
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

群眾感測平台之行動雲端軟體卸載

Mobile Cloud Offloading on Crowdsensing Platforms

林庭毅

Ting-Yi Lin

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 103年 12月

December, 2014

國
立
清
華
大
學

資
訊
工

程
研
究
所

碩
士
論
文

群
眾
感
測
平
台
之
行
動
雲
端
軟
體
卸
載

林
庭
毅

撰

103
12

中中中文文文摘摘摘要要要

本論文專注於利用軟體卸載的技術減少行動裝置的耗電或事件分

析演算法的處理時間，以提升群眾感測系統的系統效能。事件分析演

算法會經由使用者蒐集的感測器資料分析事件的發生與否，該分析可

以透過卸載的技術卸載到雲端執行，以達到省電或提升速度的目的。

由於軟體卸載的效益取決於許多因素，我們在本篇論文中提出了卸載

決策演算法，結合當下的環境資訊，來決定是否將運算卸載到雲端。

為了證明軟體卸載可實際用在現有的應用程式中，我們實作了一個工

具幫助我們在沒有原始碼的情況下，分析其他第三方程式可以使用軟

體卸載的部分，並修改該程式的安裝檔使其能夠使用軟體卸載。為了

實際試驗軟體卸載對於群眾感測系統的影響，我們在本論文中實作了

一個群眾感測雛形系統，並將軟體卸載的技術整合到該系統上進行測

試。該雛型系統包含了(i)中控端、(ii)卸載伺服器及(iii)客戶端，並實作

了2個事件分析演算法在系統中。

我們的實驗顯示了我們提出的卸載決策演算法可以達到80%的準確

率，極大的避免了因決策錯誤產生的額外成本。同時，我們也透過自

行開發的工具分析、修改第三方的程式，並經由實際的使用修改後的

程式，證實了卸載技術的確能夠使用在現有的第三方程式中。最後，

我們使用整合了軟體卸載的群眾感測系統進行實驗，證實軟體卸載的

確能改進群眾感測系統的效能。

i

Abstract

We focus on utilizing offloading to reduce the energy consumption of
the mobile devices or the execution time of event analysis algorithms, and
improve the system performance of crowdsensing systems. Event analysis
algorithms analyze the sensory data that are collected by mobile users to de-
termine whether events happen or not. The overhead of event analysis algo-
rithms can be offloaded to cloud servers to achieve energy efficiency or better
performance. Since offloading benefits depend on many factors, such as net-
work latency and computation capability, we propose an offloading decision
algorithm, which considers the context information to decide whether to of-
fload the computation to cloud servers. To show that offloading can be used in
existing applications, we develop an APK analysis tool to analyze the third-
party applications. Without the source code, the tool determines which part
of an application can be offloaded and modify the applicationto be offload
version. To evaluate the impact of crowdsensing system withoffloading, we
implement a crowdsensing prototype system and integrate offloading tech-
nique into the system. The prototype system involves (i) a broker, (ii) offload
servers, and (iii) clients. We implement 2 event analysis algorithms in the
system.

Our experiments show that our offloading decision algorithmimproves
the system performance through intelligently making offloading decisions,
and the accuracy is up to 80%. The high accuracy significantlyreduces the
penalty of suboptimal offloading decision. Moreover, by utilizing the APK
analysis tool, we analyze and modify third-party applications. The results
of offloading the third-party applications show that offloading can be used
in existing third-party applications. Last, we conduct experiments with the
crowdsensing prototype system with offloading and show thatoffloading im-
proves the performance of the crowdsensing system.

ii

Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1
1.1 Efficient Crowdsensing System With Offloading 1
1.2 Offloading Applications To Cloud .2
1.3 Contributions . 3

2 Related Work 4
2.1 Offloading . 4
2.2 Crowdsensing . 5
2.3 Challenge in Large-scale Crowdsensing Systems 6

3 Offloading Applications To Cloud 8
3.1 Architecture . 8

3.1.1 Overview . 8
3.1.2 Context-aware Decision Algorithm 8
3.1.3 Energy Model . 9
3.1.4 Profiler . 9
3.1.5 Database . 10

3.2 Problem Statement . 10
3.2.1 Energy Measurement . 10
3.2.2 Application Modification without Source Code 13

3.3 Proposed Algorithm . 14
3.4 Experiments . 17

3.4.1 Offloading Simulation . 17
3.4.2 Offloading Real Third-party Applications 22

4 Offloading Event Analysis Algorithms: Using IsCrowded and IsNoisy Events
As Case Studies 24
4.1 Implementation . 24

4.1.1 System Overview . 24
4.1.2 Prototype Architecture . 25

4.2 Case Study . 27
4.3 Evaluations . 29

4.3.1 Setup . 29
4.3.2 Results . 30

iii

5 Conclusion and Future Work 35
5.1 Conclusion . 35
5.2 Future Work . 35

Bibliography 37

Symbol Table 41

iv

List of Figures

2.1 Process the sensory data on broker/server. 6

3.1 Mobile cloud offloading architecture. 9

3.2 Transmission current under different RSSI values for: (a) WiFi and (b)

cellular networks. 12

3.3 The workflow of the APK analysis tool. 14

3.4 Example of Smali code. 15

3.5 Accuracy among users, each user is annotated by number ofoffloading

experiments. 18

3.6 Performance improvement on response time. 19

3.7 Performance improvement on energy consumption. 20

3.8 Energy consumption of CPU, display, and Wifi of each scenario. 21

3.9 Execution time of each scenario. .. . 21

4.1 Overview of the crowdsensing system. 24

4.2 Screenshot of query tab. .26

4.3 Screenshot of task tab. 26

4.4 Screenshot of answer dialog. .. 26

4.5 Prototype architecture. .. 27

4.6 HOG human detection workflow. 28

4.7 Human detection using HOG. 29

4.8 Execution time while varying network delay. 32

4.9 Energy consumption while varying network delay. 32

4.10 Execution time while varying packet loss rate. 33

4.11 Energy consumption while varying packet loss rate. 33

4.12 Execution time while varying bandwidth. 34

4.13 Energy consumption while varying bandwidth. 34

v

List of Tables

3.1 Fitting Error of Different Mapping Functions 11

3.2 The Empirically-derived Cubic Model Parameters 13

3.3 Four Classes of Mobile Applications Used in the Experiments 17

3.4 Energy Consumption when Offloading over Different Wireless Networks 19

3.5 Profiler Energy Overhead . 22

3.6 Energy Consumption when Offloading over Different Wireless Networks 23

4.1 Ideal Case Performance of IsCrowded Event 30

4.2 Ideal Case Performance of IsNoisy Event 31

vi

Chapter 1

Introduction

1.1 Efficient Crowdsensing System With Offloading

Infrastructure sensors can be used to build a system providing abundant information,

which is useful to citizens and governments. For example, monitoring the traffic con-

dition and the air pollution level. These information make cities smarter and improve the

quality of citizens’ daily life. However, deploying the infrastructure sensors everywhere

and maintaining the infrastructure sensors is costly to individuals, and is a heavy burden

even to enterprises and governments. Although infrastructure sensors are cheaper and

more powerful than before, deploying infrastructure sensors everywhere is expensive and

takes a long time to achieve it. Not only the sensors, the wired/wireless connection and

the plug-in power for sensors are also heavy expenditures.

Crowdsensing seems to be an alternative solution for infrastructure sensing. Nowa-

days, mobile devices are equipped with multiple sensors (e.g. GPS, accelerometer, etc.)

and connectivities (e.g. Wifi interface, 3G/4G interface, etc.). This makes the mobile de-

vices can be considered as mobile sensors. The popularity and mobility of mobile devices

make the topic attracting to governments and people since the expenditure of deploying

infrastructure sensors can be reduced if leverage the mobile devices properly.

The difference between crowdsensing and infrastructure sensing is that crowdsensing

can be used in providing information that cannot be easily answered by computer. These

information can be answered in crowdsensing system since humans are introduced to

become part of the system. In this thesis, we use event to refer to the information that can

be provided by the crowdsensing system. Events can be identified through event analysis

algorithms, which analyze the collected sensory data to determine whether events happen

or not.

Although crowdsensing is interesting and powerful, it has several issues that should

be addressed in order to deploy it in real world. In this thesis, we address on improving

1

the performance of event analysis algorithms through offloading. The event analysis algo-

rithms may lead to heavy computation, and take a long time to execute on mobile devices.

It is not energy efficient to execute on mobile devices. This is similar to offloading, and

we try to improve crowdsensing systems through offloading heavy computation to cloud

servers to reduce the energy consumption of mobile devices or the processing time of

event analysis algorithms.

1.2 Offloading Applications To Cloud

Cloud computing is getting increasingly popular for severalreasons, such as lower main-

tenance cost, more elastic resource allocation, and easieraccess. Mobile devices, such

as smartphones and tablets, are becoming ubiquitous because modern mobile devices are

more and more powerful and 3G/4G cellular networks provide fast mobile Internet ac-

cess. Nonetheless, mobile devices still have stringent resource constraints on, e.g., CPU

power, memory size, storage space, and battery lifetime, compared to laptops and desk-

tops. Among these constraints, the battery lifetime is probably the most critical one for

mobile users [1], and the response time also imposes negative impact on the user experi-

ence.

Mobile applications may cope with the constraints bysacrificing user experience,

e.g., rendering videos at lower quality and returning the search results after longer re-

sponse time. A better solution is to offload computationally-intensive processing over the

wireless networks to the cloud servers in order to reduce theenergy consumption or the

response time. This is referred to asmobile cloud offloading[9, 11, 17]. Mobile cloud

offloading allows the mobile applications to achieve betteruser-experience, and offers the

cloud service providers more business opportunities.

In this thesis, we study thedecision enginein mobile cloud offloading systems, which

decides whether to offload a given method to the cloud servers. A naive approach is to

alwaysoffload, which may lead to higher energy consumption and longer response time

if the method is not computationally-intensive and the datato be transferred is large. We

propose a better, context-aware decision engine, which leverages on user context and his-

torical measurements to make offloading decision for minimizing energy consumption,

response time, or other optimization criteria. To our best knowledge, context-aware mo-

bile cloud offloading has not been rigorously studied. While our proposed solution can be

integrated in various cloud offloading systems, we have built a proof-of-concept prototype

on top of ThinkAir1 [17]. Our preliminary experimental results from several real Android

phone users show that the proposed decision engine: (i) achieves more than 80% predic-

1We thank ThinkAir’s authors for sharing their source code.

2

tion accuracy, (ii) improves the overall performance in energy consumption or response

time, and (iii) incurs very low overhead.

1.3 Contributions

The contributions in this thesis are

1. Implement a real crowdsensing prototype system. The offloading technique is inte-

grated in the system and can be deployed in real machine [20].

2. Propose a context-aware decision algorithm. This algorithm determines whether to

offload the computations to cloud servers with high accuracy[21].

3. Analyze and modify existing applications to show that offloading can be used in

existing applications.

4. We deploy the crowdsensing system, and show the performance improvement through

offloading and the importance of having a good offloading decision algorithm.

3

Chapter 2

Related Work

2.1 Offloading

Mobile cloud offloading has been considered in the literature [9,11,17]. MAUI [11] is an

offloading system designed for Windows phones. It uses Microsoft .NET to identify the

methods that can be offloaded and the states that needed to be transferred during offload-

ing. MAUI continuously collects essential data, e.g., energy consumption, CPU utiliza-

tion, and network conditions, at runtime. It uses the collected data to make the decision

on whether to offload for saving energy of mobile devices. In particular, MAUI builds a

call graph and solves it as a 0-1 integer linear programming problem. ThinkAir [17] en-

ables method-level offloading system on Android phones. Similar to MAUI, developers

should add notations to the methods they want to offload. ThinkAir logs the energy con-

sumption, execution time, and network conditions, which are used to decide whether to

offload. ThinkAir makes offloading decisions based on user preferences and the logs.

Clonecloud [9] is an offloading system for Android. Differentfrom MAUI [11] and

ThinkAir [17], it directly works with application binaries. The code partitioning is com-

pleted by a static analyzer which builds a control-flow graphand identifies the possible

partition choices. The dynamic analyzer uses random input datasets to generate multiple

execution logs, which are used to solve an integer linear programming problem. Kwon

and Tilevich [18] use checkpoint to support offloading and minimize the states to be trans-

fered. They implement a code enhancer to identify all methods annotated with a special

tag and insert checkpoints in them to build the client- and server-side classes. Mobile

applications are always offloaded as long as network is available. Since it doesn’t check

whether offloading can save energy, under some circumstances the energy consumption

may be higher.

Several energy (or power) consumption models have been proposed for mobile de-

vices [7, 13, 22, 24, 26, 30]. Roughly speaking, the energy consumption can be classified

4

into three components: (i) computation, (ii) communications, and (iii) display and others.

In this paper, we focus more on communication energy consumption because it is directly

affected by different contexts, while other components arerather static. Several energy

models are base on the observation that different states of anetwork interface impose

diverse power consumption levels [7, 24, 30]. Compared to [24, 30], Balasubramanian et

al. [7] consider two extra network-relevant states: ramp and tail energy. Ramp energy

is the energy consumed when the interface switches to the high power level before data

transfer and tail energy is the energy consumed when the interface keeps in a high power

level after data transfer for a system specified duration. Dong and Zhong [13] show the de-

pendencies between energy models and mobile hardware, and develop a self-constructive

and adaptive power modeling method. This model does not takedifferent network condi-

tions into consideration. The work in [22,26] takes networkconditions into consideration.

In [26], network conditions affect the transfer successfulratio. It is assumed that a failed

transfer will be retransmitted under the same network condition. In [22], the commu-

nication energy is a function of the signal strength. Neither [26] nor [22] consider the

implications of network congestion level.

2.2 Crowdsensing

Due to the advance of technology, smartphones are equipped with more and more sen-

sors, such as GPS, accelerometer, and gyroscope. This motivates researchers to leverage

the capability of smartphones to provide sensory data instead of deploying infrastructure

sensors everywhere. Such a paradigm calledmobile crowdsensing[14]. To solve spe-

cific problems, several crowdsensing applications are proposed in [8,10,16,28,31]. Chon

et al. [8] aim to automatically identify places by crowdsensing. Through combining the

radio finger print of WiFi access point and image processing,their framework classifies

the places into gym, restaurant, etc. To improve image-based location reliability, Talasila

et al. [28] introduce human validation and sensory data thatare attached to the photos

to determine the locations. Hasenfratz et al. [16] propose system that uses sensor and

GPS to provide air quality map to users. Zhou et al. [31] propose a system to predict the

bus arrival time. Through processing the sensory data that are collected by users, such

as microphone and cell tower ID, the system identifies whether users are on buses and

bus routes, and predicts the time for the bus to arrive at eachbus stop. Some works use

pre-install specific sensors, monitors in buildings, or event data recorders in cars to help

sensing like Coric and Gruteser [10] and Lan et al. [19]. Coric and Gruteser [10] aim to

provide on-street legal parking slot map to users. They assume the parking map is ac-

cessible in advance, and use the sensors and GPS installed onthe cars to determine the

5

BrokerBroker ServerServer

Event Analysis

Algorithm

Assign tasks/

return data

Given data/

return result

Figure 2.1: Process the sensory data on broker/server.

parking slots are occupied or not. The system shows the available parking slots on the

map to avoid users wasting time on finding parking slots.

Besides the applications, other issues in crowdsensing systems are studied in [6, 19,

25,27]. Since incentive is also an important issue in crowdsensing systems, Lan et al. [19]

propose a framework which has incentive mechanism to motivate users to provide sensory

data. Users who provide sensory data or share their connectivities can earn virtual credits.

To achieve efficient data transfer in crowdsensing systems,Sherchan et al. [27] propose

a framework that reduces energy and bandwidth consumption for sensory data collection

and data transfer. Medusa [25] and Agarwal et al. [6] providegeneral crowdsensing sys-

tems to support various applications. Medusa [25] is a crowdsensing framework which

aim to relieve the burden of developing new applications. Developers only have to ex-

press the sensing tasks through their own scripting languages, and Medusa automatically

deploys the tasks to mobile clients to instruct users to perform the tasks. Agarwal et al. [6]

provide a framework to ease the development of new applications. To avoid duplicate and

in-efficient sensing, they also provide sensor schedule to make users perform the tasks

efficiently.

2.3 Challenge in Large-scale Crowdsensing Systems

Although the proposed crowdsensing systems are interesting and useful, to be deployed

in real world, there are several challenges. These challenges should be addressed in order

to make the proposed crowdsensing architecture deployableand better. In this thesis, we

address on theevent analysis offloading problem, which is one of the major challenges in

crowdsensing systems. Since the events are detected by event analysis algorithms, there

should be a host to take on the computations. As shown in Fig. 2.1, the most intuitive

approach of performing event analysis algorithms is sending all the collected sensory

data to a specific server and perform the event analysis algorithms on it. In fact, most

of the crowdsensing systems follow this approach. However,this may lead to heavy

6

network overhead on mobile devices and severs in large scalesystems. Therefore, this

will consume larger amount of energy of transferring the sensory data on mobile devices.

An alternative solution is to pre-process the sensory data before transferring to servers or

even performing the event analysis algorithms on mobile devices. With this approach, we

can significantly relieve the communication overhead of mobile devices and servers.

This becomes a trade-off between transmission and computation, which is similar to

offloading. Therefore, we believe offloading can improve theperformance of crowdsens-

ing systems. By carefully determine whether execute event analysis algorithms on servers,

energy consumption and processing time can be reduced in crowdsensing systems. For

mobile users, they can also reduce energy and time through considering the trade-off of

computation and transmission.

The biggest difference between our work and other existing crowdsensing systems is

that they do not consider the execution place of event analysis algorithms. We consider

the trade-off of transmission and computation to maximize the energy and time efficiency

of the system. In this thesis, we aim to integrate offloading into crowdsensing systems

and leverage offloading to improve the performance of crowdsensing systems.

7

Chapter 3

Offloading Applications To Cloud

3.1 Architecture

3.1.1 Overview

Fig. 3.1 shows the common mobile cloud offloading architecture. The resource-constrained

mobile device is connect to the resourceful cloud server viathe Internet. The mobile de-

vice and cloud server run a cloud offloading system, which is responsible to offloading

a method execution from the mobile device to the cloud server, and then retrieve the re-

turn value from the cloud server back to the mobile devices. Various cloud offloading

systems [9,11,17] proposed in the literature may be used here. Our work concentrate on

the development of the decision engine. Before the mobile device executes a method, the

cloud offloading system checks with the decision engine to see whether to offload that

method. The decision engine should only instruct the cloud offloading system to offload

the method if offloading the method results in better performance. Possible performance

metric include energy consumption and response time, and ischosen by each mobile user.

In this thesis, we design and evaluate a context-aware decision engine, which consists of

four components: context-aware decision algorithm, context profiler, energy model, and

context database. We detail each of them in following sections. We notice that exist mo-

bile cloud offload systems [9, 11, 17] may also implement somedecision heuristics, but

to the best of our knowledge, they are not context-aware. In Sec. 3.4.1, We will show the

importance of context-aware decision engines.

3.1.2 Context-aware Decision Algorithm

The decision algorithm is responsible for determining whether to offload. It considers the

contexts that consists of: (i) time-of-day and (ii) location to decide local or cloud execu-

tion. We will discuss the context-aware decision algorithmin more details in Sec. 3.3.

8

Context-Aware Decision Algorithm

 Context Profiler Energy Model

Context

Database

Store context

and execution

costs

Return

historical cost

Check whether to offloadCloud Servers

Offloaded Application

Cloud Platform

Mobile Application

Mobile Device

Context-Aware

Decision EngineCloud Offloading

System

Cloud Offloading System

Figure 3.1: Mobile cloud offloading architecture.

3.1.3 Energy Model

The energy model estimates the execution energy consumption for the mobile device. It

takes signal strength and transmission time to be input and output the energy consump-

tion. Energy model is necessary in offloading system. Without energy model, we cannot

understand the energy consumption of local execution and offloading, and we cannot de-

termine whether offload or not. We discuss more details of ourenergy model in Sec. 3.2.

3.1.4 Profiler

The context profiler is a background service that collects various contexts required for

making the offloading decisions. We consider the following four contexts:

• Signal strength: the profiler periodically collects the latest signal strength of WiFi

and 3G networks.

• Transmission time: the profiler periodically transmits some dummy data to/from

the cloud server to measure the end-to-end network throughput and hence get the

transmission time for energy estimation.

9

• Time-of-day: the profiler partitions each day into 48 half-an-hour time slots. The

time slots of the offloading opportunities are recorded.

• Location: the profiler logs the geographical location usingGPS once every half an

hour.

These contexts are saved in a database, and then used by the proposed context-aware

decision algorithm and energy model.

3.1.5 Database

Once a method is executed, the costs including the processing time, energy consumption,

and starting time slot are recorded in the database. The energy consumption is estimated

using an energy model, which is based on the network signal strength and throughput.

The derivation of our energy model is detailed in the next section. Since we only use the

current signal strength and throughput, these contexts arenot stored in the database. The

CADA algorithm uses the location and time-of-day as the indexand the database returns

the average performance on the cloud and on the mobile device. If there is no previous

record at the combination of location and time-of-day, the database returns null to the

CADA algorithm.

3.2 Problem Statement

In this section, we discuss two significant problems that should be addressed in order to

make applications benefit from offloading. The problems are (i) energy measurement and

(ii) application modification without source code.

3.2.1 Energy Measurement

Energy measurement is necessary in order to understand the cost of local execution and

offloading. We aim to leverage offloading to reduce the energyconsumption or execution

time of mobile devices. Therefore, we need an energy model tomeasure the energy

consumption and use the result to determine whether to offload. The more accurate of

the energy measurement, the more accurate decision that we can make. Also, the penalty

of wrong decision can be high, hence, the accuracy of the energy model should be in a

tolerant rate. In this section, we summarize a power profiling tool in the literature, and

enhance it by incorporating user contexts for higher accuracy.

10

Table 3.1: Fitting Error of Different Mapping Functions

MSE Linear Quadratic Cubic

Cellular 5.08× 10−4 2.20× 10−4 1.77× 10−4

WiFi 6.52× 10−5 4.35× 10−5 4.25× 10−5

Limitations of Existing Energy Models

PowerTutor [5] is an open-source power profiling tool for mobile devices. Its underlying

power model is written as:

Ptotal = Pcpu + Pcomm + Pdisplay + Pother. (3.1)

In Eq. (3.1), the total power is the sum of the component-wisepower consumption. There

are four components:Pcpu, Pcomm, Pdisplay andPother for computation, communications,

display, and others.Pcomm is further divided into the power consumption of WiFi and

cellular networks:

Pcomm = PWiFi + PCell. (3.2)

The Wifi and 3G power consumption is written as:

PWiFi/Cell = Pidle × βidle + Ptrans × βtrans, (3.3)

wherePidle andPtrans are the power consumption when the network interface is idleand

transferring, andβidle andβtrans denote the fraction of time the network interface is in

different states. More details of the energy model can be found in [30].

The communication power consumption depends on the signal strength and network

congestion level. However, the communication power model in Eq. (3.3) does not take

such network dynamics into considerations, and may lead to less accurate power estima-

tion. Therefore, we develop a context-aware power model in the next section.

A Context-Aware Communication Energy Model

We propose a context-aware energy model, which is a functionof the transmission power

and congestion level. The communication energy consumption depends on: (i) the trans-

mission power as it determines the instantaneous power consumption and (ii) the conges-

tion level as it determines the data transfer time. However,most mobile OS’s, including

Android, do not provide APIs for polling the transmission power and congestion level.

Therefore, we employ the two contexts in our energy model: the Received Signal Strength

Indication (RSSI) and the throughput, because the transmission power is a function of the

RSSI value, and the congestion level is a function of the network throughput. The RSSI

11

−100 −80 −60 −40 −20
0

0.1

0.2

0.3

RSSI (dbm)

C
u
rr

en
t

(A
)

(a)

−100 −90 −80 −70 −60
0

0.1

0.2

0.3

RSSI (dbm)

C
u
rr

en
t

(A
)

(b)

Figure 3.2: Transmission current under different RSSI values for: (a) WiFi and (b) cellular

networks.

value and network throughput are collected by the context profiler, which incurs small

energy overhead as we will show in Sec. 3.4.

We first derive the mapping between the RSSI and drawn current via experiments

using an Android phone. More specifically, we use an Agilent 66321D power meter to

measure and record the current of an HTC Sensation XE phone. We also implement

an Android application to record the average signal strength throughout each experiment.

Via placing mobile phone at different locations, we measurethe current consumed by each

data transfer of a 50 MB file over 3G and WiFi networks under different RSSI values. We

repeat the experiment three times at each location and report the results in Fig. 3.2. This

figure clearly shows that the drawn current is a decreasing function on the RSSI value,

which make sense as better signal strength means that the mobile device can reduce the

transmission power without increasing the bit-error-rate.

We fit the measurements to a polynomial function with the least square method. Ta-

ble. 3.1 shows the Mean Square Error (MSE) of several polynomial functions. This table

shows that the error of a cubic polynomial function is fairlylow, and thus we use the cubic

12

Table 3.2: The Empirically-derived Cubic Model Parameters

Para. γ3 γ2 γ1 γ0

Cellular −1.35× 10
−5

−2.9× 10
−3 -0.21 -4.89

WiFi −4.37× 10
−7

−5.62× 10
−5

−2.7× 10
−3 0.19

polynomial function in our energy model:

Ptrans(S) = γ3 × S3 + γ2 × S2 + γ1 × S + γ0, (3.4)

whereγ3, γ2, γ1, andγ0 are the parameters of the cubic function, andS is the RSSI

value in dBm. The model parameter derived on the HTC SensationXE phone is given in

Table 3.2.

With the RSSI and throughput collected by the context-aware profiler, we can write

the communication energy consumption as:

Etrans(S,R,D) = Ptrans(S)×
D

R
× V, (3.5)

whereR denotes the throughput andD denote the transferred data amount if the subject

method is offloaded to the cloud. The energy model given in Eq.(3.5) is combined with

the computation, display, and other power models defined in PowerTutor for a device-

level energy model. This context-aware energy model is employed by the CADA algo-

rithm to estimate energy consumption.

3.2.2 Application Modification without Source Code

How to offload the existing applications is also a significantissue. We want not only self-

developed applications, but also existing applications can use offloading to reduce energy

consumption. However, most of the time we do not have the source code of the applica-

tions. Without source code, we cannot easily determine whatmethods can be offloaded

to cloud and modify the code to offload the methods. To help us easily analyze what

methods can be offloaded and modify the applications withoutsource code, we develop

an APK analysis tool to achieve it. The tool analyzes APK file,which is the application

installation file that used in Android OS, and modify it to useoffloading library.

Fig. 3.3 shows the workflow of the tool. The first step is to decompile the APK file

by apktool [2]. The decompiled files are Smali code, which is the register language of

Dalvik Virtual Machine. Fig. 3.4 is an example of Smali code.It is not as readable as

Java code but contains the information of super class, fields, and methods that can be

used to analyze the application. We analyze the Smali files and filter out the methods that

cannot be offloaded to cloud. Since local resources, such as camera and GPS, can only

13

Decompile APK

to Smali Code

Find Candidate

Methods

Modify Target

Method

Re-compile the

Modified Smali

code to APK

Sign the

Generated APK

Figure 3.3: The workflow of the APK analysis tool.

accessed locally, we remove the methods and classes that access the local resources. Once

the analysis done, we get a list of candidate methods that canbe offloaded to cloud.

By assigning a target method, the tool automatically transforms the method to offload

version. The tool creates a new Android project and an empty method, which has the same

input, output, and name as the target method. Since we use ThinkAir to be our offloading

library, we use ThinkAir code generator to make the created project use ThinkAir library.

The Smali code of the target method then overwritten with theSmali code that decom-

piled from the created project. After modifying the smali code, it is recompiled to APK

file through apktool. After signing the generated APK file, itcan be installed in normal

Android devices and offloading the target method to cloud.

3.3 Proposed Algorithm

While offloading computation to the cloud may save energy, it is not always true. For

instance, if we offload a method to the cloud, when the wireless signal strength is low,

the additional communication energy may be higher than the saved computation energy.

Hence, a context-aware decision engine is critical to the system performance.

CloneCloud [9] and MAUI [11] solve integer linear programmingproblems in their

decision engine, while ThinkAir [17] averages the historical execution costs on the cloud

server and on the mobile device, and chooses the better one. Namboodiri and Ghose [23]

14

Figure 3.4: Example of Smali code.

also propose an algorithm to determine whether running an application in the cloud is

more energy-efficient. Wolski et al. [29] implement severalbandwidth measurement

methodology and compares their performance in grid computing offloading. None of

the works [9,11,17,23,29] make the offloading decisions based on rich contexts. In con-

trast, we design a Context-Aware Decision Algorithm (CADA) that takes four contexts

into considerations, while making the offloading decisions.

In the CADA algorithm, we avoid the optimization problem solvers, used in, e.g., [9,

11], as solving complex integer linear programming problems itself may consume exces-

sive energy. Instead, we use the time-of-day and location todetermine whether offloading

can save energy. We choose these two contexts because mobileusers usually have a reg-

ular behavior [15]. This means that for a given time-of-day,a user is likely to visit the

same place, have the same wireless network condition, and run the same applications. For

15

Algorithm 1 Context-Aware Decision Algorithm (CADA)
Query from database withT andL

if ecloud is null then

Query withL for the closest record

if there is no recordthen

Return offload to the cloud server

end if

Settcloud andecloud to the value of closest record

end if

if elocal is null then

Query withL for the closest record

if there is no recordthen

Return execute on the mobile device

end if

Settlocal andelocal to the value of closest record

end if

Choose the smaller one ofecloud andelocal (or tcloud andtlocal)

instance, for a user who go to the library from 3 p.m. to 5 p.m. every Tuesday and go

to the park from 6 p.m. to 8 p.m. every Wednesday. The wirelessnetwork condition in

library is usually good enough for offloading, but the wireless network condition in park

is usually not. Thus, the CADA algorithm learns from the past execution records and

offloads the workload if the time is between 3 p.m. and 5 p.m. onWednesdays and the

location is the library.

Before invoking a method which can be offloaded, the CADA algorithm uses the

current location and time-of-day to query the past execution costs at the same location

and time-of-day on the cloud server and on the mobile device.If there is no previous

result in database, the CADA algorithm chooses the closest time-of-day at that location

if it exists. Otherwise, the CADA algorithm tries to offload the method once and run

the same method on the mobile device once to get some records for future, educational

decisions. Algorithm 1 summarizes the CADA algorithm.T andL represent time-of-day

and location, respectively.t ande are the execution time and energy consumption of the

subject method.tlocal is the execution time on the mobile device andtcloud is the execution

time on the cloud server. For energy consumption, we defineelocal andecloud for that on

the mobile device and the cloud server.

16

Table 3.3: Four Classes of Mobile Applications Used in the Experiments

Class High Computation Low Computation

Big State HCBS LCBS

Small State HCSS LCSS

3.4 Experiments

3.4.1 Offloading Simulation

We conduct real experiments to evaluate the proposed CADA algorithm and mobile cloud

offloading system.

Setup

We have implemented our context-aware decision engine on Android 4.0, and integrated

it with ThinkAir [17] for experiments. We deploy the client on multiple HTC phones

and install the server on Android-X86 running on a commodityIntel i7 desktop. We ask

4 users, who are graduate students, to carry the smartphonesand execute the offloading

experiments whenever they get a chance. We only get enough experimental samples from

four users, and thus exclude the two outliers in the rest of this section. We configure the

profiler to cluster the GPS locations by rounding the latitude and longitude values to the

fourth digits after the decimal point. The profiler collectsthe GPS locations once every

30 mins and other contexts once every 5 mins.

We consider four different classes of mobile applications,which demand for diverse

computation and communication resources. The four kinds are: (i) Low Computation

with Small State (LCSS), (ii) Low Computation with Big State (LCBS), (iii) High Com-

putation with Small State (HCSS), and (iv) High Computation with Big State (HCBS).

Table. 3.3 summarizes the classification. We believe that these four application classes

represent most of the existing mobile applications. We implement a sample mobile appli-

cation in each class, and upload the mobile applications to the HTC phones.

For LCSS, we implement a simple for-loop performing addition/multiplication oper-

ations. The amount of computations is light for modern smartphones and the state to be

transferred is small. For HCSS, we implement nested for-loops with huge numbers of

iterations performing addition/multiplication operations. The amount of computations is

large and takes the HTC phones about 30 secs to finish. For LCBS, the application reads

an image and performs a simple color space conversion from the RGB to YUV space.

This application transfers a high-resolution image to the cloud and the computation de-

17

1 2 3 4 Avg.
0

20

40

60

80

100

120

User

A
cc

u
ra

cy
(%

)

Energy

Time

80
64

34

492
670

Figure 3.5: Accuracy among users, each user is annotated by number of offloading exper-

iments.

mand is low. Last, for HCBS, we perform the same as LCBS but added a face detection

algorithm, which leads to large computation demand.

The subjects take the HTC phones with them for 3 days, and run random mobile

applications whenever they get a chance. We consider three performance metrics: (i)

prediction accuracy, (ii) performance gain in the energy consumption and response time,

and (iii) energy and computation overhead.

Results

Importance of context-aware offload decision.Different applications have diverse fea-

tures and thus their behaviors are not identical. We build a simple experiment to demon-

strate the negative impacts of making offloading decisions without considering user con-

texts. In particular, we execute the HCBS application with WiFi, 3G, and local respec-

tively, and give the results in Table 3.4. In this table, Idleis the energy consumption

without our offload-able application. The result we report is the additional energy con-

sumption compare with idle energy. This table shows that offloading the application over

3G leads to higher overall energy consumption on the mobile device, compared to running

the same application on the mobile device. This reveals thatcloud offloading could result

in worse performance when the network condition is bad. In other words, the network

condition imposes a direct implication on offloading performance. Given that offload-

ing this application with 3G at this location is worse than performing that on the mobile

device, our CADA algorithm will make a smart decision to run that application on the

18

1 2 3 4 Avg.
0

10X

20X

30X

40X

50X

User

Mobile
CADA
Cloud

Figure 3.6: Performance improvement on response time.

Table 3.4: Energy Consumption when Offloading over DifferentWireless Networks

Network Type WiFi 3G Local Idle

Current (mA) 9.2619 285.3662 24.0448 398.74

Execution Time 224.99 3559.85 299.34 -

mobile device.

Accuracy of the CADA algorithm. We present the decision accuracy of the CADA

algorithm in Fig. 3.5. The accuracy is defined as the percentage of making the right deci-

sions for lower energy consumption or shorter response time; whereas the right decisions

are determined by comparing against the ground truth collected by the context-aware pro-

filer. Since CADA enforces each method to execute on the mobiledevice and on the cloud

server once to learn which one is the better, we refer to thesetwo executions as the train-

ing round and exclude them when we compute the accuracy. Fig.3.5 depicts that among

the four users, the accuracy is between 79% to 100%. The user who achieves 100% ac-

curacy tends to stay in very few locations, and thus the CADA algorithm can make better

prediction using the larger number of samples. Another important observation is that the

CADA algorithm can optimize toward lower energy consumptionand shorter response

time, and achieve roughly the same accuracy. This demonstrates the flexibility of our

CADA algorithm and mobile cloud offloading system. Fig. 3.8 and 3.9 show the energy

consumption and execution time of each scenario. The figurespresent that time and en-

ergy are proportional and most of the scenarios have big costdifference, which is at least

19

1 2 3 4 Avg.
0

20X

40X

60X

80X

User

Mobile
CADA
Cloud

Figure 3.7: Performance improvement on energy consumption.

40%, between executing on local and cloud. Since the patternof time and energy are

similar, the accuracy of time and energy are very similar as well.

Performance gain achieved by the CADA algorithm. Figs. 3.6 and 3.7 plot the

performance improvements on response time and energy consumption achieved by the

CADA algorithm, respectively. The results are normalized tothe results achieved by run-

ning the mobile applications on the mobile devices. These figures show that the proposed

CADA algorithm outperforms the baseline approach in most cases. The only exception

is the energy consumption of user 1 in Fig. 3.7, which consumes slightly more energy

compared to always running the mobile applications on the cloud server: a mere 4% gap

is observed. In summary, the CADA algorithm improves the mobile cloud offloading

performance in response time or energy consumption for 87.5% users.

Overhead. CADA consumes very few CPU cycles, and terminates in less than 1

ms for all users. The number of entries in the context-aware database is no more than

M × L × 336, whereM is the number of methods to be offload andL is the number of

locations where the users execute those methods. 336 is derived by 48 time slots each day

and 7 days a week. This number is fairly manageable on modern mobile devices.

We design a simple experiment to measure the overhead of our profiler. We use an Ag-

ilent 66321D power meter to measure the average current of anHTC sensation XE phone

with and without our profiler for 1 hour. In fact, our profiler collects many more contexts

although we only need network RSSI, throughput, and GPS location in our experiments.

To be conservative, we enable the profiler to collect all of the contexts. Table. 3.5 gives

the measurement results. This table shows that the average gap is 2.94 mW, only 6% more

20

HCSS LCSS HCBS LCBS
0

2000

4000

6000
E

n
er

gy
(m

J)

Wifi
CPU
Screen

Figure 3.8: Energy consumption of CPU, display, and Wifi of each scenario.

HCSS LCSS HCBS LCBS
0

5

10

15
x 10

7

T
im

e
(m

s)

Local
Cloud

Figure 3.9: Execution time of each scenario.

21

Table 3.5: Profiler Energy Overhead

Power (mW) Average Min Max

Without profiler 48.9 47.1 50.5

With profiler 51.84 46.9 56.3

than the current with profiler.

3.4.2 Offloading Real Third-party Applications

In this experiment, we aim to show that offloading can be used in existing third-party

applications and improves performance or reduces energy consumption of mobile devices.

Since the third-party applications usually don’t have source code but only APK files,

which can be used to install the application on mobile devices, we use our APK analysis

tool to analyze the applications and modify the APK files.

We use HTC one X to be our mobile device and download four applications from

Internet. The offloading server is a virtual machine with android-x86 running on a desktop

PC. By utilizing the APK analysis tool, we analyze the applications to find the methods

that can be offloaded to cloud. After the methods are found, wecarefully choose target

methods from the candidate methods and use the tool to modifythe target methods. We

install the modified APK files on the mobile device and triggerthe modified methods ten

times.

The execution time of local and offloading are shown in Table 3.6. Since we cannot

find any candidate method in the third application, we use X toindicate that it does not

have any candidate method. We observe that the first application (Pocket Chess) reduces

34% execution time with offloading. This observation shows thatoffloading can be used

in existing applications and improves the application performance. However, as men-

tioned before, offloading is not always true. There are two applications that do not have

improvement with offloading. The execution time of offloading are10 times longer than

local. Therefore, offloading decision is necessary and should carefully determine whether

to offload.

22

Table 3.6: Energy Consumption when Offloading over DifferentWireless Networks

Application Name Local (ms) Offloading (ms)

Packet Chess 2641.5 1742.5

Chess Road 7.9 89.4

Alien Invasion X X

Pin Ball 12.7 180.3

23

Chapter 4

Offloading Event Analysis Algorithms:

Using IsCrowded and IsNoisy Events As

Case Studies

In this chapter, we discuss how we integrate offloading into acrowdsensing system and

show the offloading benefit with case studies.

4.1 Implementation

4.1.1 System Overview

Offload computation/

 Receive Result

Send Event Query

Accept analysis Task

Worker Selection Algorithm

Offload Decision Algorithm

Event Analysis Algorithm

BrokerBroker

Figure 4.1: Overview of the crowdsensing system.

24

Fig. 4.1 presents the overview of the crowdsensing system. Mobile users submit

queries to the broker or accept query tasks from broker. A query insists of (i) event,

(ii) required location, (iii) time period, and (iv) location of the mobile device. Event is

the desired event that the mobile user wants to know, for example, whether the required

location is crowded or not. The events are detected by event analysis algorithms, which

analyze the collected sensory data to determine whether theevent happen or not. Since

event analysis algorithms may lead to heavy computation andenergy consumption, we

use offloading to reduce the overhead of mobile devices. For the mobile users who ac-

cept the queries, they move to the required locations and collect the sensory data within

the time period. Broker is a logically controller managing the connection of the mobile

users. It maintains all the queries that are not satisfied andrecommend the queries to

mobile users to perform. The decision algorithm is implemented in broker since broker

is logically controller and has the context of the servers and mobile devices. When of-

floading happens, broker becomes the bridge of the mobile devices and servers, which are

responsible for executing the offloaded event analysis algorithms.

Figs. 4.2–4.4 show the screenshots of the client side user interface. Through binding

the required location in the red rectangle as shown in Fig. 4.2, users can easily choose

the required location. Once the event, required location, and time are selected, users can

submit their queries by click on the submit button. The queries that are not satisfied are

shown on the map (see Fig. 4.3). Users click on the markers to see the details of the queries

and decide whether to accept the task of the clicked query. By clicking the sense button in

Fig. 4.4, mobile devices start to collect the sensory data required for analyzing the events.

Once the sensory data are collected, broker gives instructions to instruct whether execute

the event analysis algorithms on mobile devices or offload tocloud.

4.1.2 Prototype Architecture

We present the architecture of the prototype in Fig. 4.5.

Android Client. The front-end user interface provides easy and straightforward inter-

face for users choosing the event, required location, and time as shown in Figs. 4.2–4.4.

GPS listener monitors the location of mobile devices and provide the location information

when submit/answer the queries. Broker connector responsible for all the communica-

tions between broker and client. Once offloading be triggered, the data are sent through

broker connector and wait for the results. Event analysis algorithms are implemented in

client side. Through the offloading library, the event analysis algorithms can be executed

both on mobile devices and cloud servers.

Broker. Since there are many clients connect to broker, there is a client manager

to manage the clients. The decision algorithm is implemented in client manager to de-

25

Figure 4.2: Screenshot of query

tab.

Figure 4.3: Screenshot of task tab.

Figure 4.4: Screenshot of answer

dialog.

26

Front-end User Interface

GPS

Listener

Broker

Connector

Database Controller

Android Client

Broker

Client Manager

Decision Algorithm

Server Connector

Client Handler

Server

Offloading Library

Offloading Library

Event Analysis Algorithm

Connection Handler

Figure 4.5: Prototype architecture.

termine whether clients offload their event analysis algorithms to cloud. Each client is

handled by a client handler, and it communicates with the broker connector that is on

client side. Client handler handles all the requests from clients, except for offloading. Of-

floading requests are given to server connector to proceed the offloading process. We use

MySQL [3] to be our database and broker communicates with thedatabase through the

database controller. The database maintains all the queries, answers, and user contexts.

Server. Servers are responsible for executing the event analysis algorithms. It has

connection handler to handle multiple offloading requests,and executes the offloading

request through the offloading library. The answers are sentback to clients through broker

once the event analysis algorithms are finished.

4.2 Case Study

In this section, we use two event analysis algorithms to be our case studies. The events

are (i) IsCrowded and (ii) IsNoisy.

IsCrowded. IsCrowded is the event that users want to know whether the required

location is crowded with people. In order to understand whether is crowded or not, we

use image processing with human detection to achieve it. Themost popular techniques

for human detection are face detection and histograms of oriented gradients (HOG) [12].

Face detection computes the human face features appeared inthe images to determine

how many people are in the images. However, face detection requires that all the people

in the images should face to the camera otherwise cannot be detected. Therefore, we use

another technique called histograms of oriented gradients(HOG) [12] instead.

Fig. 4.6 presents the work-flow of HOG human detection. The input images are scaled

to proper size to be processed by the HOG algorithm, and converted to gray-scale images

27

and perform color space normalization to reduce the impact of shadow and noise. The

detection window is shifting on the images and computes the gradients of the covered

area at each run. The result of gradients are given to a support vector machine (SVM)

classifier to detect whether human appeared. In our implementation, we set the window

size to8×8, and use the SVM and parameters trained by openCV [4] to implement human

detection algorithm.

Scale Image

Shift

Detection

Window

Human

Detected?

Mark the

Detected

Area

Y

Check

Whole

Image?

N

N

Process

End

Y

Input

Image

Figure 4.6: HOG human detection workflow.

To show the detected humans in the images, we use rectangles to mark the detected

humans. Fig. 4.7 is an example of using HOG to detect human in an image, and the

detected humans are marked with rectangles. We can see that HOG detects humans in the

image and its accuracy is high. However, the complexity of computing the gradients is a

28

Figure 4.7: Human detection using HOG.

heavy overhead even using native code to implement it. This can lead to long execution

time and high energy consumption on mobile devices. The execution time and energy are

shown in next section.

IsNoisy. For IsNoisy event, we are determining whether the required location is noisy

or not. We record the noise through microphone, and process the recording file to get the

average decibel (db) to determine whether the environment is noisy or not.

4.3 Evaluations

4.3.1 Setup

To understand the performance improvement of the prototypesystem with offloading,

we conduct experiments to observe the results. We use HTC oneX to be our mobile

device. The broker and server are running on VMs, which are hosting on a desktop PC.

In order to deal with android classes, the VMs are Android-x86 machines. We setup a PC

located between the broker and mobile client with dummynet.The network condition can

be easily controlled by the dummynet, and we vary network delay, packet loss rate, and

bandwidth to observe how network condition affects the offloading results. Network delay

29

Table 4.1: Ideal Case Performance of IsCrowded Event

IsCrowded Min Max Avg.

Local execution Time (ms) 31322 33389 31957

Offload execution Time (ms) 15536 19924 18062

Local energy (mJ) 10474 10887 10618

Offload energy (mJ) 2396 2992 2759.2

is varied in[10, 50, 100, 200, 400] ms, packet loss rate is varied in[0, 2, 4, 8, 10]%, and

bandwidth is varied in[256, 512, 1024, 2048, 4096] kbit/s. If not specified, we let network

dealy = 10 ms, packet loss rate = 0%, and bandwidth = 4096 kbit/s. For each event,

we execute the event analysis algorithm 5 times at cloud. Since network condition does

not affect the performance of local execution, we execute the event analysis algorithms 5

times at local and use it as baseline.

4.3.2 Results

Ideal case.We present the ideal case of offloading the event analysis algorithms to un-

derstand whether the event analysis algorithms have performance gain through offloading.

We set network delay = 10 ms, packet loss rate = 0%, and bandwidth is unlimited. The

ideal case results are shown in Table 4.1 and 4.2. We observe that offloading improves

the performance of the crowdsensing prototype system due toleverage the powerful cloud

server to execute the heavy computation of HOG human detection. Offloading reduces

the processing time and energy consumption of HOG to 56.5% and 25.9% compared to

processing on mobile device. However, offloading the event analysis algorithm of IsNoisy

to cloud lead to worse processing time and energy. It takse 2.35 times processing time and

1.84 times energy consumption compare to local execution. The ideal case results present

that offloading improves the crowdsensing system for IsCrowded event, but IsNoisy event

does not have performance gain through offloading. Therefore, we only show the perfor-

mance impact of IsCrowded event while varying network condition and ignore IsNoisy

event.

Impact of network delay. Fig. 4.8 shows that longer network delay leads to longer

execution time. Longer network delay leads to longer transmission time, therefore, it

takes longer transmission time for mobile devices to transfer the data. We observe that

it has performance gain when the network delay is less than 50ms. However, it takes

2.57 times execution time when the network delay is 400 ms. The energy consumption is

shown in Fig. 4.9. Longer network delay leads to larger energy consumption. When the

30

Table 4.2: Ideal Case Performance of IsNoisy Event

IsNoisy Min Max Avg.

Local execution Time (ms) 123 196 162.2

Offload execution Time (ms) 332 474 381.2

Local energy (mJ) 23 46 37

Offload energy (mJ) 54 75 68.3

network delay is less than 200 ms, offloading is better. Once the network delay is 400 ms,

offloading results in 1.28 times energy consumption compareto local execution.

Impact of packet loss rate. The execution time is reduced when packet loss rate is

less than 4%, as shown in Fig. 4.10. Higher packet loss rate leads to more retransmission

of the packets, therefore, the execution time is longer. Theexecution time is 2.52 times

higher than execute on mobile when packet loss rate is 10%. Fig. 4.11 shows the energy

consumption while varying the packet loss rate. It benefits from offloading when packet

loss rate is less than 10%. If the packet loss rate is not smaller than 10%, we do not have

performance gain through offloading.

Impact of bandwidth. Bandwidth affects the transmission time. It takes longer trans-

mission time to send data when bandwidth is low. Fig. 4.12 presents the execution time

under different bandwidth. We observe that IsCrowded event requires bandwidth higher

than 1024 kbit/s for shorter execution time. If bandwidth isonly 256 kbit/s, offloading

takes 3.13 times execution time compare to local execution.Fig. 4.13 presents the energy

consumption under different bandwidth. It shows that 512 kbit/s is sufficient for energy

gain.

The results present that offloading improves the execution time and energy consump-

tion if we carefully determine whether to offload. Differentnetwork conditions lead to

different performance gains. In order to improve the performance of crowdsensing sys-

tems through offloading, offloading decision is necessary.

31

10 50 100 200 400
0

50

100

150

Network Delay (ms)

E
x
ec

u
ti

o
n

T
im

e
(s

)

Offload
Local

Figure 4.8: Execution time while varying network delay.

10 50 100 200 400
0

0.5

1

1.5

2

2.5
x 10

4

Network Delay (ms)

E
n
er

g
y

(m
J
)

Offload
Local

Figure 4.9: Energy consumption while varying network delay.

32

0 2 4 8 10
0

50

100

150

Packet Loss Rate (%)

E
x
ec

u
ti

o
n

T
im

e
(s

)

Offload
Local

Figure 4.10: Execution time while varying packet loss rate.

0 2 4 8 10
0

0.5

1

1.5

2
x 10

4

Packet Loss Rate (%)

E
n
er

g
y

(m
J
)

Offload
Local

Figure 4.11: Energy consumption while varying packet loss rate.

33

256 512 1024 2048 4096
0

50

100

150

Bandwidth (kbit/s)

E
x
ec

u
ti

o
n

T
im

e
(s

)

Offload
Local

Figure 4.12: Execution time while varying bandwidth.

256 512 1024 2048 4096
0

0.5

1

1.5

2
x 10

4

Bandwidth (kbit/s)

E
n
er

g
y

(m
J
)

Offload
Local

Figure 4.13: Energy consumption while varying bandwidth.

34

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We proposed a context-aware decision algorithm, called CADA, which uses the location

and time-of-day to make the mobile offloading decisions of individual methods. We de-

veloped a tool to analyze and modify the existing applications without source code. In

order to study the performance gain in real crowdsensing system, we implemented event

analysis algorithms and integrated offloading library intothe crowdsensing prototype sys-

tem.

The CADA algorithm is flexible and supports different optimization criteria, includ-

ing minimizing response time and minimizing energy consumption. The CADA algo-

rithm can work with the mobile cloud offloading systems proposed in the literature. We

have implemented the CADA algorithm, integrated it with ThinkAir, and conducted ex-

periments using several HTC phones. Our experimental results show that the CADA

algorithm achieves more than 80% prediction accuracy, and leads to better performance

in terms of response time and energy consumption. The complexity of the CADA algo-

rithm is no more than 0.011 ms. We also proposed a context-aware energy model for

mobile devices to accurately measure the energy consumption. The result of modifying

existing applications shows that offloading can be used in existing applications to reduce

the energy consumption or execution time for mobile devices. Our experiments also show

that offloading improves the performance of crowdsensing system through offloading the

overhead of event analysis algorithms to cloud servers.

5.2 Future Work

There are several directions that we plan to address in the future.

• We plan to introduce additional user contexts that may further increase the decision

35

accuracy of our CADA algorithm. For example, we may introducethe usage history

of applications of users to further understand the user behavior.

• A hierarchical decision engine to reduce the overhead of always getting decisions

from broker. That is, mobile devices execute light weight local decision or cache

the decision. If the accuracy of local decision is unsatisfied, mobile devices ask

broker for more accurate decision.

• Our algorithm can be used for offloading computations to multiple servers in crowd-

sensing systems. Optimally determining where to offload each method is among our

future tasks.

• We plan to collect a more realistic dataset for evaluating our algorithms. The dataset

we have is not collected from real applications. We will develop real applications

and our users can use it in their daily life. Therefore, the collected dataset is more

realistic and represents user’s daily usage behavior.

• To improve the performance of our CADA algorithm, we will collect more contexts

and fine-grained data log in the future.

• Current mobile cloud offloading systems only support GUI-less workloads. We

are looking into the possibility of offloading general mobile applications with local

resources (e.g. camera and GPS). This will relieve the burden of using offloading

for developers.

36

Bibliography

[1] 2012 U.S. wireless smartphone and traditional mobile phone satisfaction studies.

http://www.jdpower.com/content/press-release/py6kvam/.

[2] apktool.https://code.google.com/p/android-apktool/.

[3] Mysql. http://www.mysql.com/.

[4] Opencv.http://opencv.org/.

[5] Powertutor. http://ziyang.eecs.umich.edu/projects/

powertutor/.

[6] V. Agarwal, N. Banerjee, and D. Chakraborty. Usense - a smartphone middleware

for community sensing. InProc. of IEEE International Conference on Mobile Data

Management (MDM’13), pages 52–65, Milan, Italy, June 2013.

[7] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consump-

tion in mobile phones: a measurement study and implicationsfor network applica-

tions. In Proc. of ACM SIGCOMM Internet Measurement Conference (IMC’09),

pages 280–293, Chicago, IL, USA, November 2009.

[8] Y. Chon, N. Lane, F. Li, H. Cha, and F. Zhao. Automatically characterizing places

with opportunistic crowdsensing using smartphones. InProc. of ACM Conference

on Ubiquitous Computing (UbiComp’12), pages 481–490, Pittsburgh, Pennsylvania,

September 2012.

[9] B. Chun, M. Naik, S. Ihm, A. Patti, and P. Maniatis. Clonecloud: Elastic execution

between mobile device and cloud. InProc. of European Conference on Computer

Systems (EuroSys’11), pages 181–194, Salzburg, Austrial, April 2011.

[10] V. Coric and M. Gruteser. Crowdsensing maps of on-street parking spaces. In

Proc. of IEEE International Conference on Distributed Computing in Sensor Sys-

tems (DCOSS’13), pages 115–122, Cambridge, MA, May 2013.

37

[11] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl. Maui: Making smartphones last longer with code offload. In Proc. of Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys’10),

pages 49–62, San Francisco, CA, USA, June 2010.

[12] N. Dalal and B. Triggs. Histograms of oriented gradientsfor human detection. In

Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (CVPR’05), pages 886–893, San Diego, CA, USA, June 2005.

[13] M. Dong and L. Zhong. Self-constructive high-rate system energy modeling for

battery-powered mobile systems. InProc. of International Conference on Mobile

Systems, Applications, and Services (MobiSys’11), pages 335–348, Washington,

DC, USA, June 2011.

[14] R. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state and future chal-

lenges.IEEE Communication Magazine, 49(11):32–39, November 2011.

[15] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobil-

ity patterns.Nature, 453:779–782, June 2008.

[16] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. Participatory air pollu-

tion monitoring using smartphones. InProc. of International Workshop on Mobile

Sensing, Beijing, China, April 2012.

[17] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. ThinkAir: Dynamic resource

allocation and parallel execution in the cloud for mobile code offloading. InProc.

of IEEE INFOCOM, pages 945–953, Orlando, FL, USA, March 2012.

[18] Y. Kwon and E. Tilevich. Power-efficient and fault-tolerant distributed mobile exe-

cution. InProc. of IEEE International Conference on Distributed Computing Sys-

tems (ICDCS’12), pages 586–595, Macau, China, June 2012.

[19] K. Lan, C. Chou, and H. Wang. An incentive-based frameworkfor vehicle-based

mobile sensing.Procedia Computer Science, 10:1152–1157, 2012.

[20] C. Liao, T. Hou, T. Lin, Y. Cheng, A. Erbad, C. Hsu, and N. Venkatasubramania.

Sais: Smartphone augmented infrastructure sensing for public safety and sustain-

ability in smart cities. InProc. of International Workshop on Emerging Multime-

dia Applications and Services for Smart Cities(EMASC’14), pages 3–8, Orlando,

Florida, USA, November 2014.

38

[21] T. Lin, T. Lin, C. Hsu, and C. King. Context-aware decision engine for mobile cloud

offloading. InProc. of IEEE Wireless Communications and Networking Conference

Workshops (WCNCW’13), pages 111–116, Shanghai, China, April 2013.

[22] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to estimate app en-

ergy consumption. InProc. of Annual International Conference on Mobile Comput-

ing and Networking (Mobicom’12), pages 317–328, Istanbul, Turkey, August 2012.

[23] V. Namboodiri and T. Ghose. To cloud or not to cloud: A mobile device perspective

on energy consumption of applications. InProc. of IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’12), pages

1–9, San Francisco, CA, USA, June 2012.

[24] G. Perrucci, F. Fitzek, and J. Widmer. Survey on energy consumption entities on

the smartphone platform. InProc. of IEEE Vehicular Technology Conference (VTC

Spring’11), pages 1–6, Budapest, Hungary, May 2011.

[25] M. Ra, B. Liu, T. Porta, and R. Govindan. Medusa: A programming framework for

crowd-sensing applications. InProc. of ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys’12), pages 337–350, Lake District,

UK, June 2012.

[26] A. Rahmati and L. Zhong. Context-based network estimation for energy-efficient

ubiquitous wireless connectivity. IEEE Transactions on Mobile Computing,

10(1):54–66, January 2011.

[27] W. Sherchan, P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha.

Using on-the-move mining for mobile crowdsensing. InProc. of IEEE International

Conference on Mobile Data Management (MDM’12), pages 115–124, Bengaluru,

Karnataka, India, July 2013.

[28] M. Talasila, R. Curtmola, and C. Borcea. Improving locationreliability in crowd

sensed data with minimal efforts. InProc. of Joint IFIP Wireless and Mobile Net-

working Conference (WMNC’13), Dubai, United Arab Emirates, April 2013.

[29] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make

computation offloading decisions. InProc. of International Parallel & Distributed

Processing Symposium (IPDPS’08), pages 1–8, Miami, FL, April 2008.

[30] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and L.Yang. Accurate

online power estimation and automatic battery behavior based power model gen-

eration for smartphones. InProc. of IEEE/ACM/IFIP International Conference on

39

Hardware/Software Codesign and System Synthesis (CODES/ISSS’10), pages 105–

114, Scottsdale, AZ, USA, October 2010.

[31] P. Zhou, Y. Zheng, and M. Li. How long to wait?: Predicting bus arrival time with

mobile phone based participatory sensing. InProc. of ACM International Confer-

ence on Mobile Systems, Applications, and Services (MobiSys’12), pages 379–392,

Lake District, UK, June 2012.

40

Symbol Table

Symbol Description

Ptotal Total energy consumption

Pcpu The energy consumption of CPU

Pcomm The energy consumption of wireless communication

Pdisplay The energy consumption of screen

Pother The energy consumption of other components

PWiFi/Cell The energy consumption of WiFi/Cellular

Pidle The energy consumption while idling

Ptrans The energy consumption of transmitting data

βidle The fraction of time while idling

βtrans The fraction of time while transmitting data

γ The parameter of energy model

S Signal strength

R Throughput

D Data size

V Voltage

T Time-of-day

L Location

tlocal Execution time on mobile device

tcloud Execution time on cloud

elocal Energy consumption on mobile device

ecloud Energy consumption on cloud

M The number of methods to be offload

L The number of locations

41

