
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

在智慧城市中遊戲化手機群眾外包系統

Efficient Mobile Crowdsourcing via Gamification for Smart City
Applications

陳映亦

YingYi Chen
104062641

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 106年 05月
May, 2017

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

在
智
慧
城
市
中
遊
戲
化
手
機
群
眾
外
包
系
統

陳
映
亦
撰

106
05

Acknowledgments

I would like to express my gratitude toward all the people who helped
me in the past two years. I wouldn’t be able to finish my thesis without their
help along the way. I want to thank my parents specifically, for it is they who
provided me with whole-hearted support over my decisions. I would also like
to thank my labmates in Networking and Multimedia Systems Laboratory,
especially Hua-Jun Hong, who helped me a great deal in the course of my
research. Lastly, I would like to express my gratitude toward my adviser:
Prof Cheng-Hsin Hsu. Without the guidance and the suggestion I received
from him, I would not have been able to accomplish what I have done and
learned today.

i

致致致謝謝謝

在此我要感謝在過去兩年中所有幫助過我的人，如果沒有你們的

幫助我一定沒有辦法順利完成我的論文。 在此我要特別感謝我的父

母，他們提供我堅定不移的支持，同時也支持我所作的每一個決定。

我也要感謝網路與多媒體系統實驗室的同學們，特別是洪華駿在過去

兩年的研究中幫助我非常的多。最後，我要感謝我的指導教授：徐正

炘教授。如果沒有他的給予我的指導以及建議，在過去的兩年內我一

定沒辦法完成如此多的事情以及學到如此多的東西。

ii

Abstract

We present a gamified Smartphone Augmented Infrastructure Sensing
(SAIS) platform for leveraging mobile gamers for applications such as smart
cities. We develop a suite of algorithms to transparently guide the gamers to
sensing task locations, in order to complete more tasks at shorter response
time without incurring high workload on gamers. We evaluate our algorithms
using extensive simulations and a real prototype implementation. The sim-
ulation results confirm that our algorithms achieve their design goals. For
example, with 200 sensing tasks and 100 gamers, our algorithms on average:
(i) achieve 63% higher completion ratio, (ii) cuts the response time by almost
two-third, and (iii) reduces the gamer working hour by 81%, compared to the
existing solutions. Furthermore, our prototype implementation demonstrates
the practicality of our algorithms, while our preliminary user study receives
positive feedback.

iii

中中中文文文摘摘摘要要要

這篇論文基於一個結合手機與城市感測設施的資料蒐集平台，進
一步地提出利用遊戲化的方式吸引更多玩家在智慧城市中進行感測資
料的蒐集。 我們將這些蒐集感測資料的需求轉化為群眾外包任務，
將這些任務發包給玩家去執行。為了讓整個系統可以快速地完成更
多任務，並且不給玩家過多的負擔的情況下， 我們設計了一些演算
法達成這些目的。我們透過模擬以及實作的方式去驗證我們提出的演
算法和遊戲化的系統，模擬的結果證明我們的演算法在200個感測任
務、100個玩家的情況下，比起現有的方法(1)有63%更高的任務完成
率，(2)任務完成的速度將近3倍，(3)玩家花在感測的時間降低81%。另
外，實作的系統經過玩家調查證明遊戲化的方式能確實達成我們的目
的。

iv

Contents

Acknowledgments i

致致致謝謝謝 ii

Abstract iii

中中中文文文摘摘摘要要要 iv

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 3

1.2.1 Incentive Mechanism . 3
1.2.2 Gamer Assignment . 3

1.3 Contribution . 4
1.4 Organization . 4

2 Background and Related Work 5
2.1 Smart City and Urban Computing . 5
2.2 Crowdsourcing . 6
2.3 Gamification . 6
2.4 Mobile Augmented Reality . 7

3 Problems and Solutions 9
3.1 Notations . 9
3.2 Optimal Spot Locator . 10
3.3 Nearest Gamer Assigner . 11
3.4 Nature NPC Path Generator . 12

4 Simulation 14
4.1 Baseline Algorithms . 14

4.1.1 VSN . 14
4.1.2 Current Work . 14

4.2 Mobility Models . 15
4.3 Settings . 16
4.4 Results . 17

5 Implementation and User Study 26
5.1 System Design . 26
5.2 Implementations . 26

v

5.3 User Study . 27

6 Conclusion 32

Bibliography 34

vi

List of Figures

1.1 Sample usage scenarios of a gamified Smartphone Augmented Infrastruc-

ture Sensing platform. 2

3.1 Illustrative examples of: (a) a sensing task from all 360 degrees, and (b)

the FoV of a directional sensor and the located spots of a task. 10

3.2 NPC path generator works in the following steps: (a) the gamer follows

the NPC, (b) the NPC moves and guides the gamer to the spot, (c) the

NPC moves and guides the gamer to rotate his/her smartphone, and (d)

the gamer captures the NPC and performs the sensing task. 13

4.1 The gamers’ behavior of VSN. 15

4.2 The gamers’ behavior of current work. 16

4.3 Our proposed solution results in better quality of service: (a) overall com-

pletion ratio and (b) overall response time. 18

4.4 Our proposed solution incurs lower workload on gamers: (a) overall work-

ing hour and (b) overall spots per task. 19

4.5 Performance comparisons under different numbers of tasks using Random

Way Point: (a) the completion ratio, (b) the response time, (c) the working

hour, and (d) the spots per task. 20

4.6 Performance comparisons under different numbers of tasks using Path-

way Mobility Model: (a) the completion ratio, (b) the response time, (c)

the working hour, and (d) the spots per task. 21

4.7 Performance comparisons under different numbers of gamers using Ran-

dom Way Point: (a) the completion ratio, (b) the response time, (c) the

working hour, and (d) the spots per task. The x-axes are in logarithmic

scale. 22

4.8 Performance comparisons under different numbers of gamers using Path-

way Mobility Model: (a) the completion ratio, (b) the response time, (c)

the working hour, and (d) the spots per task. The x-axes are in logarithmic

scale. 23

vii

4.9 Performance comparisons under different life time of tasks using Random

Way Point: (a) the completion ratio, (b) the response time, (c) the working

hour, and (d) the spots per task. 24

4.10 Performance comparisons under different life time of tasks using Pathway

Mobility Model: (a) the completion ratio, (b) the response time, (c) the

working hour, and (d) the spots per task. 25

5.1 The design of our prototype system. 27

5.2 Screenshots of the ordinary app: (a) the map mode using google map, and

(b) shows all the tasks in a list, and (c) the camera mode. 29

5.3 Screenshots of the gamified app: (a) the map mode, used when task lo-

cations are still far, and (b) the AR mode, used when task locations are

close. 30

5.4 Scores from the IMI questions. 30

5.5 The map mode with the gamer’s path and NPC’s path. 31

viii

List of Tables

3.1 Symbols Used in This Paper . 9

5.1 The Running Time (µs) of Our Algorithms 30

ix

x

Chapter 1

Introduction

Recently, the idea of smart city is becoming increasingly popular, thus, We develop a

gamified crowdsourcing system to collect various sensory data for smart city. In this

chapter, we describe the motivation, challenges, and contributions of this paper.

1.1 Motivation

Smart cities [42] require intelligent infrastructures to solve various resource management

problems and large-scale social/economic challenges, such as traffic congestion, pollution

monitoring, and disaster recovery. Market forecast predicts that the smart city market will

grow at an annual rate of almost 20% and reach 1.45 trillion USD by 2020 [9]. Smart

cities dictate city-wide sensing infrastructures, consisting of in-situ sensors and always-

connected networks. Deploying, managing, maintaining, and upgrading the sensing in-

frastructures, however, are expensive, error-prone, and tedious. One way to cope with

the issues due to missing in-situ sensors is to leverage sensor-rich smartphones for mo-

bile crowdsourcing [41] or mobile sensing [24]1. With mobile crowdsourcing, we instruct

smartphone users to relocate to specific locations at certain time instances, to carry out

the assigned sensing tasks, so as to fill up the gaps among in-situ sensors.

In our earlier work [26], we propose a hybrid sensing platform with in-situ sensors

and smartphones, called Smartphone Augmented Infrastructure Sensing (SAIS) for smart

city applications. In this paper, we propose to gamify [34] the SAIS platform using mo-

bile games, similar to the popular Pokémon Go [8], to transparently assign sensing tasks

to mobile gamers, in order to encourage user engagement, increase overall productivity,

and retain smartphone users for a cost-effective and sustainable SAIS platform. Fig. 1.1

gives sample usage scenarios of our proposed SAIS platform, which consists of servers,

1The difference between mobile crowdsourcing and mobile sensing is insignificant in our discussions,

and thus we use mobile crowdsourcing to refer both for brevity throughout this paper.

1

Figure 1.1: Sample usage scenarios of a gamified Smartphone Augmented Infrastructure

Sensing platform.

data providers, and information consumers. There are three types of servers: (i) the bro-

ker, which runs management algorithms, (ii) the database servers, which store the sensory

data, and (iii) the analytics servers, which execute analytic applications for smart cities.

Both in-situ sensors (such as cameras and dust sensors) and mobile crowdsourcing users

(with smartphone sensors or specialized sensor modules wirelessly connected to smart-

phones) act as data providers. Mobile crowdsourcing users contribute to the platform

using: (i) the ordinary app that requires the users to manually fill in forms or (ii) the gam-

ified app that transparently collects data in mobile games. The information consumers

use computers to access the results from analytic applications, such as real-time pollution

maps.

Gamifying the mobile crowdsourcing app is not an easy task, due to the significance of

precision in terms of location and time. To overcome this challenge, we adopt Augmented

Reality (AR) [33] to add Non-Player Characters (NPCs), such as cartoon characters, to

live camera feeds in the preview windows of smartphones. Then, by systematically mov-

ing the NPCs on the maps and in the preview windows, we guide the smartphone users to

collect requested videos (or other sensory data) using smartphone cameras (or other sen-

sors) in a transparent way. We notice that each task from smart city applications may not

2

be fulfilled by a single mobile gamer instantaneously, e.g., taking a photo of a historical

monument from all 360 degrees demands for either: (i) collaboration among multiple mo-

bile gamers or (ii) a longer time duration for a mobile gamer to take photos from multiple

angles. Hence, to achieve efficient mobile crowdsourcing, we have to carefully design

the gamified app on the smartphones and the management algorithms on the broker, to

complete the sensing tasks in the shortest amount of time.

1.2 Challenges

1.2.1 Incentive Mechanism

The incentives mechanism for smartphone users to participate in mobile crowdsourcing

is critical. The more smartphone users, the task can be completed more efficiently. Prior

mobile crowdsourcing work often adopts monetary incentive [19, 26, 37]. For example,

Feng et al. [19] consider the auction problem of spatial dependent mobile crowdsourc-

ing. They present an auction framework for the crowdsourcing platform and smartphone

users. Different from [19, 26, 37], the current paper considers mobile games as alterna-

tive incentives of mobile crowdsourcing. Such a concept, to our best knowledge, is first

briefly touched upon in a user study [11], without being implemented nor evaluated. Ta-

lasila et al. [36] develop a mobile game for mobile crowdsourcing, in which aliens move

on a map of mobile app, and mobile gamers have to follow the trails of aliens to gain

points. Different from our work, their app does not adopt AR, and cannot guide mobile

gamers for directional sensing, such as taking photos or shooting videos. Moreover, their

work focuses on area coverage of homogeneous sensing tasks, while our SAIS platform

is more general and comprehensive for heterogeneous sensing tasks.

1.2.2 Gamer Assignment

In order to complete the crowdsourcing task efficiently, we have to careful assign the task

to the mobile gamers. The problem is that the human behavior is hard to predict, we can’t

assume that every mobile gamer is always available for all the tasks. There are two modes

of Gamer Assignment: gamer select tasks and server assign tasks [23]. The gamer select

tasks mode allows each gamer to choose the task that he or she prefers. However, some

tasks that located in not crowded area may not be done. To make the high overall comple-

tion of the tasks, we only consider the server assign tasks mode. Jian et al. [12] proposed a

crowdsourcing assignment model based on social relationship cognition and community

detection. Unlike our work, their model select the gamers who have credible interaction

with the information consumer of each task. Liao et al. [27] proposed an algorithm to

3

assign the crowdsourcing tasks close to the gamers’ routine trajectories. Therefore, the

gamers can complete the task without moving far away form their path.

1.3 Contribution

There are four contributions in this paper.

• Develop crowdsourcing platform. We implement a crowdsourcing platform, which

contains (i)web page for information consumers, (ii) the server which handle gamer

assignment, and (iii) clients with ordinary version and gamified version.

• Develop gamified crowdsourcing application. We implement a gamified app on

Android which allow user to collect data for us while playing the game.

• Design three algorithms for our system.

– Optimal spot locator, which calculates the minimal number of spots (loca-

tions) for each spatial-temporal task.

– Nearest gamer assigner, which assigns the nearest gamer with sufficient capa-

bility to each spot.

– Nature NPC path generator, which considers the locations of the optimal spots

and mobile gamers, and generates natural NPC paths to transparently guide

mobile gamers to relocate to the optimal spots and complete the task.

These algorithms are the keys of the gamified app in our SAIS platform. The

first two algorithms are implemented on the broker server, and the last one runs

on smartphones. These optimization algorithms allow the SAIS platform to effi-

ciently support smart city applications. This sets our platform quite different from

PokémonGo [8], which merely generates static monsters at arbitrary locations and

addresses little, if any, city-scale issues.

• Evaluate our system with real user study. We find participants to use our applica-

tions. They give the gamified app higher score in our study.

1.4 Organization

The rest of this paper is organized as follows. We survey the related work in Ch. 2. Ch. 3

presents the optimization algorithms. This is followed by the simulations in Ch. 4. We

implement the algorithms in a real SAIS platform and carry out a user study in Ch. 5.

Ch. 6 concludes the paper.

4

Chapter 2

Background and Related Work

2.1 Smart City and Urban Computing

The rapid growth of population leads to many issues in urban cities, such as traffic con-

gestion, energy consumption, and pollution. In order to solve these urban issues, the

concept of smart city and urban computing becomes more popular. The smart city in-

tegrate multi dimensions that includes smart transportation, smart environment, smart

health care, smart education, smart safety, and smart energy [31]. More detail, the smart

city can divide into three layers encompassing the perception layer, the network layer, and

the application layer [35]. The perception layer is responsible to collect information via

sensor. The network layer makes accurate transmission and preprocessing of the informa-

tion obtained in the perception layer. The application layer is to analyze the information

and extract useful information from massive data. However, there are many research

problems in all three layers. The preception layer faces sensor development. communica-

tion protocol, and energy consumption. Followed by the network layer with problems in

information integration, traffic congestion, and real-time transmission. Lastly, the visual

and analytical lowed applicaiotn layer is increasing the burden in regards to the massive

data.

While the smart city has a very large concept, the urban computing is more focus

on data analytics. There are lots of smart infrastructures which collects heterogeneous

data in our smart city every seconds. The problem is how to acquisition, integration,

and analysis big urban data. More precisely, the framework of urban computing includes

urban sensing and data acquisition, urban data management, urban data analytics, and

service providing [42].

In our system. our idea is closer to those of smart city as we are not focus on data

analytics. We provide a platform allowing information consumer to send request, and get

required data from crowdsourcing. The information consumer have to analyze data by

5

their own algorithms. Our research problem would be how to achieve a higher efficiency

in crowdsourcing.

2.2 Crowdsourcing

Due to the explosive growth of the Internet, crowdsourcing has been used in various ap-

plications in the literature. These crowdsourcing applications can be grouped into several

classes [41]: (i) voting systems, (ii) information sharing systems, (iii) social games, and

(iv) creative systems. However, despite the systems being widely studied, only a few of

them handle spatial-temporal dependent tasks, which are crucial to smart city applica-

tions. Since smartphones are widespread and equipped with various sensors, such as GPS

readers, cameras, and digital compasses, they are ideal for spatial-temporal dependent

crowdsourcing [11]. Kanhere [22] discusses several challenges in mobile crowdsourc-

ing, including: (i) incomplete samples, (ii) context-awareness, (iii) user privacy, (iv) user

credibility, and (v) energy conservation. These challenges, while important, are orthog-

onal to our work in this paper. In particular, the current paper considers a more difficult

problem: incentives for smartphone users to participate in mobile crowdsourcing. Prior

mobile crowdsourcing work often adopts monetary incentive [19, 25, 26, 37]. Different

from their work, the current paper considers mobile games as alternative incentives of

mobile crowdsourcing. Such a concept, to our best knowledge, is first briefly touched

upon in a user study [11], without being implemented nor evaluated. Talasila et al. [36]

develop a mobile game for mobile crowdsourcing, in which aliens move on a map of mo-

bile app, and mobile gamers have to follow the trails of aliens to gain points. Similar to

our work, smartphones in their system transparently collect sensory data, such as WiFi

signals. Different from our work, their app does not adopt AR, and cannot guide mobile

gamers for directional sensing, such as taking photos or shooting videos. Moreover, their

work focuses on area coverage of homogeneous sensing tasks, while our SAIS platform

is more general and comprehensive for heterogeneous sensing tasks.

2.3 Gamification

Gamification defines as using game element in no-gaming systems to improve user ex-

perience (UX) and user engagement [17]. Seaborn et al. [34] indicates the top fields for

gamification research are education, health and wellness, online communities and social

networks, crowdsourcing and sustainability. Hamari et al. [20] classify the motivational

affordances for gamification into 10 categories: points, leaderboards, achievements and

badges, levels, story and theme, clear goals, feedback, rewards, progress, and challenge.

6

Out of the ten, the points, leaderboards, and badges are most commonly used. De Luca

et al. [28] propose a social power game that encourages people to save energy in a city.

Their application visualize gamer’s home energy consumption. Gamers can compare their

energy consumption with their friends. They discuss the design challegnes in such appli-

cations. Such gamify application promotes the awareness of issues of energy use in the

city.

may leads people more focus on energy problem in urban city.

2.4 Mobile Augmented Reality

Augmented Reality (AR), defined as “a form of virtual reality where the participant’s

head-mounted display is transparent, allowing a clear view of the real world” [30], is con-

sidered to be a promising technology with the progress of hi-tech products. There are

three classes of displays for AR: (i) Head-worn displays (HWD), (ii) Hand-held displays

and (iii) Projection displays. Head-worn displays, such as Google Glass and Microsoft

HoloLens, allow users to look at a see-through displayer and get AR information. Hand-

held displays provide AR video on the screens of mobile devices with camera. Projection

displays is to project virtual information on the physical object directly. In this paper, we

focus on hand-held displays which can be smartphone or tablet. Gamers can use their

own smartphone to play our crowdsourcing game.

There are still challenging to run AR on smart phone. Some research about mobile

AR is focus on recognizing the environment. AR is separated into two categories: in a

prepared and in an unprepared environment. Running AR in a completely prepared envi-

ronment demonstrate highly accuracy. Welch et al. [40] proposed a single-constraint-at-

a-time algorithm (Scaat) to increase the performance of tracking in a completely prepared

environment. Running AR in an unprepared environment is a difficult problem for hand-

held devices. One of the solution is vision tracking on markers. It is used in the most

of popular commercial applications, current AR games, such as Invizimals on PSP [38].

However, current research problem is focus on recognizing 3D environment. Most of the

smart phones only equipped with one camera, it is hard to recognize the real world like

the human eyes. To solve AR in a single camera mobile device, it becomes a monocu-

lar Simultaneous localization and mapping (monocular SLAM) problem. There are two

classes for monocular SLAM. (i)Feature-Based Method, containing both filtering-based

and keyframe-based approaches. With usually two steps. First, extract feature from the

image. Second, compute camera position and construct 3D world. This method is faster,

but less accurate and limited in featurable resource. (ii)Directed Method, it doesn’t rely

on features. Indeed, it directly computes camera position and rebuild 3D world with

7

total images. The method is accurate, robust, and able to use all information in the im-

age. However, it needs to consume large computing resource. Some existing work like

DTAM [32] and SLAM [18]. Although the advance of hardware and software makes

mobile AR become real, there are still a lot challenges on mobile AR [33]. Primarily,

the computation of a real-time and mark-less AR is still too high. So mobile phone can

not run mark-less AR or run with a low frame per second. therefore, we implement an

efficient AR game like Pokémon Go [8].

8

Chapter 3

Problems and Solutions

Our proposed system contains three components: spot locator, gamer assigner, and NPC

path generator. The spot locator is responsible for selecting the minimal number of spots

for each task. Based on the selected spots, the gamer assigner assigns gamers to the spots.

After assigning tasks, the NPC path generator moves NPCs in AR mobile app to attract

and guide gamers to the right spots for finishing the tasks.

3.1 Notations

Table 3.1: Symbols Used in This Paper
Sym. Description
T Number of tasks

P Number of gamers

Ut Requested angle set of task t

Qt Assigned gamer set of task t

St Located spot set of task t

d̂t Maximal effective distance of task t

ďt Minimal effective distance of task t

ġt GPS location of task t

gp GPS location of gamer p

g̈s GPS location of spot s

Gn GPS location of the NPC

αt Maximal covered angle of a single gamer of task t

Rt The radius of FoV of the sensor requested by task t

Θt The angle of FoV of the sensor requested by task t

l̂t The beginning life time of task t

ľt The ending life time of task t

Table 3.1 summarizes the symbols used throughout this paper. Let P be the number

of active gamers, and gp be the current location of gamer p, where 1 ≤ p ≤ P . Let T be

the number of sensing tasks from smart city applications. To be general, we consider di-

rectional sensing tasks, which require mobile gamers to perform each task from a specific

9

angle within a reasonable distance to the task location1. Examples of such tasks include:

(i) capturing videos from all four corners of an intersection and (ii) measuring the noise

levels at the eight gates of a busy train station. Each task t (1 ≤ t ≤ T) is described

by: (i) its GPS location ġt, (ii) requested angle set Ut, (iii) maximal effective distance

d̂t, (iv) minimal effective distance ďt, (v) beginning life time l̂t, and (vi) end life time ľt.

Fig. 3.1(a) illustrates a sample sensing task t at location ġt with Ut = {[0◦, 360◦]}, and its

effective distance between ďt and d̂t. Mobile gamers have to perform each task by point-

ing their sensors, such as the cameras at the spot locations from the gray area. The spot

location is represented by gts of task t and spot s. Such sensing tasks may be performed

several times (by one or multiple gamers) in order to cover Ut.

3.2 Optimal Spot Locator

(a) (b)

Figure 3.1: Illustrative examples of: (a) a sensing task from all 360 degrees, and (b) the

FoV of a directional sensor and the located spots of a task.

Our proposed optimal spot locator algorithm locates the least number of spots to finish

a task, i.e., covering Ut. Different tasks require different sensors, which have diverse

Field of Views (FoVs). The FoV is a fan-shaped effective sensing area described by

radius Rt and angle Θt. Fig. 3.1(b) shows an example of FoV and the located spots.

It is not hard to see that to maximize the coverage of each gamer standing on a spot,

ideally the spot is located on the outer circle. We write the maximal covered angle as

αt = 2arccos((d̂2t + ď2t −R2)/2d̂tďt). We then locate the spots on the outer circle with an

1Omnidirectional sensing tasks, such as collecting WiFi fingerprints [36], are degraded versions of our

general sensing tasks.

10

equal angle of αt between any two adjacent spots. For example, there are six spots located

in Fig. 3.1(b) because αt = 60◦. Algorithm 1 shows the pseudo code of the optimal spot

selector. In lines 2 and 3, we go over all the tasks and its requested angles ∈ Ut. In lines

4 and 5, we locate N spots and compute specific locations of each spots. The computed

spots are saved in St.

For example, if we would like to cover 360◦ of the target and αt = 30◦, we will have

six spots equally distributed on the outer circle based on αt. Hence, St = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.

Algorithm 1 Optimal Spot Locator
1: function SPOT LOCATOR

2: for each task t = 1, 2, . . . , T do
3: for e ∈ Ut do
4: N = d(max(e)−min(e))/αte
5: for n = 0, 1, . . . , N − 1 do
6: St = St ∪ {((max(e)−min(e))/N)n+ min(e)}

3.3 Nearest Gamer Assigner

The nearest gamer assigner assigns gamers to nearest spots, thus, the gamers have to

report their locations while they are playing. We note that the assigned gamer must have

the available sensors required by the task. The pseudo code of the nearest gamer assigner

is shown in Algorithm 2. In lines 2 to 3, we find the most urgent task and then assign

gamers to its spots. More specifically, in lines 4 to 7, we gradually assign the nearest

gamers that are capable for the sensing task to the remaining spots. The algorithm ends

upon all tasks have got enough gamers to cover the spots. Note that the nearest gamer

assigner algorithm is periodically executed, such as once every 5 minutes. This is to

adapt to system dynamics, like inactive gamers and overdue tasks.

Algorithm 2 Nearest Gamer Assigner
1: function GAMER ASSIGNER

2: while there are remaining tasks do
3: find the most urgent task ṫ by comparing ľt and current time

4: while there are unsatisfied spots of ṫ do
5: Find the nearest ṗ by comparing gṫ and gp
6: if gamer ṗ has required sensors for task ṫ then
7: assign ṗ to the nearest unsatisfied spot ∈ Sṫ in Qṫ

11

3.4 Nature NPC Path Generator

The nature NPC path generator creates the NPC paths to guide the gamers as illustrated

in Fig. 3.2. An NPC is initially put on the intersection of the inner circle and the line

between the spot and the task location. We show the NPC on the gamer’s map and expect

that the gamer goes towards the NPC. The gamer sees the NPC when their distance is less

than d̂t − ďt. However, the gamer may look at the NPC in a direction without the task

location shown in the gamer’s preview window (Fig. 4.1(a)). The NPC path generator

performs three steps to guide the gamer. First, the path generator moves the NPC to

a point that is d̂t − ďt away from the spot and on the line between the gamer and the

spot (Fig. 3.2(b)). This step guides the gamer to move to the spot. Second, the path

generator moves the NPC back to the intersection point (Fig. 3.2(c)). This step guides the

gamer to turn towards the task location. Finally, the gamer reaches the spot and points

to the task location (Fig. 3.2(d)), and then completes the task. Note that, although we

propose the nature NPC path generator to guide the gamers, the gamers may not be able

to precisely stand on the spot. In such case, we take out the sensed angles from the

required angle set, and rerun the algorithms. For example, if a task t’s requested angle

Ut = {[0◦, 360◦]} and two gamers cover angles between 0◦ to 30◦ and 60◦ to 90◦, Ut

becomes {[30◦, 60◦], [90◦, 360◦]}.

Algorithm 3 Nature NPC Path Generator
1: function PATH GENERATOR

2: Let gi be the initial GPS location of NPC

3: gi = ġt + (
−−→
ġtgts)/d̂tďt

4: Put NPC at the initial point Gn = gi

5: while gp is not at spot location g̈s do
6: Gn = gp + (

−−→
ġtgts)/d̂t(d̂t − ďt)

7: while Gn is not at gi do
8: Gn = Gn+ (

−−−→
Gngi)/(|

−−−→
Gngi|)

The pseudo code of the nature NPC path generator is shown in Algorithm 3. From

lines 2 to 4, we calculate the initial GPS location of the NPC. From lines 5 to 6, we keep

moving the NPC until the gamer is at the spot location. In lines 7 and 8, we move the

NPC back to the initial location, so that the gamer rotates his/her smartphone towards the

task location.

12

(a) (b)

(c) (d)

Figure 3.2: NPC path generator works in the following steps: (a) the gamer follows the

NPC, (b) the NPC moves and guides the gamer to the spot, (c) the NPC moves and guides

the gamer to rotate his/her smartphone, and (d) the gamer captures the NPC and performs

the sensing task.

13

Chapter 4

Simulation

In this chapter, we conduct extensive simulations to evaluate our algorithms in larger sce-

narios. First, we introduce the baseline algorithms. Followed by our simulation settings

and results.

4.1 Baseline Algorithms

We have also implemented two baseline algorithms in the simulator for comparisons. We

denote the two baseline algorithms as VSN and Current in the figures and tables.

4.1.1 VSN

First, in Video Surveillance Networks (VSNs), an existing algorithm that randomly selects

the spots within the effective distance until tasks are completed were proposed in Chen

et al. [15]. In their scenario, the sensors equipped camera are randomly place in an area.

The problem is how to find a minimum set of sensors to cover the whole area. Similar

to our work, they consider FOV, rotation of each camera. The difference is that we use

gamers to replace the sensors. We modify the VSN algorithm in order to use in our SAIS

platform. From lines 2 to 3, we find the spot for each gamer who is assigned the task.

Specifically, from lines 4 to 5, we calculate the distance and the angle to generate the new

spot. In line 6, we add the new spot to the sets of St.

4.1.2 Current Work

Second, a currently-used algorithm that mimics manual assignments and human behavior

is considered. For each task, this algorithm locates the closest gamer, and places its NPC

on the line between the gamer and the task location within the effective distance. From

lines 2 to 3, we find the spot for each gamer who is assigned the task. Specifically, from

14

Algorithm 4 The VSN algorithm.
1: function VSN

2: for each task t = 1, 2, . . . , T do
3: for p who is assign to t do
4: let d = distance away from ġt, which is randomly chosen between d̂t and ďt fol-

lowed by gaussian distribution

5: let αt = cover angle of task t, which is randomly chosen between 0 and 2π

6: St = St ∪ {ġt + d| sinαt, cosαt|}

(a)

Figure 4.1: The gamers’ behavior of VSN.

lines 4 to 5, we calculate the new spot location with random distance from task location

to gamer location.

Algorithm 5 The Current Practice algorithm
1: function CURRENT WORK

2: for each task t = 1, 2, . . . , T do
3: for p who is assign to t do
4: let d = distance away from ġt, which is randomly chosen between d̂t and ďt fol-

lowed by gaussian distribution

5: St = St ∪ {(ġt + (
−−→
ġtgp)/|

−−→
ġtgp|d)}

4.2 Mobility Models

In order to simulate the gamers’ movement in a large scale area, there are lots of research

on mobility models [13]. The most frequently used mobility model is the Random Way

Point model. Each gamer move independently to a randomly chosen destination. Specif-

ically, the Random Way Point model randomly choose each gamer’s destination, speed,

15

(a)

Figure 4.2: The gamers’ behavior of current work.

and pause time. Another random model is the Random Walk Model, which randomly

choose gamer’s direction, not destination. There are some limitations of the Random

Models, including temporal dependency, spatial dependency, and geographic restriction.

• temporal dependency of velocity. The velocity of gamer is a memoryless random

process,i.e., the gamer in simulation may have strange behaviors like sudden stop,

sudden acceleration and sharp turn. These behaviors is not going to happen in real

life.

• spatial dependency of velocity. Each gamer move independently to other gamers

in the Random Models. In real life, the gamers may follow other gamers, or interact

with other gamers. Which is hard to simulate.

• geographic restriction of Movement. In the Random Models, the gamer move

freely within simulation field without any restriction. However, in the real city, the

movement of each gamers is bounded by obstacles, buildings, streets, of freeways.

In our simulation, we implement two mobility models in our simulation. We run the sim-

ulation with the Random Way Point Model and PathWay Mobility Model. The PathWay

Mobility Model is to restrict the gamers’ movement to the pathways in the map. We use

the OpenStreetMap [6] to generate the map in simulations. Following is our simulation

settings.

4.3 Settings

We have implemented a simulator in Java to evaluate our proposed algorithms. We use our

campus map in the simulations, and its size is about 5 × 5 km2. The simulator generates

16

P gamers at random locations following a uniform distribution. Each gamer has 1 to 3

hours available time, between 6 a.m. and 6 p.m. every day. The available time is generated

using a Gaussian distribution, where the mean is 2 hours and the standard deviation is 1.

Each simulation lasts for 1 week (simulation time). The gamers move around following

the Random Waypoint model until they are assigned a task. We assume the travel speed

of gamers is 5.4 km/hr. Upon being assigned a task, each gamer then attempts to complete

the assigned task. The number of tasks is T and the life time of any task t is LT = ľt − l̂t.
The following parameters are used in our simulations: P = {25, 50, 100, 200, 400}, T =

{100, 200, 400, 800}, and LT = {1, 2, 3, 4, 5} hours. The bold font indicates the default

settings. We consider the following performance metrics:

• Completion ratio. For each task, the completion ratio is the percentage of the re-

quested angles covered by the gamers. For all tasks, the completion ratio is the

average ratio across all tasks.

• Response time. The time between the task received (from smart city applications)

and completed (by gamers).

• Working hour. The average hours spent by gamers when carrying out the tasks.

• Spots per task. The number of resulting spots for each task.

4.4 Results

We run each setting 10 times and report the average results, along with 95% confidence

intervals wherever applicable.

Our algorithm offers better quality of service. We report the performance results

under the default settings in Figs. 4.3 and 4.4. We first observe from Fig. 4.3 that our

algorithm achieves higher completion ratio and shorter response time. Fig. 4.3(a) presents

the average completion ratio over time of a sample run. This figure shows that the com-

pletion ratios increase as time goes on. In the end, our algorithm achieves (64.38)%

of the completion ratio, which outperforms the baseline algorithms by (64)% at most.

Fig. 4.3(b) presents the overall completion ratios, which follow the same trend: on aver-

age our algorithm outperforms the baseline algorithms by up to 63%. Fig. 4.3(c) shows

that the average response time over time. It is clear that our algorithm leads to much

shorter response time. Fig. 4.3(d) gives the overall response time. On average, our algo-

rithm achieves an average response time of 39.7 mins, while VSN and Current algorithms

lead to average response times of 118.3 and 117.5 mins, almost 3 times compared to our

solution.

17

0 50 100 150
Time (hr)

0

0.2

0.4

0.6

0.8

1
C
om

p
le
ti
on

R
at
io

CP
VSN
Proposed

(a)

1 3 5 7 9 Mean
Round

0

0.2

0.4

0.6

0.8

1

C
om

p
le
ti
on

R
at
io

CP
VSN
Proposed

(b)

0 50 100 150
Time (hr)

0

50

100

150

200

250

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(c)

1 3 5 7 9 Mean
Round

0

50

100

150

200

250

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(d)

Figure 4.3: Our proposed solution results in better quality of service: (a) overall comple-

tion ratio and (b) overall response time.

Our algorithm incurs less workload on gamers and the system. We observe from

Fig. 4.4 that our algorithm requires fewer working hours from gamers, which could be

attributed to fewer task spots. In particular Fig. 4.4(b) shows that our algorithm results in

an average working hour of 1.8 hrs, while the baseline algorithms lead to up to 9.8 hrs,

a 81.63% reduction. This can be explained by Fig. 4.4(d), which indicates that the two

baseline algorithms, compared to our algorithm, fail to effectively assign tasks to gamers:

they end up with too many spots per task, as high as 15 times more than our algorithm.

This is because VSN and Current algorithms are random and greedy algorithms, respec-

tively. Therefore, they could not identify the best gamers for individual tasks, like our

algorithm does. This behavior is the root cause of the inferior performance of the baseline

algorithms.

Our algorithm performs well under different numbers of tasks. Fig. 4.5, and

Fig. 4.6 show the implications of more tasks on individual performance metrics. Fig. 4.5(a)

shows that the gap of completion ratio is larger when the number of tasks increases. Par-

ticularly, the completion ratio of our algorithm outperforms the baseline algorithms by

4.8 times at most. Fig. 4.5(b) shows that the response time of our algorithm is less than

18

0 50 100 150
Time (hr)

0

5

10

15
W
or
k
in
g
H
ou

r
(h
r) CP

VSN
Proposed

(a)

1 3 5 7 9 Mean
Round

0

5

10

15

W
or
k
in
g
H
ou

r
(h
r) CP

VSN
Proposed

(b)

0 50 100 150
Time (hr)

0

50

100

150

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(c)

1 3 5 7 9 Mean
Round

0

20

40

60

80

100

120

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.4: Our proposed solution incurs lower workload on gamers: (a) overall working

hour and (b) overall spots per task.

half of that from the baseline algorithms. This is because our algorithm leads to fewer

spots and assigns fewer gamers to the same task. Compared to the baseline algorithms,

Fig. 4.5(c) shows that our algorithm reduces the average working hour by at most 87%.

Fig. 4.5(d) reveals that our algorithms leads to only 5.3 spots per task, even when we have

800 tasks. In summary, Fig. 4.5, and Fig. 4.6 demonstrates that our algorithm constantly

outperforms the baseline algorithms under different numbers of tasks.

Our algorithm performs well even with few gamers. Next, we study the impli-

cations of fewer gamers on individual performance metrics in Fig. 4.7, and Fig. 4.8.

Fig. 4.7(a) shows that, when there are only 25 gamers, our algorithm achieves 60.82%

completion ratio, which is almost 1.86 times higher than the baseline algorithms. Fig. 4.7(b)

reveals that the response time of our algorithm is decreased from 58.84 to 35.26 mins

when the number of gamers increases. Our response time is about one third of that from

the baseline algorithms. Fig. 4.7(c) shows that the working hour of our algorithm declines

from 7.7 to 0.4 hrs, when the number of gamers increases; while the same improvement is

not observed on the two baseline algorithms. Figs. 4.7(b) and 4.7(c) illustrate that our al-

gorithm can effectively leverage additional gamers, in contrast to the baseline algorithms.

19

The difference can be explained by Fig. 4.7(d). This figure shows that our algorithm pro-

duces stable numbers of spots per task, while the baseline algorithms assign many more

gamers to each task, leading to waste of resources.

0 200 400 600 800
Number of Tasks

0

0.5

1

C
om

p
le
ti
on

R
at
io CP

VSN
Proposed

(a)

0 200 400 600 800
Number of Tasks

0

100

200

300

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(b)

0 200 400 600 800
Number of Tasks

0

10

20

30

W
or
k
in
g
H
ou

r
(h
r)

CP
VSN
Proposed

(c)

0 200 400 600 800
Number of Tasks

0

50

100

150

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.5: Performance comparisons under different numbers of tasks using Random

Way Point: (a) the completion ratio, (b) the response time, (c) the working hour, and (d)

the spots per task.

20

0 200 400 600 800
Number of Tasks

0.5

1

C
om

p
le
ti
on

R
at
io CP

VSN
Proposed

(a)

0 200 400 600 800
Number of Tasks

0

100

200

300

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(b)

0 200 400 600 800
Number of Tasks

0

10

20

30

W
or
k
in
g
H
ou

r
(h
r) CP

VSN
Proposed

(c)

0 200 400 600 800
Number of Tasks

0

50

100

150

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.6: Performance comparisons under different numbers of tasks using Pathway

Mobility Model: (a) the completion ratio, (b) the response time, (c) the working hour, and

(d) the spots per task.

21

25 50 100 200 400
Number of Gamers

0

0.5

1

C
om

p
le
ti
on

R
at
io

CP
VSN
Proposed

(a)

25 50 100 200 400
Number of Gamers

0

50

100

150

200

250

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(b)

25 50 100 200 400
Number of Gamers

0

5

10

15

20

W
or
k
in
g
H
ou

r
(h
r)

CP
VSN
Proposed

(c)

25 50 100 200 400
Number of Gamers

0

50

100

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.7: Performance comparisons under different numbers of gamers using Random

Way Point: (a) the completion ratio, (b) the response time, (c) the working hour, and (d)

the spots per task. The x-axes are in logarithmic scale.

22

102

Number of Gamers

0

0.5

1

C
om

p
le
ti
on

R
at
io

CP
VSN
Proposed

(a)

102

Number of Gamers

0

50

100

150

200

250

R
es
p
on

se
T
im

e
(m

in
)

CP
VSN
Proposed

(b)

102

Number of Gamers

0

5

10

15

W
or
k
in
g
H
ou

r
(h
r) CP

VSN
Proposed

(c)

102

Number of Gamers

0

100

200

300

400

500

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.8: Performance comparisons under different numbers of gamers using Pathway

Mobility Model: (a) the completion ratio, (b) the response time, (c) the working hour, and

(d) the spots per task. The x-axes are in logarithmic scale.

23

1 2 3 4 5
Life time of each tasks

0

0.5

1

1.5

C
om

p
le
ti
on

R
at
io

CP
VSN
Proposed

(a)

1 2 3 4 5
Life time of each tasks

0

100

200

300

400

R
es
p
on

se
T
im

e
(m

in
) CP

VSN
Proposed

(b)

1 2 3 4 5
Life time of each tasks

0

10

20

30

W
or
k
in
g
H
ou

r
(h
r)

CP
VSN
Proposed

(c)

1 2 3 4 5
Life time of each tasks

0

50

100

150

200

S
p
ot
s
p
er

T
as
k

CP
VSN
Proposed

(d)

Figure 4.9: Performance comparisons under different life time of tasks using Random

Way Point: (a) the completion ratio, (b) the response time, (c) the working hour, and (d)

the spots per task.

24

1 2 3 4 5
Life time of each tasks

0

0.5

1

C
om

p
le
ti
on

R
at
io

Current
VSN
Proposed

(a)

1 2 3 4 5
Life time of each tasks

0

100

200

300

400

R
es
p
on

se
T
im

e
(m

in
) Current

VSN
Proposed

(b)

1 2 3 4 5
Life time of each tasks

0

10

20

30

W
or
k
in
g
H
ou

r
(h
r)

Current
VSN
Proposed

(c)

1 2 3 4 5
Life time of each tasks

0

50

100

150

200

S
p
ot
s
p
er

T
as
k

Current
VSN
Proposed

(d)

Figure 4.10: Performance comparisons under different life time of tasks using Pathway

Mobility Model: (a) the completion ratio, (b) the response time, (c) the working hour, and

(d) the spots per task.

25

Chapter 5

Implementation and User Study

In this section, we first describe the design and implementation of our prototype system,

which runs on smartphones and a Linux server. Then, we leverage this prototype system

for a user study.

5.1 System Design

Our prototype system contains: (i) mobile app, (ii) broker , and (iii) dashboard.

• The mobile app leverages a game engine to simulate and render a 3D world. It also

realizes a sensory data collector to record and upload sensory data. Moreover, it

implements our proposed NPC path generator.

• The broker consists of a database system for storing the tasks, sensory data, and

gamer states. The broker also contains a task manager that keeps track of the gamers

with assigned sensing tasks. Our two proposed algorithms, spot locator and gamer

assigner, are implemented in the broker.

• The dashboard is essentially the Web interface for administrator (in our experi-

ments) and smart city application developers (in real deployments) to: (i) submit

and configure tasks and (ii) retrieve the sensory data.

5.2 Implementations

The broker is implemented as a daemon on a Linux server. We implement the dashboard

on the same Linux server using NGINX [5]. The mobile app runs on Android OS, and

connects to the broker using proprietary protocols over TCP connections. Existing AR

algorithms [18, 39] are often too heavy for smartphones. Even for high-end smartphones,

26

Dashboard

Tasks
Web Server

Spots

Sensory

Data

Mobile
App

Game Engine

Sensory Data

Collector

NPC Path

Generator

Broker

Spot Locator

Task Manager

Database

Gamer

Assigner

Figure 5.1: The design of our prototype system.

the excessive energy consumption due to intensive computations drains the batteries in

no time. Therefore, we opt for light-weight AR heuristics based on smartphone sensors1.

We benchmark our implementation for the running time of each algorithm. Table 5.1

gives the average running time among 10 runs with 100 gamers and 200 tasks. This table

shows that even on a smartphone, the NPC path generator still runs in real time; while

the spot locator and the gamer assigner scale to large systems. We adopt MySQL [4] as

our database server on the broker. The ordinary app employs Google Map [2] to mark the

task locations in Fig. 5.2(a). The gamified app, as shown in Fig. 5.3, is developed by a

game engine, called Unity [10]. We adopts a 3D map library, called Go Map [1], for the

map mode. Some additional code is added to facilitate the user study, which is detailed

below.

5.3 User Study

We conduct a user study on our campus to compare the two mobile apps of our platform.

We recruit 4 gamers in their twenties (50% male) as our subjects and ask them to use both

mobile apps for six days (three days each). We note that 3-day experiments may sound

too short, but they do not deviate from real deployments too much: it is reported that most

1We notice that advanced hardware devices, such as Google Tango [3], may enable higher quality AR

on smartphones. Implementing our solution on these devices is one of our future tasks.

27

users stop using an app after 3-7 days [14]. The gamified app uploads detailed logs to the

broker. For example, we highlight sample gamer and NPC trajectories in Fig. 5.5 using

dots. This figure shows that our NPC indeed guides the gamer moving forward the task

location (at the bottom right corner of the map).

After each run, a gamer fills a questionnaire of 7 questions that are from the well-

known Intrinsic Motivation Inventory (IMI) [16]. More specifically, the IMI interval

questions are: (1) I enjoy this game, (2) the game is fun, (3) I think the game is bor-

ing, (4) playing the game doesn’t hold my attention, (5) I would describe the game is

interesting, (6) the game is enjoyable, and (7) when I play the game, I think about how

much I enjoy it. We use five-point Likert scale (between 1 and 5) to assess the user study

results. Fig. 5.4 summarizes the average scores. Notice that questions 3 and 4 are negative

questions, i.e., lower scores are better. This figure clearly shows that the gamified app is

more enjoyable and attractive.

28

(a) (b)

(c)

Figure 5.2: Screenshots of the ordinary app: (a) the map mode using google map, and (b)

shows all the tasks in a list, and (c) the camera mode.

29

(a) (b)

Figure 5.3: Screenshots of the gamified app: (a) the map mode, used when task locations

are still far, and (b) the AR mode, used when task locations are close.

Table 5.1: The Running Time (µs) of Our

Algorithms

Algorithm
Running Time

Min Max

Spot Locator 3161.85 3856.85

Gamer Assigner 55.12 57.93

NPC Path Generator 76.51 121.19

1 2 3 4 5 6 7
Question

0

1

2

3

4

5

A
v
er
a
g
e
S
co
re

Ordinary
Gamified

Figure 5.4: Scores from the IMI ques-

tions.

30

Figure 5.5: The map mode with the gamer’s path and NPC’s path.

31

Chapter 6

Conclusion

In this paper, we study the problem of gamifying mobile apps to transparently assign

sensing tasks to gamers, so as to create a sustainable Smartphone Augmented Infrastruc-

ture Sensing (SAIS) platform. The crux of such a platform lies in three algorithms to: (i)

locate the optimal spots for each task, (ii) assign each spot to the closest gamer, and (iii)

produce natural NPC path to guide the gamer to the spot. We conduct extensive simula-

tions to evaluate our proposed algorithms, which show that our algorithms provide better

quality of service yet incur lower workload on gamers. For example, with 200 tasks and

100 gamers, our algorithms on average: (i) achieves 63% higher completion ratio, (ii) cuts

the response time by almost two-third, and (iii) reduces the gamer working hour by 81%,

compared to the existing solutions. Moreover, our algorithms scale to many more tasks

and efficiently capitalize gamers for better quality of service. We also demonstrate the

practicality of our algorithms through a real prototype implementation and a preliminary

user study. The user study results are promising: gamers agree that the gamified app is

more enjoyable and attractive.

Our work can be extended in several dimensions. In terms of algorithmic design, the

proposed algorithms can be further enhanced. For example, our gamer assigner algorithm

may take the gamers’ routine trajectories into consideration, so that gamers can perform

close-by tasks without deviating from their trajectories [25, 27]. We may also compare

each algorithm individually in the simulation. In order to see the performance of each

algorithm. In terms of systems implementation, several practical concerns need to be

considered. For example, uploading videos via cellular networks is expensive and may

drive the gamers away from our platform. Mechanisms for filtering out noisy sensory

data and compressing sensory data, as well as transferring sensory data in delay-tolerate

fashion [21] can be added to our gamified SAIS platform. Last, we note that our gamified

app may not need to be a standalone mobile game, i.e., we can create an app similar to

Poke Radar [7], to piggy back on the popular Pokémon Go game [8]. This will allow us

32

to focus on the overall platform design, rather than the mobile games themselves.

33

Bibliography

[1] GO map - 3D map for AR gaming. https://goo.gl/Sf9Y9j, January 2017.

[2] Google map Android API. https://goo.gl/FbBsh3, January 2017.

[3] Google Tango. https://developers.google.com/tango/, January

2017.

[4] MySQL. https://www.mysql.com/, January 2017.

[5] NGINX. https://www.nginx.com/, January 2017.

[6] Openstreetmap. https://www.openstreetmap.org/, January 2017.

[7] Poke radar. https://www.pokemonradargo.com/, January 2017.

[8] Pokemongo. http://www.pokemongo.com/, January 2017.

[9] Smart city market will grow tremendously at a CAGR of close to 20% until 2020,

says Technavio. http://tinyurl.com/jcy6nqg, January 2017.

[10] Unity. https://unity3d.com/, January 2017.

[11] F. Alt, A. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz. Location-based

crowdsourcing: Extending crowdsourcing to the real world. In Proceedings of

the Nordic Conference on Human-Computer Interaction: Extending Boundaries

(NordiCHI’10), pages 13–22, Reykjavik, Iceland, October 2010.

[12] J. An, X. Gui, Z. Wang, J. Yang, and X. He. A crowdsourcing assignment model

based on mobile crowd sensing in the internet of things. IEEE Internet of Things

Journal, 2(5):358–369, 2015.

[13] F. Bai and A. Helmy. A survey of mobility models. Wireless Adhoc Networks.

University of Southern California, USA, 206:147, 2004.

[14] A. Chen. Don’t fret! losing 80% of your mobile app users is normal. https:

//goo.gl/b66zUz, January 2017.

34

[15] T. Chen, H. Tsai, C. Chen, and J. Peng. Object coverage with camera rotation in

visual sensor networks. In Proceedings of the International Wireless Communica-

tions and Mobile Computing Conference (IWCMC’10), pages 79–83, Caen, France,

2010.

[16] E. Deci, H. Eghrari, B. Patrick, and D. Leone. Facilitating internalization: The

self-determination theory perspective. Journal of Personality, 62(1):119–142, 1994.

[17] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design elements to

gamefulness: Defining gamification. In Proceedings of the international academic

MindTrek conference: Envisioning future media environments, pages 9–15, 2011.

[18] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam.

In Proceedings of the European Conference on Computer Vision (ECCV’14), pages

834–849, Zurich, Switzerland, 2014.

[19] Z. Feng, Y. Zhu, Q. Zhang, L. Ni, and A. Vasilakos. Trac: Truthful auction

for location-aware collaborative sensing in mobile crowdsourcing. In Proceedings

of IEEE Conference on Computer Communications (INFOCOM’14), pages 1231–

1239, Toronto, Canada, May 2014.

[20] J. Hamari, J. Koivisto, and H. Sarsa. Does gamification work?–a literature review of

empirical studies on gamification. In Proceedings of the 47th Hawaii International

Conference on System Sciences (HICSS’14), pages 3025–3034. IEEE, 2014.

[21] H. Hong, C. Fan, Y. Lin, and C. Hsu. Optimizing cloud-based video crowdsensing.

IEEE Internet of Things Journal, 3(3):299–313, 2016.

[22] S. Kanhere. Participatory sensing: Crowdsourcing data from mobile smartphones

in urban spaces. In Proceedings of IEEE International Conference on Mobile Data

Management (MDM’11), pages 3–6, Luleå, Sweden, June 2011.

[23] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with spatial

crowdsourcing. In Proceedings of the 20th international conference on advances

in geographic information systems (SIGSPATIAL’ 12), pages 189–198, New York,

NY, USA, November 2012. ACM.

[24] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell. A sur-

vey of mobile phone sensing. IEEE Communications Magazine, 48(9):140–150,

September 2010.

[25] C. Liao. Detour planning problem on mobile crowdsensing systems. Master’s thesis,

Department of Computing Science, National Tsing Hua University, June 2015.

35

[26] C. Liao, T. Hou, T. Lin, Y. Cheng, A. Erbad, C. Hsu, and N. Venkatasubramania.

SAIS: Smartphone augmented infrastructure sensing for public safety and sustain-

ability in smart cities. In Proceedings of the International Workshop on Emerging

Multimedia Applications and Services for Smart Cities (EMASC’14), pages 3–8,

Orlando, FL, November 2014.

[27] C. Liao and C. Hsu. A detour planning algorithm in crowdsourcing systems for

multimedia content gathering. In Proceedings of the 5th Workshop on Mobile Video

(MoVid’13), pages 55–60, Oslo, Norway, 2013.

[28] V. D. Luca and R. Castri. The social power game: A smart application for sharing

energy-saving behaviours in the city. FSEA 2014, 27:4, 2014.

[29] A. McAfee, E. Brynjolfsson, T. Davenport, D. Patil, and D. Barton. Big data. The

management revolution. Harvard Bus Rev, 90(10):61–67, 2012.

[30] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino. Augmented reality: A class

of displays on the reality-virtuality continuum. In Proceedings of the Photonics for

industrial applications, pages 282–292, October 1995.

[31] T. Nam and T. Pardo. Conceptualizing smart city with dimensions of technology,

people, and institutions. In Proceedings of the Annual International Digital Govern-

ment Research Conference: Digital Government Innovation in Challenging Times

(dg.o’11), pages 282–291, Maryland, USA, 2011.

[32] R. Newcombe, S. Lovegrove, and A. Davison. Dtam: Dense tracking and mapping

in real-time. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV’11), pages 2320–2327. IEEE, 2011.

[33] G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann. A survey of mobile and

wireless technologies for augmented reality systems. Computer Animation and Vir-

tual Worlds, 19(1):3–22, February 2008.

[34] K. Seaborn and D. Fels. Gamification in theory and action: A survey. International

Journal of Human-Computer Studies, 74:14–31, February 2015.

[35] K. Su, J. Li, and H. Fu. Smart city and the applications. In Electronics, Communi-

cations and Control (ICECC), 2011 International Conference on, pages 1028–1031.

IEEE, 2011.

[36] M. Talasila, R. Curtmola, and C. Borcea. Alien vs. mobile user game: Fast and

efficient area coverage in crowdsensing. In Proceedings of International Conference

36

on Mobile Computing, Applications and Services (MobiCASE’14), pages 65–74,

Austin, TX, 2014.

[37] M. Talasila, R. Curtmola, and C. Borcea. Crowdsensing in the wild with aliens and

micropayments. IEEE Pervasive Computing, 15(1):68–77, Jan 2016.

[38] C. Tan and D. Soh. Augmented reality games: A review. Proceedings of Gameon-

Arabia, Eurosis, 2010.

[39] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time panoramic

mapping and tracking on mobile phones. In Proceedings of the IEEE Virtual Reality

Conference (VR’10), pages 211–218, Boston, MA, March 2010.

[40] G. Welch and G. Bishop. Scaat: Incremental tracking with incomplete information.

In Proceedings of the annual conference on Computer graphics and interactive tech-

niques, pages 333–344, 1997.

[41] M. Yuen, I. King, and K. Leung. A survey of crowdsourcing systems. In Proceed-

ings of the Privacy, Security, Risk and Trust (PASSAT’11) and IEEE Inernational

Conference on Social Computing (SocialCom’11), pages 766–773, Boston, MA,

October 2011.

[42] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts, method-

ologies, and applications. ACM Transactions on Intelligent Systems and Technology,

5(3):38:1–38:55, September 2014.

37

