%
)

Number of Trees

(a)

0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

P
re
ci
si
on

(%
)

Number of Trees

(b)

0 20 40 60 80 100
0.75

0.8

0.85

R
ec
al
l
(%

)

Number of Trees

(c)

0 20 40 60 80 100
0.9

0.92

0.94

0.96

F
-m

ea
su
re

Number of Trees

(d)

0 20 40 60 80 100
0

1

2

3

T
ra
in
in
g
T
im

e
(s
)

Number of Trees

(e)

Figure 4.1: Results with different number of tree in GBTC: (a) accuracy, (b) precision

rate, (c) recall rate, (d) F-measure, and (e) training time.

16

0 0.1 0.2 0.3 0.4 0.5
0.92

0.93

0.94

0.95

0.96

A
cc
u
ra
cy

(%
)

Shinkage

(a)

0 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

0.9

0.95

P
re
ci
si
on

(%
)

Shinkage

(b)

0 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

R
ec
al
l
(%

)

Shinkage

(c)

0 0.1 0.2 0.3 0.4 0.5
0.9

0.92

0.94

0.96

F
-m

ea
su
re

Shinkage

(d)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

T
ra
in
in
g
T
im

e
(s
)

Shinkage

(e)

Figure 4.2: Results with different shrinkage in GBTC: (a) accuracy, (b) precision rate, (c)

recall rate, (d) F-measure, and (e) training time.

17

0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

A
cc
u
ra
cy

(%
)

Max Depth

(a)

0 20 40 60 80 100
0.8

0.85

0.9

0.95

P
re
ci
si
on

(%
)

Max Depth

(b)

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

R
ec
al
l
(%

)

Max Depth

(c)

0 20 40 60 80 100

0.85

0.9

0.95

F
-m

ea
su
re

Max Depth

(d)

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

T
ra
in
in
g
T
im

e
(s
)

Max Depth

(e)

Figure 4.3: Results with different maximum tree depth in GBTC: (a) accuracy, (b) preci-

sion rate, (c) recall rate, (d) F-measure, and (e) training time.

18

0.4 0.6 0.8 1
0.92

0.93

0.94

0.95

0.96

A
cc
u
ra
cy

(%
)

Subsample Rate

(a)

0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

P
re
ci
si
on

(%
)

Subsample Rate

(b)

0.4 0.6 0.8 1
0.75

0.8

0.85

R
ec
al
l
(%

)

Subsample Rate

(c)

0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

F
-m

ea
su
re

Subsample Rate

(d)

0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

T
ra
in
in
g
T
im

e
(s
)

Subsample Rate

(e)

Figure 4.4: Results with different subsample in GBTC: (a) accuracy, (b) precision rate,

(c) recall rate, (d) F-measure, and (e) training time.

19

0 100 200 300 400 500
0.93

0.94

0.95

A
cc
u
ra
cy

(%
)

Number of Trees

(a)

0 100 200 300 400 500
0.93

0.94

0.95

P
re
ci
si
on

(%
)

Number of Trees

(b)

0 100 200 300 400 500
0.8

0.82

0.84

0.86

0.88

0.9

R
ec
al
l
(%

)

Number of Trees

(c)

0 100 200 300 400 500
0.93

0.94

0.95

F
-m

ea
su
re

Number of Trees

(d)

0 100 200 300 400 500
0

2

4

6

T
ra
in
in
g
T
im

e
(s
)

Number of Trees

(e)

Figure 4.5: Results with different number of tree in RFC: (a) accuracy, (b) precision rate,

(c) recall rate, (d) F-measure, and (e) training time.

20

0 10 20 30 40 50
0.94

0.95

0.96

0.97

A
cc
u
ra
cy

(%
)

Max Feature in Splitting

(a)

0 10 20 30 40 50
0.93

0.94

0.95

P
re
ci
si
on

(%
)

Max Feature in Splitting

(b)

0 10 20 30 40 50
0.8

0.82

0.84

0.86

0.88

0.9

R
ec
al
l
(%

)

Max Feature in Splitting

(c)

0 10 20 30 40 50
0.93

0.94

0.95

F
-m

ea
su
re

Max Feature in Splitting

(d)

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

T
ra
in
in
g
T
im

e
(s
)

Max Feature in Splitting

(e)

Figure 4.6: Results with different maximum number of featurein splitting in RFC: (a)

accuracy, (b) precision rate, (c) recall rate, (d) F-measure, and (e) training time.

21

0 50 100 150 200
0.92

0.94

0.96

0.98

A
cc
u
ra
cy

(%
)

Max Depth

(a)

0 50 100 150 200
0.88

0.9

0.92

0.94

0.96

P
re
ci
si
on

(%
)

Max Depth

(b)

0 50 100 150 200
0.7

0.75

0.8

0.85

R
ec
al
l
(%

)

Max Depth

(c)

0 50 100 150 200
0.9

0.92

0.94

0.96

F
-m

ea
su
re

Max Depth

(d)

0 50 100 150 200
1.5

1.6

1.7

1.8

1.9

T
ra
in
in
g
T
im

e
(s
)

Max Depth

(e)

Figure 4.7: Results with different maximum depth in RFC: (a) accuracy, (b) precision

rate, (c) recall rate, (d) F-measure, and (e) training time.

22

0 20 40 60 80 100

0.2

0.4

0.6

0.8
R
-s
q
u
ar
ed

Number of Trees

(a)

0 20 40 60 80 100
0

1

2

3

4

5

T
ra
in
in
g
T
im

e
(s
)

Number of Trees

(b)

Figure 4.8: Results with different number of tree in GBTR: (a) R-squared, (b) training

time.

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

R
-s
q
u
ar
ed

Shinkage

(a)

0 0.1 0.2 0.3 0.4 0.5
1.15

1.2

1.25

1.3

1.35

T
ra
in
in
g
T
im

e
(s
)

Shinkage

(b)

Figure 4.9: Results with different shrinkage in GBTR: (a) R-squared, (b) training time.

4.5 SoI Detecting Algorithm

From the result of the 10-fold cross validation, we obtain the optimal hyperparameter

set. For RFR-based algorithm in SoIR problem, the reported optimal hyperparameter set

is whenN = 240, X = 5, H = 40. The average training time using this setting is

18.09 seconds, with0.822 average R-squared score. For GBTR-based algorithm in SoIR

problem, the reported hyperparameter set is whenN = 80, E = 0.2, H = 10, M = 0.9.

The average training time is1.86 seconds, with0.833 average R-squared score. For RFC-

based algorithm in SoIC problem, the reported hyperparameter set is whenN = 480,

X = 5, H = 80. The average training time for this hyperparameter set is40.32 seconds,

with 0.959 in F-measure score,0.960 in accuracy rate,0.958 in precision rate, and0.844

in recall rate. For GBTC-based algorithm, the reported optimal hyperparameter set is

whenN = 80, E = 0.2, H = 80, M = 0.7. The average training time is2.45 seconds,

with 0.957 in F-measure score,0.964 in accuracy rate,0.95 in precision rate,0.874 in

recall rate.

23

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8
R
-s
q
u
ar
ed

Max Depth

(a)

0 20 40 60 80 100
0

0.5

1

1.5

T
ra
in
in
g
T
im

e
(s
)

Max Depth

(b)

Figure 4.10: Results with different maximum depth in GBTR: (a) R-squared, (b) training

time.

0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

R
-s
q
u
ar
ed

Subsample Rate

(a)

0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

T
ra
in
in
g
T
im

e
(s
)

Subsample Rate

(b)

Figure 4.11: Results with different subsample in GBTR: (a) R-squared, (b) training time.

From the result above we make the observation that, for SoIR problem the GBTR-

based algorithm have slightly better performance, while inthe same time finish the train-

ing more efficiently then RFR-based algorithm. This makes GBTR-based algorithm a

more viable pick in the two of the algorithms. In the SoIC problem, the GBTC-based

algorithm still finished earlier than RFC-based algorithm, however, the comes with the

cost of slightly decrease in performance. The evaluation ofthese algorithms using dataset

which have not be exposed to the trained model in the process of cross-validation is con-

ducted in Sec. 7.1.

24

0 100 200 300 400 500
0.75

0.8

0.85

0.9
R
-s
q
u
ar
ed

Number of Trees

(a)

0 100 200 300 400 500
0

1

2

3

4

5

T
ra
in
in
g
T
im

e
(s
)

Number of Trees

(b)

Figure 4.12: Results with different number of tree in RFR: (a) R-squared, (b) training

time.

0 10 20 30 40 50
0.75

0.8

0.85

0.9

R
-s
q
u
ar
ed

Max Feature in Splitting

(a)

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

T
ra
in
in
g
T
im

e
(s
)

Max Feature in Splitting

(b)

Figure 4.13: Results with different maximum number of feature in splitting in RFR: (a)

R-squared, (b) training time.

0 50 100 150 200
0.65

0.7

0.75

0.8

R
-s
q
u
ar
ed

Max Depth

(a)

0 50 100 150 200
1

1.2

1.4

1.6

1.8

2

T
ra
in
in
g
T
im

e
(s
)

Max Depth

(b)

Figure 4.14: Results with different maximum depth in RFR: (a) R-squared, (b) training

time.

25

Chapter 5

Resource Allocator

In this chapter we present the design of our resource allocator in detail. Resource allocator

is responsible for allocating the limited resources among different streams in the system

given the SoI information. We leverage Lagrangian multiplier to solve the formulated

problem and proposed a real time approximation solution.

5.1 Formulation

We concentrate on the design of a resource allocation algorithm, and adopt a basic SoI

detector that setsws as the number of viewers who reporttv,s = 1. That is,ws keeps

track of the number of viewers who think the current segment of streams is an SoI.

We acknowledge thattv,s may not always be provided, and a more comprehensive SoI

detector is proposed in Sec. 4. Withws for all s = 1, 2, ..., S, and available bandwidth

R, the resource allocation problem is to distributeR among all live game streamss in

order to maximize the viewing quality. For concreteness, weuse Peak Signal-to-Noise

Ratio (PSNR) to quantify the viewing qualityqs of streams. Nonetheless, our proposed

algorithm is general, and can utilize other quality metricswith monotonically increasing

(or decreasing) property. We take bitraters of streams as the decision variables.

To relaters with qs, we adopt a rate-distortion model [42]:

ds = D0,s +
θs

rs −R0,s

, (5.1)

whereds is the distortion in Mean Squared Error (MSE),D0,s, θs, andR0,s are model

parameters derived by non-linear regression. We write the problem formulation as:

26

maximize
S
∑

s=1

qsws =

S
∑

s=1

10 log10
2552

D0,s +
θs

rs−R0,s

ws (5.2a)

s.t.

S
∑

s=1

rsws ≤ R; (5.2b)

rs ∈ R+, ∀s = 1, 2, ..., S. (5.2c)

The objective function in Eq. (5.2a) maximizes the weightedviewing quality, where

the weights are number of interested viewers of individual live gaming streams. The

constraint in Eq. (5.2b) ensures that we do not incur excessive traffic (> R) which may

lead to playout glitches.

5.2 Proposed Algorithm

We leverage Lagrangian Multiplier method [30] to derive closed-form formulas as fol-

lows. We first introduce a Lagrangian Multiplierλ into the formulation in Eq. (5.2),

which leads to the Lagrangian functionL :

S
∑

s=1

(10 log10
2552

D0,s +
θs

rs−R0,s

ws) + λ((
S
∑

s=1

rsws)−R). (5.3)

To get the extreme value, we take the partial derivatives ofL with respect toλ andrs,
wheres = 1, 2, ..., S. This leads to:

∂L

∂λ
= (

S
∑

s=1

rsws)−R; (5.4a)

∂L

∂rs
= λ+

10θs

log 10(rs −R0,s)2(D0,s +
θs

rs−R0,s

)
. (5.4b)

Letting ∂L

∂rs
= 0, and after some simplifications, we get:

rs = R0,s +
−(λ log 10θs)−

√

(λ log 10θs)2 − 40λ log 10θ2s
2(λ log 10D0,s)

. (5.5)

Last we let∂L

∂λ
= 0 and solve the system of Eqs. (5.4a) and (5.5) for the optimalr∗s .

The resulting bitrater∗s for all s are sent to the transcoder to encode the upcoming video

frames. One practical concern is the overhead of bitrate adaptation and negative impacts

of fast viewing quality fluctuations. We leave the frequencyof invoking our proposed

algorithm, sayT , as a system parameter.

Solving the equation system forr∗s may take a long time, and we next develop a real-

time algorithm that offers a controllable error ofǫ. Algorithm 1 summarizes our efficient

algorithm that is based on binary search on the optimalλ∗ value, whereU andL are

the upper and lower bounds of the currentλ. For practical reasons, we set the upper

27

boundRU = 8 Mbps and the lower boundRL = 128 kbps. In line7, we make sure

thatrs remains in[RL, RU] and derive validqs. Line 9 ensures that the shared link is not

overloaded. Line14 returns the answer after the target errorǫ is met in line3.

5.3 Analysis

Lemma 1(Optimality). Algorithm 1 always findsλ within a gapǫ to the optimalλ∗ under

the given bandwidth constraintR.

Proof. From Eq. (5.1), we see that as the bitraters increases,ds of the video segment

decreases monotonically. Combine this with the definition ofPSNR, we see thatqs also

increases monotonically. From Eq. (5.4b) we observe that, as the|λ| decreases,rs also

increases monotonically under the constraintrs > R0,s. From the above two observation

we prove that, as|λ| decreases,qs of every streams increases monotonically, and the

objective function Eq. (5.2a) also increases monotonically. Therefore, theλ returned

value approximates the optimal lambdaλ∗ of the equation system with a worst-case error

of ǫ under the constraint that the searched domain does not cross0.

Algorithm 1 Efficient SoI RDO Algorithm
1: U ← 0, L← −1 // Upper/lower bounds

2: ǫ← 10−7 // Default error

3: while L+ ǫ < U do

4: λ = (U + L)/2

5: for ∀s ∈ S do

6: Derive all thers usingλ and Eq. (5.5)

7: if ∃rs, such thatqs ∈ C or rs < RL or rs > RU then

8: AdjustU orL accordingly

9: else if
∑

s∈S rsws > R then

10: U = λ

11: else

12: obj =
∑

s∈S qsws

13: L = λ

14: if obj is undefined, return no answer, o.w. returnλ andrs.

Lemma 2 (Complexity). Algorithm 1 runs inO(S log ǫ−1).

Proof. In the worst-case scenario, it is executedlog(1/ǫ) rounds. In each round, there

areS streams, each needs to derive its ownrs, qs and check ifrs is valid. Each of these

operations takesO(1) time. Therefore in each round the calculation and the examination

28

of all rs and qs takeO(S) time. We also calculate the consumed bandwidth and the

objective value, both operations takeO(S) time. So the total time complexity is(O(S) +

O(S) +O(S))O(log ǫ−1) = O(S log ǫ−1).

5.4 Leveraging Features From Viewer

While not in the current solution, here we discuss the potential of leveragingFv,s col-

lected in the system. Thepv,s andnv,s can be leveraged to determine whether viewerv is

not paying attention to the stream or even not present at the scene. After we obtain the

information, resource allocator can then decrease the quality video image sent to viewer

v. The allocator could even decide to send only the audio signal to v if the video is not

being played in the foreground. This way we can further optimize the resource allocation

in the system with a finer granularity

Figure 5.1: Modified SMPlayer is used to mark SoI as ground truth.

29

Figure 5.2: The Web interface of the server in our testbed.

Figure 5.3: Screenshot of the modified SMPlayer.

30

Figure 5.4: Screenshot of the modified OBS.

31

Chapter 6

An Opensource Testbed

We have implemented a complete live game streaming platformconsisting of the streamer,

server, and viewers. We enhance OBS [22] to collect features from streamers as in

Fig. 5.4. In particular, the modified OBS collects the CPU usage, GPU usage, keystrokes,

mouse events, and sound amplitudes (microphone and in-game), streaming bitrate, and

webcam face detection results (to determine if the streamerhas left). In particular, we

save the streaming bitrate reported by OBS. We use Windows Performance Counter [36]

API to measure CPU utilization every second. We adopt NVAPI [21] provided by NVidia

to measure the GPU utilization on its GeForce graphic cards,we also adopted AMD

Display Library (ADL) [3] provided by AMD to measure the GPU utilization on its

Radeon graphic cards. We useGetAsyncKeyState provided by Windows to capture

the keystrokes and mouse events. Note thatGetAsyncKeyState does not correctly

capture mouse clicks in some games, such as League of Legends. Addressing this limita-

tion is one of our future tasks. We use Direct Show (DS) framework to capture the sound

amplitudes. We adopt theVideoIO module in OpenCV to replace the webcam module

of OBS, and perform face detection using Haar object detection algorithms on webcam

images. All the collected features are sent to the server, and saved as log files.

We enhance SMPlayer [28] as in Fig. 5.3 to collect features from viewers. The mod-

ified SMPlayer captures current foreground window name (to determine if the viewer is

watching), and webcam face detection results (to determineif the viewer is gone). For

foreground window detection, we useGetActiveWindowTitle function provided by

Windows. For face detection, we also adopt theVideoIOmodule in OpenCV as in OBS.

Fig. 5.1 is a screenshot of the modified SMPlayer, in which thecircle button on the left

allow viewers to mark if the stream is in SoI; the viewer toggles his/her choice by hitting

the TAB key. The collected features, including the SoI (usedas the ground truth in Sec. 7)

are sent to the server, and saved as log files.

We integrate NGINX [19], JWPlayer, and IRC into our server. NGINX is a web

32

service that provides RTMP plug-in to relay the streams fromstreamers to viewers. For-

tunately, NGINX provides interface for transcoders, such as FFmpeg [8], which are lever-

aged in our testbed. To encourage more streamers and viewersto use our platform, we

create a unified web interface with flash player (JWPlayer) andchat room (KiwiIRC).

Viewers may preview game streaming before installing SMPlayer. Fig. 5.2 is a screen-

shot of the web interface.

The presented testbed can be used by researchers and engineers, and we solve the SoI

detection problem and resource allocation problem using this testbed in Sec. 4 and Sec. 5

as case studies. Given that our platform is composed of opensource projects, we will

release our patches and documents to the communities.

RFR GBTR
0.8

0.85

0.9

0.95

1

Algorithm

R
-s
q
u
ar
ed

(a)

RFC GBTC
0.8

0.85

0.9

0.95

1

Algorithm

Accuracy
Precision
Recall
F-measure

(b)

RFC GBTC
0

2

4

6

8

Algorithm

T
ra
in
in
g
T
im

e
(s
)

(c)

RFR GBTR
0

1

2

3

4

5

Algorithm

T
ra
in
in
g
T
im

e
(s
)

(d)

Figure 6.1: Results evaluation on, (a) SoIR, (b) SoIC, and (c) training time of all algo-

rithms.

33

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

A
cc
u
ra
cy

(%
)

(a)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

P
re
ci
si
o
n
(%

)
(b)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

R
ec
a
ll
(%

)

(c)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

F
-m

ea
su
re

(d)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Test File

T
ra
in
in
g
T
im

e
(s
)

(e)

Figure 6.2: Evaluation result of SoIC problem using RFC-basedalgorithm, (a) accuracy

rate, (b) precison rate, (c) recall rate, (d) F-measure and (e) training time.

34

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

A
cc
u
ra
cy

(%
)

(a)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

P
re
ci
si
o
n
(%

)

(b)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

R
ec
a
ll
(%

)

(c)

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Test File

F
-m

ea
su
re

(d)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

Test File

T
ra
in
in
g
T
im

e
(s
)

(e)

Figure 6.3: Evaluation result of SoIC problem using GBTC-based algorithm, (a) accuracy

rate, (b) precison rate, (c) recall rate, (d) F-measure and (e) training time.

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

Test File

R
-s
q
u
a
re
d

(a)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

Test File

T
ra
in
in
g
T
im

e
(s
)

(b)

Figure 6.4: Evaluation result of SoIR problem using RFR-basedalgorithm, (a) R-squared

score, (b) training time.

35

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

Test File

R
-s
q
u
a
re
d

(a)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Test File

T
ra
in
in
g
T
im

e
(s
)

(b)

Figure 6.5: Training time in SoIR problem using GBTR-based algorithm, (a) R-squared

score, (b) training time.

36

2 4 6 8 10
10

20

30

40

Arrival Rate

C
o
n
su
m
ed

B
a
n
d
w
id
th

(G
b
p
s)

SoI RDO
SoI RDO
ES
RDO

(a)

0 50 100 150
0

50

100

150

Bandwidth Capacity (Gbps)

C
o
n
su
m
ed

B
a
n
d
w
id
th

(G
b
p
s)

SoI RDO
SoI RDO
ES
RDO

(b)

0 50 100 150 200 250
15

20

25

30

35

40

Number of Streams

C
o
n
su
m
ed

B
a
n
d
w
id
th

(G
b
p
s)

SoI RDO
SoI RDO
ES
RDO

(c)

Figure 6.6: Total consumed bandwidth with diverse: (a) arrival rate, (b) total bandwidth,

and (c) number of streams.

37

2 4 6 8 10
38

40

42

44

46

Arrival Rate

V
ie
w
in
g
Q
u
a
li
ty

(d
B
)

SoI RDO
SoI RDO
ES
RDO

(a)

0 50 100 150
30

35

40

45

50

Bandwidth Capacity (Gbps)

V
ie
w
in
g
Q
u
a
li
ty

(d
B
)

SoI RDO
SoI RDO
ES
RDO

(b)

0 50 100 150 200 250
30

35

40

45

50

Number of Streams

V
ie
w
in
g
Q
u
a
li
ty

(d
B
)

SoI RDO
SoI RDO
ES
RDO

(c)

Figure 6.7: Average viewing quality with diverse: (a) arrival rate, (b) total bandwidth, and

(c) number of streams.

38

0 10 20 30
0

10

20

30

40

Time (min)

U
se
d
B
it
ra
te

(G
b
p
s)

SoI RDO
SoI RDO
ES
RDO

Figure 6.8: Sample consumed bandwidth over time from round1.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Arrival Rate

R
u
n
ti
m
e
(m

s)

SoI RDO

(a)

0 50 100 150 200 250
0

0.5

1

1.5

Number of Streams

R
u
n
ti
m
e
(m

s)

SoI RDO

(b)

Figure 6.9: Algorithm runtime with diverse: (a) arrival rate and (b) number of streams.

39

Chapter 7

Evaluations

In this chapter we present the rult of evaluation on SoI detector and resource allocator

proposed in this thesis. We conduct two kinds of evaluation on the proposed SoI detecting

algorithms, and we implemented a simulator to evaluate our resource allocating algorithm.

7.1 SoI Detector Evaluation

7.1.1 Evaluation Setup

We conduct out evaluation withDe,R andDe,C on SoIR problem and SoIC problem using

a AMD 64-core server with 377 GB of RAM We repeat each of the evaluation 10 times

and report 95% confident interval whenever possible in our result. There are two set of

evaluations we conducted, (i) results fromDe,R andDe,C using the optimal hyperparam-

eter set from Sec. 4.4, (ii) results from our SoI detecting simulator.

7.1.2 Results FromDe,R And De,C

In Fig. 6.1 we report the evaluation result using the evaluation dataset from Sec. 4.4. From

the figures we make the following observation.

GBTR-based algorithm outperforms RFR-based algorithm in SoIR problem.

From Fig. 6.1(a) we can observe that GBTR-based algorithm clearly outperform RFR-

based algorithm.

GBTC-based algorithm provide slightly better performance atthe cost of train-

ing time in SoIC problem. From Fig. 6.1(b) we can observe that GBTC-based algo-

rithm slightly outperform RFC-based algorithm. However, from the numbers reported in

Fig. 6.1(c) this comes at the cost of slightly higher training time.

Overall RF-based algorithms provide better training time comparing to GBT-

based algorithms.In Fig. 6.1(c) and Fig. 6.1(d) we report the training of all the proposed

40

algorithms, the figures shows that overall RF-based algorithm provide slightly better train-

ing time comparing to GBT-based algorithms. We notice that both the Random Forest

training module provided in Scikit-learn package [26] and the Gradient Boosting Tree

module provided in XGBoost package [37] are capable of leveraging multiple CPUs in

the server. Both of these modules use up to 64 cores in our 64-core CPU server when

training with certain parameter set. In concept the training of Random Forest is an embar-

rassingly parallel problem, which may be the decision factor between the training time of

the algorithms.

7.1.3 Results From SoI Simulator

We implemented a simulator to evaluate the SoI detecting algorithms we proposed for

SoIC and SoIR problem. The simulator uses the historical data as training data and use

the trained model in our proposed algorithms to detect SoI. We take the datasetDR and

DC from Sec. 4 and take nine videos as training set, with the remaining one video as the

evaluation set. We conduct grid search with 10-fold cross validation on the hyperparam-

eter space mentioned in Sec. 4.4, and select optimal hyperparameterset, then we evaluate

result using the remaining video. The procedure is repeatedfor 10 times with each video

in the10 videos take turn to be the evaluating one.

We report the result in Fig. 6.2, Fig. 6.3, Fig. 6.4 and Fig. 6.5. From the figure we

make the following observations:

We achieve good results in SoIC problem.Fig. 6.2 and Fig. 6.3 show that in SoIC

problem both of the algorithms can achieve close to0.8 in terms of F-measure except

when file number5 or 7 is used as the evaluating file.

There is still room for improvements in SoIR problem. Figure. 6.4 and Fig. 6.5

show that both RFR-based and GBTR-based algorithm can only achieve around0.4 in

terms of R-squared score, and when the evaluating file is5 or 7, the performance drop

even more. These results indicate that there is still room for us to improve our SoIR

algorithms.

RF-based algorithms outperform GBT-based algorithms.Consistent with the eval-

uation results from Sec. 7.1.2, RF-based algorithms outperforms GBT-based algorithms

in terms of both training time and prediction performance. One obvious difference can be

observe from Fig. 6.4(a) and Fig. 6.5(a), when the evaluating file is file 5. Consider that

Random Forest is known its’ noise resistance, this is a reasonable outcome.

41

7.2 Resource Allocator Evaluation

7.2.1 Simulation Setup

We have captured8 live gaming sessions on our testbed. Two are from Age of Empires

II, three are from Spellweaver, one is from Hearthstone: Heroes of Warcraft, one is from

Minecraft, and one is from Starcraft II. The sessions are captured in resolutions varying

between 720p and 1080p. The minimal, mean, and maximal lengths of these live game

sessions are 17 minutes, 82.65 minutes, and 3.69 hours. We transcode each captured video

into {128, 256, 512, 1024, 2048, 4096, 8192} kbps using x264 video codec with ultrafast

preset. We use the bitrate and PSNR reported by x264 to perform non-linear regression

for the model parameters in Eq. (5.1). The resulting models are fairly accurate with an

average (maximal) MSE of 0.43 (1.14). We recruit several viewers to watch the live game

session, and mark SoI segments as the ground truth. We get 14 viewer logs in total,

with an average (maximal) SoI number of 5.64 (19) in each gamesession. The model

parameters and viewer logs are used to drive our simulator. In our simulations, live game

sessions and viewer logs are randomly chosen from the dataset, i.e., in the scenarios with

many game sessions (or viewers), some model parameters (or viewer logs) may be used

several times to test the scalability of our solution.

Our simulator is implemented using Python. The proposed SoIRDO algorithm is

implemented in C. We compare our solution, called SoI-based R-D Optimized (SoI RDO),

with two baseline solutions: (i) Equal Share (ES), which equally divides the outbound

bandwidth among all viewers, (ii) R-D Optimized (RDO), which is optimized in the R-

D sense, but does not consider SoI. The ES algorithm mimics the state-of-the-art live

game streaming platforms, while RDO allows us to quantify thebenefit of the SoI driven

resource allocation. In SoI RDO, we transcode streams to viewers who are not in SoI

at RL for basic quality. In extreme cases, where RDO or SoI RDO fail tofind feasible

solutions, they fall back to ES. Last, we implemented an optimal algorithm in Matlab

usingsolve function to solve the equation system as the benchmark.

We consider the following performance metrics, , and use overline to indicate the

expected values in the figures.

• Expected quality: the objective function value reported by the resource allocation

algorithm.

• Actual quality : the achieved objective function value reported by the simulator.

• Running time: the run-time of solving a resource allocation problem.

• Expected consumed bandwidth: reported by the resource allocation algorithm.

42

• Actual consumed bandwidth: reported by the simulator.

• Network overhead: the network traffic volume generated by feature senders.

Each round of simulations is6 hours long, with several parameters: (i) Poisson arrival

rate of viewers, which is in{2, 4, 6, 8, 10} per minute for each stream, (ii) number of

streams in the system, which is in{16, 32, 64, 128, 256}, (iii) total outbound bandwidth of

the server, which is in{10, 20, 40, 80, 160}Gbps, and (iv) interval of calling the proposed

algorithm, which is in{1, 2, 5, 10, 60} seconds. If not otherwise specified, we set the

arrival rate as 6, the number of streams as 32, the bandwidth as 40 Gbps, and the interval

of calling our algorithm as 60 seconds. We assume the viewersalways finish the videos

they watch. We repeat each simulation 5 times. We report the average performance

results, and give95% confidence intervals whenever applicable.

7.2.2 Results

Our algorithm outperforms RDO and ES in terms of viewing quality and consumed

bandwidth. Figs. 6.6 and 6.7 show total consumed bandwidth and average viewing qual-

ity of viewers. We observe that as the load of the system increases, e.g., when the arrival

rate reaches 10 in Fig. 6.7(a) or the number of streams reaches 256 in Fig. 6.7(c), SoI RDO

significantly outperforms RDO and ES, achieving better viewing quality for the viewers

by up to 5 dB, while consuming less total bandwidth in the system (see Figs. 6.6(a) and

6.6(c)).

From Figs. 6.6(b) and 6.7(b), we observe that when the consumed bandwidth is close,

SoI RDO gives better viewing quality, e.g., when the bandwidth is set to 10 Gbps. We

also note that when the load of the system is light, e.g., whenthe arrival rate is set to 2 or

when the system has 160 Gbps bandwidth, RDO and ES slightly outperform the proposed

SoI RDO. However, this is achieved with significantly more bandwidth consumption: 20

Gbps and 70 Gbps more, respectively.

Fig. 6.6 also shows that the expected bandwidth consumptionreported by simulator

is lower than that of actual consumed bandwidth, which is counter intuitive. We plot the

bandwidth usage over time with default parameters in Fig. 6.8. We see that the expected

consumed bandwidth is slightly higher than actual consumedbandwidth. We note that

the instantaneous expected consumed bandwidth may occasionally become smaller than

actual consumed bandwidth, due to the dynamic nature of the system.

Our algorithm runs efficiently and scales well. Figs. 6.9(a) and 6.9(b) report the

runtime of finding theλ using SoI RDO algorithm. In all of the experiments the average

runtime stays< 1 ms, except when the number of streams is 256, which leads to 100+

thousand viewers. In contrast, the optimal algorithm implemented in Matlab may take

43

> 6 minutes to terminate, with merely58% chance for feasible (real number) solutions.

The above results show that our algorithm scales well with larger systems.

0 20 40 60
25

30

35

40

Algorithm Interval (sec)

C
o
n
su
m
ed

B
a
n
d
w
id
th

(G
b
p
s)

SoI RDO
SoI RDO
ES
RDO

(a)

0 20 40 60
40

42

44

46

Algorithm Interval (sec)

V
ie
w
in
g
Q
u
a
li
ty

(d
B
)

SoI RDO
SoI RDO
ES
RDO

(b)

0 20 40 60
0

100

200

300

400

Algorithm Interval (sec)

N
et
w
o
rk

O
ve
rh
ea
d
(k
b
p
s)

Streamer
Viewer

(c)

0 50 100 150 200 250
0

10

20

30

40

50

Number of Streams

N
et
w
o
rk

O
ve
rh
ea
d
(k
b
p
s)

Streamer
Viewer

(d)

Figure 7.1: Implications of algorithm interval on: (a) consumed bandwidth, (b) average

viewing quality, and (c) network overhead; (d) network overhead under different number

of streams.

Implication of calling frequency Fig. 7.1 reports the implication ofT , the interval

of calling our proposed algorithm. In Figs. 7.1(a) and 7.1(b) show that, asT decreases,

viewing quality slightly increases by 1 dB. This is because running our algorithm more

frequently, the system has a better chance at adjusting to the new viewers that just arrive

in the system.

Feature senders generate negligible network overhead.Fig. 7.1(c) reports the over-

head generated by different interval parameters. Fig. 7.1(d) reports the overhead gener-

ated by different number of streams. We observe that, the network overhead generated by

feature senders is negligible, even when the feature is returned on a per second basis, at

just around 300 kbps with 12000+ viewers in the system.

44

Chapter 8

Related Work

8.1 General Live Gaming Streaming Related Research

Live game streaming service have not appeared in the literature until recent years. Kay-

toue et al. [13] and Nascimeto et al. [18] have published workrelated to the modeling of

the characteristics of live game streaming communities. The research by Kaytoue is the

first one with topic highly related to live game streaming in the literature.

Zhang and Liu also published several works focusing on the viewer perceived la-

tency [27] and region-based job placement algorithms [40] aimed to shorten the per-

ceived latency by viewers. Pires and Simon conducted experiments to measure the be-

haviors of both Youtube and Twitch servers [24], and provideinformation such as the

bandwidth consumption and number of channels of both service. They also made the

dataset available to the research community. Pires and Simon also discussed integrat-

ing DASH into live game streaming system [29], and propose strategies on how to pick

channels to transcode considering the tradeoff of transcoding overhead and the burden of

delivering high quality raw video segments. In 2015 Deng et al. published a work which

explore the popularity of games and channels on Twitch service in detail [7]. They dis-

cussed the trend during the period of their collected data, and analyzed the distribution of

both popular games and channels in Twitch service in detail.

Hamilton et al. published a work related to Twitch which focus on the human-

computer interaction (HCI) aspect [9]. They discussed how the sense of the community

is formed between the audience and the streamer, and among audience themselves. They

also discussed how different kinds of media, e.g., the video, the chat message and facecam

interact with each other to form the experience of live game streaming. Margel published

a work focusing on social dynamics behind the phenomenon called TwitchPlaysPoke-

mon[16], which swept the Twitch community in 2014. At one time itholds up to 23% of

the viewers in Twitch service.

45

In contrast to the work mentioned above, we proposed the concept of SoI to re-

duce cost without sacrificing viewer experience. Some of thesolutions proposed in

these works, e.g., region-based job placement, are complement to our system, and can

be adopted to further enhance our proposed system.

8.2 Large Scale Transcoding

Our resource allocator is closely related to some of the large scale transcoding that aim

to improve viewing quality for viewer in the video streamingservice. Aparicio-Pardo

et al. proposed a solution to automatically decide transcoding parameters and machine

designation in cloud servers [4]. Zheng et al. also proposeda similar system with adaptive

transcoding parameter decision and machine designation [41].

Our system are different from the above systems in the way that we take the SoI in-

formation into consideration, which offers another layer of possibility to further optimize

the viewing quality perceived by viewers in our systems. We have also published our

resource allocator in 2015 [5]. Combining our SoI concept with the some of the more

sophisticated solutions is an interesting future work for our system.

8.3 Video Summarization, Highlight Detection and ROI

The concept of Segment-of-Interest is remotely related to Region of Interest (ROI), which

have been extensively explored in video communications [14] and distance educations [17].

However, SoI operates on the temporal domain, while ROI applies to the spatial domain.

The other fields that are related to SoI are video summarization and highlight de-

tection. There are existing work that aim to reduce bandwidth usage in cloud gaming

systems using technique such as attention model derived from saliency map [1]. Hossain

et al. also proposed a system aimed to alter the video frame delivered to players in a

cloud gaming scenario according to the emotions detected from players’ image frame and

audio. [12] In 2015 Chu et al. proposed automatically highlight detection solution for

live game streaming videos [6] that is highly related to the SoI detection problem in this

thesis. The SoI detector proposed in this thesis is different from the existing works, we

explore the possibility of detecting SoI information usingother lightweight features in the

system instead of content based analysis [6, 12], user attention model [1, 15], or model

using eyeball analysis [23].

46

Chapter 9

Conclusion and Future Work

From the observation thatuser experience only degrades when the users are paying at-

tention, we proposed to differentiate the importance of segment in alive game streaming,

which opens up a wide spectrum of possibilities for further optimizing lie game stream-

ing platforms. We refer to those important segments asSegment-of-Interest (SoI). In this

thesis we proposed a system called SoI-driven live game streaming platform.

We enhanced and integrated several open source projects such as OBS and SMPlayer

to build a testbed. We use the testbed to collect real world data trace and use these traces

to develop our proposed algorithms.

At the core of the proposed system are SoI detector and resource allocator. The

SoI detector leverage machine learning algorithm, namely Random Forest and Gradient

Boosting Tree to detect SoI from the lightweight features we collect from streamers and

viewers. The resource allocator uses the SoI information given by the SoI detector to al-

locate resource among streams in the system. We leverage an R-D model and Lagrangian

Multiplier to formulate the viewing quality optimization problem. We also developed an

efficient approximation algorithm with a controllable error to cope with real world usage

scenario, which is a highly dynamic one for a live game streaming system.

We recruited viewers to mark SoI ground truth for us and use these information in our

supervised training for SoI detector and simulation for resource allocator. We conducted

grid search with 10-fold cross validation to find the optimalhyperparameter set for Ran-

dom Forest and Gradient Boosting Trees in SoI detector under supervised learning. We

then use the optimal hyperparameter set to train and evaluate our SoI detector in two dif-

ferent way, (i) result from randomized selected data that haven’t been used in the training

shows that we can obtain up to0.96 in terms of F-measure and up to0.87 in terms of R-

squared score, (ii) result using a simulator that takes historical data as training set shows

that it can achieve close0.8 in terms F-measure in SoIC problem.

We developed a simulator which uses real world data trace andrate distortion infor-

47

mation from non-linear regression to simulate a large scal live game streaming system in

action. The results from our six hour long simulation shows that our proposed approxi-

mation resource allocation algorithm SoI RDO algorithm outperforms the state-of-the-art

implementation by up to 5 dB in viewing quality and up to 50 Gbps in bandwidth con-

sumption.

This work can be extended in several directions.

Larger scale datasetWe are currently collecting features from more real gameplays

in order to further expand the size of our dataset and developnew optimization algorithms.

Transcoder integration. Multi-viewer transcoders can be developed and evaluated

using our testbed to alleviate the heavy workload incurred by the transcoding process in

current live game streaming platforms.

Resource allocator with finer transcoder control. More sophisticated resource al-

locator which provide more quality options, e.g. frame per seconds and resolution, can be

developed to provide more fine-grained user experience optimization.

Deep integration with game engines.To further optimize the performance of the

platform, we can provide API for game engines to provide the streaming platform with

SoI informations. With the deep insight of game logic and context of the game from

game engine, Segment of Interest detection could be even more accurate, and can be

easily applied to a wide variety of games.

By differentiating the segments’ importance to viewers, we open up new opportunities

for researchers and engineers to further optimizing live game streaming platforms in terms

of user experience.

48

Bibliography

[1] H. Ahmadi, S. Khoshnood, M. Hashemi, and S. Shirmohammadi. Efficient bitrate

reduction using a game attention model in cloud gaming. InProc. of IEEE Inter-

national Symposium on Haptic Audio Visual Environments andGames (HAVE’13),

Istanbul, Turkey, 2013.

[2] Amazon buys twitch for 970 million in cash. http://www.

businessinsider.com/amazon-buys-twitch-2014-8/.

[3] Amd API homepage.http://tinyurl.com/AMD-ADL.

[4] R. Aparico-Pardo, K. Pires, A. Blanc, and G. Simon. Transcoding live adaptive

video streams at a massive scale in the cloud. InProc. of ACM Multimedia Systems

Conference (MMSys’15), Portland, Oregon, 2015.

[5] T. F. Chiang, H. Hong, and C. Hsu. Segment-of-Interest driven live game streaming:

Saving bandwidth without degrading experience. InProc. of IEEE International

Workshop on Network and Systems Support for Games (NetGames’15), Zagreb,

Croatia, 2015.

[6] W. Chu and Y. Chou. Event detection and highlight detectionof broadcasted game

videos. InProc. of ACM Workshop on Computational Models of Social Interactions:

Human-Computer-Media Communication (HCMC’15), Brisbane, Australia, 2015.

[7] J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig. Behind the game: Exploring the

twitch streaming platform. InProc. of IEEE International Workshop on Network

and Systems Support for Games (NetGames’15), Zagreb, Croatia, 2015.

[8] FFmpeg homepage.https://ffmpeg.org.

[9] W. Hamilton, O. Garretson, and A. Kerne. Streaming on twitch: fostering par-

ticipatory communities of play within live mixed media. InProc. of the SIGCHI

Conference on Human Factors in Computing Systems (CHI’14), Toronto, Canada,

2014.

49

[10] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2th edition, 2001.

[11] HTTP live streaming.http://tinyurl.com/HLS-draft.

[12] M. Hossain, M. Muhammad, B. Song, M. Hassan, A. Alelaiwi,and A. Alamri. Au-

dio–visual emotion-aware cloud gaming framework.IEEE Transaction on Circuits

and Systems for Video Technology, 25(12):2105–2118, 2015.

[13] M. Kaytoue, A. Silva, L. Cerf, W. Meira, and C. Raı̈ssi. Watch me playing, I am a

professional: a first study on video game live streaming. InProc. of ACM Workshop

on Mining Social Network Dynamics (MSND’12), Lyon, France, 2012.

[14] Y. Liu, Z. Li, and Y. Soh. Region-of-Interest based resource allocation for conver-

sational video communication of H.264/AVC.IEEE Transactions on Circuits and

Systems for Video Technology, 18(1):134–139, 2008.

[15] Y. Ma, L. Lu, H. Zhang, and M. Li. A user attention model for video summarization.

In Proc. of ACM International Conference on Multimedia (MM’02), Juan Les Pins,

France, 2002.

[16] M. Margel. Twitch plays pokemon: An analysis of social dynamics in crowdsourced

games. Technical report, University of Toronto, 2014.

[17] A. Mavlankar, P. Agrawal, D. Pang, S. Halawa, N. Cheung, and B. Girod. An

interactive region-of-interest video streaming system for online lecture viewing. In

Proc. of Packet Video Workshop (PV’10), Hong Kong, China, 2010.

[18] G. Nascimento, M. Riberio, L. Cerf, N. Cesário, M. Kaytoue, C. Räıssi, T. Vas-

concelos, and W. Meira. Modeling and analyzing the video game live-streaming

community. InProc. of Latin American Web Congress (LA-WEB’14), Ouro Preto,

Brazil, 2014.

[19] NGINX homepage.http://nginx.org.

[20] Novabench.https://novabench.com/.

[21] Nvidia API homepage.https://developer.nvidia.com/nvapi.

[22] Open Broadcast Software.https://obsproject.com/.

[23] W. Peng, W. Chu, C. Chang, C. Chou, W. Huang, W. Chang, and Y. Hung. Editing

by viewing: Automatic home video summarization by viewing behavior analysis.

IEEE Transactions on Multimedia, 13(3):539–550, 2011.

50

[24] K. Pires and G. Simon. Youtube Live and Twitch: A tour of user-generated live

streaming systems. InProc. of ACM Multimedia Systems Conference (MMSys’15),

Portland, Oregon, 2015.

[25] Adobe’s Real Time Messaging Protocol.http://tinyurl.com/rtmp-spec.

[26] Scikit-learn.http://scikit-learn.org.

[27] R. Shea, D. Fu, and J. Liu. Towards bridging online game playing and live broadcast-

ing: design and optimization. InProc. of ACM Workshop on Network and Operat-

ing Systems Support for Digital Audio and Video (NOSSDAV’15), Portland, Oregon,

2015.

[28] SMPlayer homepage.http://smplayer.sourceforge.net/.

[29] I. Sodagar. The MPEG-DASH standard for multimedia streaming over the internet.

IEEE Multimedia, 18(4):62–67, 2011.

[30] G. Sullivan and T. Wiegand. Rate-distortion optimization for video compression.

IEEE Signal Processing, 20(6):74–90, 1998.

[31] Science: Surfing the 4th largest stream of

data. http://blog.twitch.tv/2015/05/

science-surfing-the-4th-largest-stream-of-data/.

[32] BOOM. More transcode servers.http://blog.twitch.tv/2015/07/

boom-more-transcode-servers/.

[33] Twitch retrospective 2013.http://www.twitch.tv/year/2013.

[34] Twitch retrospective 2014.http://www.twitch.tv/year/2014.

[35] Twitch retrospective 2015.https://www.twitch.tv/year/2015.

[36] Windows performance counter website. http://tinyurl.com/

Window-PDH.

[37] Xgboost.http://github.com/dmlc/xgboost.

[38] YouTube gaming website.https://gaming.youtube.com/.

[39] C. Zhang and J. Liu. On crowdsourced interactive live streaming: a twitch.tv-based

measurement study. InProc. of ACM Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV’15), Portland, Oregon, 2015.

51

[40] C. Zhang, J. Liu, and H. Wang. Towards hybrid cloud-assisted crowdsourced live

streaming: measurement and analysis. InProc. of ACM Workshop on Networks and

Operating Systems Support for Digital Audio and Video (NOSSDAV’16), Klagenfurt

am Wörthersee, Austria, 2016.

[41] Y. Zheng, D. Wu, Y. Ke, C. Yang, M. Chen, and G. Zhang. Onlinecloud transcoding

and distribution for crowdsourced live game video streaming. IEEE Transaction on

Circuits and Systems for Video Technology, PP(99):1–1, 2016.

[42] X. Zhu, E. Setton, and B. Girod. Congestion-distortion optimized video transmission

over ad hoc networks.Signal Processing: Image Communication, 20(8):773–783,

2005.

52

