
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

以Mininet/Open vSwitch為基礎開發提供詳盡資訊

的OpenFlow模擬器

Turning Mininet/Open vSwitch into A Detailed OpenFlow

Emulator

鄭伊君

Yi-Jun Cheng

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 104年 10月

October, 2015

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

以M
in

in
et/O

p
en

v
S

w
itch

為
基
礎
開
發
提
供
詳
盡
資

訊
的O

p
en

F
low

模
擬
器

鄭
伊
君

撰

104
10

中中中文文文摘摘摘要要要

軟體定義網路 (SDN)是一個新興的網路架構，它開啟了網路可程

式化的可能性。對於正在發展中的許多軟體定義網路研究計劃而言，

開發一個可以高度準確地模擬使用 OpenFlow的軟體定義網路的模擬

器是必須的，如此以來才能更正確的驗證並評估嶄新的研究想法及方

向。但是，目前的模擬器大多是只專注在數據平面的效能 (data plane

performances) 或是只專注於以軟體實作 OpenFlow 交換機 (software-

implemented switches)。這使得我們想要去開發一個 OpenFlow網路模

擬器，可以兼具控制平面 (control plane) 以及數據平面 (data plane) 效

能的正確性模擬，並且可以模擬現在市場上不同廠牌的 OpenFlow交

換機。 在這篇論文裡，我們在不同的交換機上測量了控制平面及數

據平面的效能 (control plane and data plane performances)並提出了提高

模擬正確性的效能模型 (performance models)。我們也提出了自動化地

量測交換機效能的方法。 在我們提出的模型中，有一些可以調整的

參數，調整這些參數是為了讓模型可以模擬來自不同廠商，不同實作

的交換機。 這些參數會從我們提出的自動化效能量測實驗的結果所

獲得。 我們執行了實驗去驗證效能模型的正確性，且錯誤率大部分

在30%以下。再者，我們也將效能模型整合到現有的開源軟體計劃中

的 OpenFlow模擬器，Mininet/Open vSwitch (OvS)，並且進行實驗驗證

效能的正確性。我們將實驗結果與尚未修改的 Mininet/OvS和欲模擬

的交換機的結果一起做比較，整合效能模型的結果比起 Mininet/OvS

更正確地模擬了交換機的效能。

i

Abstract

Software-Defined Networking (SDN) is an emerging network architec-

ture that enables network programmability and efficient network manage-

ment. Recent research activities on SDN make it important to develop an

emulator that accurately emulates OpenFlow-enabled SDN networks in order

to verify and evaluate the innovative research ideas. However, existing em-

ulators and simulators focus on either data plane performance or software-

implemented switches. This motivates us to develop an OpenFlow emulator

that provides accurate emulation on both control plane and data plane per-

formances of an OpenFlow network and supports diverse OpenFlow switch

implementations. In this thesis, we conduct extensive measurement stud-

ies on control plane and data plane performances on several switches and

propose performance models for accurate emulation. Automatic switch per-

formance measurements are also derived. In our proposed models, we have

configurable switch-dependent parameters that characterize different switch

implementations. Those parameters are generated from our automatic switch

performance measurements. We conduct experiments to validate our perfor-

mance models, and the error rates are mostly under 30%. Moreover, we

integrate our performance models with a popular open source OpenFlow

emulator, Mininet/Open vSwitch (OvS) and evaluate the performance accu-

racy by comparing to the results of original Mininet/OvS and the emulated

switch. Our results are far more close to the emulated switch than the original

Mininet/OvS.

ii

Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1

1.1 Contributions and Organizations . 3

2 Related Work 4

2.1 OpenFlow Emulators/Simulators . 4

2.2 Techniques to Improve Simulation/Emulation Fidelity 5

2.3 Performance Measurements and Modeling of SDN Switches 6

3 Measurement Methodology 7

3.1 Control Plane Performance Measurement 8

3.2 Data Plane Performance Measurement 11

4 Control Plane Performance Modeling 12

4.1 Test Scenarios . 12

4.1.1 Factor Considerations . 12

4.1.2 Scenarios . 14

4.2 Additional Measurements . 15

4.2.1 Multiple Flow Tables . 15

4.2.2 Batch Commands . 18

4.3 Measurement Results . 19

4.3.1 Results of Sample Switch, Pica8 P-3297 19

4.3.2 Results of Sample Switch, Open vSwitch 23

4.4 Performance Models . 23

4.5 Model Validation . 28

5 Data Plane Performance Modeling 35

5.1 Test Scenarios . 35

5.2 Measurement Results . 37

5.3 Performance Models . 37

5.4 Model Validation . 41

6 Emulator Implementations and Evaluations 48

6.1 Design . 48

6.2 Implementation . 49

6.3 Evaluations . 51

iii

7 Conclusion 53

7.1 Future Directions . 53

Bibliography 56

iv

List of Figures

3.1 Switch profiling and modeling procedures. 8

3.2 Comparison of control plane performance with different measurement

methods. 9

3.3 Control plane measurement setup. 10

4.1 Example of different priority distributions when: (a) adding 3 flows and

(b) 3 flows in the flow table. 13

4.2 The pseudo code of the control plane measurement procedures. 14

4.3 A sample result of flow insertion time with different number of flows

inserted. 16

4.4 The pseudo code of an example of cache algorithm inference experiments. 17

4.5 Different coverage of replacement choices using different cache algorithm. 17

4.6 Sample results for flow insertion time on Pica8 P-3297. 20

4.7 Sample results for flow modification time on Pica8 P-3297. 21

4.8 A sample result for flow deletion time in ascending priority distribution

on Pica8 P-3297. 22

4.9 Sample results on Open vSwitch with same priority. 24

4.10 Validation results on insertion, modification, and deletion time with as-

cending priority distribution. 30

4.11 Validation results on insertion, modification, and deletion time with de-

scending priority distribution. 31

4.12 Validation results on insertion, modification, and deletion time with same

priority distribution. 32

4.13 Validation results on insertion, modification, and deletion time with as-

cending priority distribution. 33

4.14 Validation results on random commands. 34

5.1 The pseudo code of the data plane measurement procedures. 36

5.2 Sample results on Pica8 P-3297. 38

5.3 Sample results on Open vSwitch . 39

v

5.4 Validation results on delays with different factors on Pica8 P-3297. 42

5.5 Validation results on throughputs with different factors on Pica8 P-3297. . 43

5.6 Validation results on delays with different factors on Open vSwitch. . . . 44

5.7 Validation results on throughputs with different factors on Open vSwitch. 45

5.8 Validation results using a real world trace. 46

6.1 System Design. 49

6.2 Evaluation results of three test scenarios. 52

vi

List of Tables

3.1 Specifications of Two Sample Switches. 7

4.1 Symbol Table . 29

vii

viii

Chapter 1

Introduction

In traditional networks, each switch in networks makes its own decisions on where to

forward incoming packets, which is done in the control plane of switches. Each switch

computes the routing table locally. The data plane of switches manages packet forward-

ing according to the routing decisions. Software-Defined Networking (SDN), a newly-

emerging and developing network architecture, changes the way. Different from tra-

ditional networks, SDN decouples the control plane from switches and offloads it to a

remote controller. Network administrators can then develop and deploy network appli-

cations on controllers so as to manage networks in a cost-effective way or provide novel

services with less effort.

Since the control plane of switches is offloaded to a remote controller, messages ex-

changing between controllers and switches become inevitable. OpenFlow protocol [29],

the communication standard between the controller and the switch, is thus established.

There come two common paradigms for controllers to manage a SDN-based network:

proactive and reactive approaches [16]. Controllers either proactively install flows in ad-

vance according to the traffic patterns of the network or reactively update flow table in

response to the new flows in the data plane. Majority SDN-based solutions adopt reactive

flow operation paradigm [40]. Since packets that do no match any flow in the switch flow

table are PacketIn to the controller for forwarding decisions, the processing delay (at the

controllers) and network delay (between the switch and controller) increases the latency

of the first packet of each flow. Moreover, due to the centralized nature, SDN controllers

are also vulnerable to staggering instantaneous workload. Both factors impose direct and

dramatic negative impacts on interactivity of SDN networks, and thus the control plane

performance of each switch is crucial to user experience in SDN networks.

Furthermore, OpenFlow operations are very flexible compared to those supported

by the traditional L2/L3 switch Application-Specific Integrated Circuit (ASIC) chips.

Therefore, OpenFlow switches can only use a small set of forwarding tables in these

1

ASIC chips, wasting many other circuits (tables) [1]. Consequently, existing OpenFlow

switches only support very few flows in ASIC and resort to tables in SRAM for additional

flows. The limited size of ASIC and relatively slow speed of SRAM make OpenFlow

switches vulnerable to degraded forwarding speed, which imposes negative impacts on

network throughput. Hence, the data plane performance of each switch is also crucial to

user experience in SDN networks.

Up to date, multiple vendors design and manufacture OpenFlow switches, such as

Pica8, Arista, and HP. However, deploying a SDN network is not an easy task because

there are many vendor-specific implementations to choose from, and each switch costs

a lot. In addition, deploying a new network is a labor-intensive process and requires

much time for thorough testing and adjustments. Most of the time, network operators

have to resort to the (less ideal) trial and error approach when deploying SDN networks.

This further amplifies the cost of migrating to SDN networks and in turn prevents SDN

networks from being widely deployed. One way to address the issue is to thoroughly

evaluate the performance of a target SDN network using simulator (or emulator), which

reduces the equipment cost and deployment time.

There are several existing SDN simulators (or emulators), but they mainly focus on

the data plane performance. Moreover, most of them do not take diverse vendor-specific

implementations into considerations in SDN simulations (or emulations). EstiNet [37] is

an OpenFlow simulator and emulator that combines the high scalability and realistic data

plane packets emulation strengths from both. The authors focus mostly on the network

scalability and the accuracy of data plane performances in large networks. They claim

to have better data plane performance accuracy compared to Mininet [36], but EstiNet

is a proprietary solution, while Mininet is a large-community open source project and

can be easily setup in PCs or laptops. But Mininet authors themselves dictate the lack

of performance fidelity due to the limitations of current implementations [26]. However,

both Mininet and EstiNet fail to consider control plane performance accuracy and switch

diversity.

In this thesis, we aim to develop a detailed and accurate OpenFlow emulator based

on the open source projects, Mininet [2] and Open vSwitch (OvS) [5]. We divide the

tasks into two steps: (i) deriving switches’ performance models, and (ii) integrating the

derived models with Mininet and OvS. In the first step, we design several test scenarios

based on the switch states or traffic patterns that may affect switch performances and

study the impact of them, such as existing flow sizes or data plane packet sizes. The

measurements are also conducted on several switches to obtain unique sets of switch-

dependent parameters that characterize different switch implementations. The parameters

with switch states are taken as performance modeling inputs for accurate performance

2

emulation. In the second step, we need to augment Mininet and OvS into a detailed

emulator by integrating our performance models. In the emulator, we need to extract

and maintain necessary switch states and read from different switch-dependent parameter

configuration files to be capable of emulating various OpenFlow switches, and record the

controller-to-switch OpenFlow event information and timestamps to statistics files.

1.1 Contributions and Organizations

This thesis makes the following contributions.

• Switch performances benchmarks. We propose automatic measurement proce-

dures for both control and data plane performances. Measurements can be con-

ducted on any OpenFlow switches, and switch performance statistics, such as flow

table update delays of different flow mod commands and packet forwarding latency,

are obtained and recorded. Switch-dependent parameters are derived from the mea-

surement results and store for further use in our proposed performance models for

emulation of different switches.

• Performance models. From extensive measurement studies on control and data

plane performances, we propose several switch performance models: flow inser-

tion, flow modification, and flow deletion time models of control plane perfor-

mances, and packet forwarding latency model of data plane performances. They

take inputs of switch states or traffic patterns with switch-dependent parameters to

emulate diverse implementations of OpenFlow switches.

• Emulator implementation with performance models integrated. We integrate

our performance models into a popular open source emulator, Mininet/OvS. By

extracting flow mod command information from controller-to-switch messages and

maintaining switch states in our emulator implementation, we are able to model

performances by taking the real-time switch information and switch-dependent pa-

rameters as performance model inputs.

The rest of the thesis is organized as follows. We survey the literature in Ch. 2. Ch. 3

presents our measurement methodology and testbed setup. Design of our test scenarios

for control and data plane modeling are described in Sec. 4.1 and 5.1, respectively, and

each is followed by a detailed study on measurement results in Sec. 4.3 and 5.2. Control

and data plane models are presented and explained in Sec. 4.4 and 5.3. Ch. 6 presents the

design and implementation of our emulator, and the evaluation results. Conclusions and

future works will be discussed in Ch. 7.

3

Chapter 2

Related Work

With the rise of SDN, several papers [15, 25, 30, 39] gain insight into this new network

architecture. They investigate extensive works, provide overviews of recent researches,

from infrastructure layer to application layer, and conclude with several promising re-

search directions to work on. To leverage SDN benefits of programmability, flexibility,

and efficiency on network management, researchers work on developing and deploying

innovative network services, such as multicast, load balance, access control, and network

security applications. Experiments for verifications and evaluations of those developed

applications are either done with real testbeds or emulations (or simulations).

2.1 OpenFlow Emulators/Simulators

There are several emulators (or simulators) available and easily accessible for researchers

to setup for network verifications and performance evaluations. In this thesis, we focus on

both control plane and data plane performance accuracy and switch diversity in OpenFlow

emulations.

NS-3 [21], originally a well-developed and modularized network simulator, is ex-

tended to support OpenFlow standard [3] in order to provide OpenFlow simulations. NS-

3 runs OpenFlow simulation as a single process, so it is not difficult for NS-3 to achieve

better scalability. But the drawback is that there is no realistic data plane traffic, so the

performance model becomes important for accurate performance simulation, but NS-3

uses a relatively simple model. In addition, NS-3 only supports OpenFlow version 0.8.9

and does not enable the use of external controllers. Similar to NS-3, FS-SDN [18] ex-

tends from existing work, FS [35], which uses discrete-event simulation implementation

and adopts an existing TCP throughput model for accurate measurements. But FS-SDN

focuses on data plane performance accuracy and network scalability.

Unlike NS-3 and FS-SDN, Mininet [19], an OpenFlow emulator, emulates each net-

4

work instance using light-weight containers and sends realistic data plane traffic. Mininet

is widely-used among researchers due to its easy accessibility; it can be setup simply on

PCs or laptops. However, the authors themselves dictate the performance fidelity issue

owing to the limitation of their implementations [26].

On the other hand, Estinet [37], which is an OpenFlow simulator and emulator, com-

bines strengths from both. They modify kernel implementation to directly manipulate on

clock time for achieving better performance fidelity. The authors claim to have better

performance fidelity and network scalability than Mininet [36]. Data plane performance

and network scalability are main focuses of their implementations, but switch diversity is

not considered. In addition, EstiNet is a proprietary solution, while Mininet and OvS are

both open source projects with large communities, so we decide to develop our detailed

OpenFlow emulator based on Mininet/OvS.

2.2 Techniques to Improve Simulation/Emulation Fidelity

As previously mentioned, Mininet [19] authors reveal a performance fidelity issue in their

early release. The authors make improvements on performance fidelity and release in

version 2.0 [20] via resource isolation of virtual hosts, switches, and links in the emulated

networks. In their work, they aim to achieve realism on the functionality and timing, but

they mainly focus on the data plane performance fidelity such as Round Trip Time (RTT)

and throughput, and evaluate and compare the performance results with real hardware

setup. They do not consider diverse switch implementations, either.

In [27], the authors discuss on the diverse switch implementations. They indicate

that with different implementations, such as the use of flow tables and flow installation

behaviors, both data plane and control plane performances can differ from one another

in the same setup. For instance, Ternary Content-Addressable Memory (TCAM), special

hardware to store flows used in several hardware switches, is different from a software-

implemented flow table in flow installation and flow lookup behaviors, and performances

thereby. In this thesis, we aim to develop accurate performance models that capture the

various characteristics of vendor-specific switch implementations.

On the other hand, Huang et al. [22] also try to reproduce the proper behavior of dif-

ferent implementations of OpenFlow switches by adding a proxy, which imposes extra

delays according to statistical results from different switches, between the controller and

OvS. In their work, they consider only the control path delays of data plane performances,

i.e., the PacketIn path delays between the controller and the switch. In contrast, we man-

age to improve emulation fidelity by proposing performance models based on extensive

measurement analysis on both data plane and control plane.

5

2.3 Performance Measurements and Modeling of SDN

Switches

Several performance measurements are conducted to evaluate and compare the perfor-

mances of conventional networks and SDN-based networks. By performance compar-

isons, they examine performance degradation and possibilities of deploying SDN net-

works in replace of conventional networks. Gelberger et al. [17] and Bianco et al. [13]

both measure and evaluate data plane performances in terms of latency and throughput

using different workloads, and compare among conventional networks and different SDN

architectures, OpenFlow and ProGFE. Emmerich et al. [14] conduct performance mea-

surements on Open vSwitch and provide observations of switch performances in various

aspects. Shibuya et al. [34] propose a solution to measure performances of all physical

links in SDN-based networks from a single point.

Most of the above measurements are conducted on switch data plane. But we consider

the control plane performance, which is the delays of updating flow entries in the flow

table, is as important as data plane performance. Rotsos et al. [33] propose a framework

for switch performance evaluations and also enable users to develop customized testing

modules based on their framework. The authors conduct several sample experiments in

their paper, such as delays of flow table update and flow statistics polling. We manage to

develop our measurement tools based on this framework.

Kong et al. [24] present OFSim that simulates real-life ISP traffic with multiple switches

and one controller and examine whether current implementations of SDN and OpenFlow

can meet the requirements of running ISP traffic. They reveal bottleneck may be in flow

installation time. Despite measurements, they propose simple models with configurable

parameters obtained from analytical results for their simulator though they do not consider

the different conditions of switches or traffic patterns that affect on switch performances

in their models.

In [23,28], the authors measure data plane performances and model switch forwarding

architecture using queuing model. They focus on the packet sojourn time (i.e., how long

the packet stays in the switch or controller). They evaluate sojourn time estimation using

different forwarding possibilities and different data workloads. Similarly, Azodolmolky

et al. [11] also conduct measurements on data plane and model SDN architecture using

network-calculus-based analytical model. Both of the models fail to consider different

switch implementations, which are going to be addressed in this thesis.

6

Chapter 3

Measurement Methodology

OpenFlow switches from different vendors have different implementations, and the con-

trol plane and data plane performances differ from one another due to the different im-

plementations. Our performance models aim at not only accurately modeling both con-

trol and data plane performances, but also deriving a set of parameters that can capture

the characteristics of different OpenFlow switch implementations and simulating various

switches by adjusting the parameter values. A thorough testing and measurement on con-

trol plane and data plane performances from different switches are inevitable. Fig. 3.1

shows the high level design of our measurement work flow.

First of all, we need to conduct measurement studies on several representative Open-

Flow switches: hardware OpenFlow switches from different vendors, such as Pica8,

Arista, and HP, and software switches, such as OvS and CPqD. In this thesis, we have

conducted measurements on two sample switches, Pica8 P-3297 and OvS. Pica8 P-3297

is a hardware switch with ASIC and TCAM design, and it has two-tier tables, TCAM and

software-implemented tables, while OvS is a software switch that can be configured and

deployed on most PCs, and different hardware specifications of PCs may result in different

behaviors. The specifications of two sample switches are given in Table 3.1. In our mea-

surement studies, the relations between switch performances and different switch states,

control plane command types, and data plane traffic patterns are considered. Through the

measurement studies on control and data plane, our goal is to derive the performance mod-

els and switch-dependent parameters according to the observations from the measurement

results and knowledge on OpenFlow switch architecture. The measurement studies and

Table 3.1: Specifications of Two Sample Switches.

Switch CPU # Cores System Memory Port

Pica8 P-3297 P2020, 800 MHz 2 2 GB 1 GbE

Open vSwitch Intel Core i7-2600, 3.4 GHz 4 16 GB 1 GbE

7

Figure 3.1: Switch profiling and modeling procedures.

results will be presented later in Sec. 4.1 and 5.1 as regards to control and data plane per-

formance measurements, respectively. Sec. 4.4 and 5.3 describe our performance models

and how the switch-dependent parameters are obtained from the results. Moreover, those

measurements and procedures to derive the switch-dependent parameters will be arranged

into automatic profiling procedures.

In the offline profiling step, the automatic profiling procedures are conducted on any

OpenFlow switch, and new switch-dependent parameters are derived and recorded in pa-

rameter configuration files. In the emulation, the emulator can read from multiple con-

figuration files and use the switch-dependent parameters to simulate various OpenFlow

switches, which have already completed the profiling procedures and documented in con-

figuration files. With the parameters and the real time switch states, such as number of

existing flows, priority distribution, and traffic patterns as inputs of our performance mod-

els, the emulator can emulate data and control plane performances more accurately. Thus,

better fidelity simulation can be achieved concerning both the performances and switch

diversity.

In the following, we will describe the approaches and setup for our control and data

plane performance measurements.

3.1 Control Plane Performance Measurement

For control plane performances, our main concerns are the completion time of flow mod

commands. That is, the time required to add, modify, and delete flows in the flow table.

Our testing programs should be able to obtain the time when the flow mod command is

sent and when is the command is completed so that we can obtain the performances by

8

0 500 1000 1500 2000
0

1

2

3

Number of Flow Insertions

T
im

e
(s
ec
)

OFLOPS
Barrier Message

Figure 3.2: Comparison of control plane performance with different measurement meth-

ods.

calculating the time differences of flow mod sent time and the flow mod completion time.

The flow mod command is sent from our program, so the time can be easily recorded.

The problem is how could we ensure that any flow mod command sent to the switch is

handled and completed.

One approach is to use Barrier messages. In OpenFlow switch specification [6], it

defines Barrier Request/Reply messages that can be used by the controller to notify any

error occurrences as well as the completion of a set of OpenFlow commands. The Barrier

Reply message should be sent from the switch to the controller after the set of commands

sent before the Barrier Request message are completed according to the specifications.

So we can obtain the time when the command is completed by issuing a Barrier Request

message. However, the real implementations still depend on switch vendors. But the im-

plementations are usually concealed, so we cannot guarantee it works in all the switches.

A more precise approach may be to directly check if the corresponding data plane

packets can be actually forwarded by the flows inserted or modified. Such a platform,

called OFLOPS, is presented in [33]. OFLOPS is capable of receiving information from

data plane and control plane channels at the same time. OFLOPS works as an OpenFlow

controller with OpenFlow protocol 1.0 implemented, and it is used to examine and ver-

ify the implementations of OpenFlow switches. In their paper, they did several switch

evaluations, and one of them is to compare the flow insertion delays using barrier mes-

sage notification and reception of dataplane packets notification. There is a large gap

between these two approaches. We also conducted similar experiments on one of our

sample switches, Pica8 P-3297, as shown in Fig. 3.2. Different number of flows rang-

ing from [1, 2000] are inserted, and time calculated from two notification approaches are

9

Control Plane Packets

Data Plane Packets

Switch Under Test

Event

Scheduler

Events Data Plane

Traffic

Generator

Packet

Handler

OpenFlow Controller

Control Plane Channel

Data Plane Channels

Gigabit

Ethernet

Figure 3.3: Control plane measurement setup.

compared against the other. The result also reveals a large gap between two methods, so

the barrier message can not be a good approach as command completion notifications.

Since OFLOPS also enables us to develop customized testing modules based on our test

cases, so we decide to develop control plane performance measurement tools based on

the OFLOPS [4] framework.

Fig. 3.3 shows our control plane performance measurement setup, and there are three

main components in the OFLOPS controller. Event Scheduler is responsible for handling

any event defined in the testing module. We schedule a Send Flow mods Event in our

testing module that sends a set of flow mod commands we define to the switch under

test. A dedicated Control Channel connecting the controller and the management port

on switches is responsible for switch/controller message exchange. Once the connection

between the controller and switch is established, Data Plane Traffic Generator begins to

generate and send a set of customized data plane packets that correspond to the flows in

the flow table from sender via Data Channels. Data plane and control plane channels are

connected via Gigabit Ethernet. Packets Handler will capture and process packets from all

network interfaces, both control and data channels. The main responsibilities are to collect

packets received from receivers to ensure the completion of OpenFlow commands. Upon

receiving all corresponding packets, the test terminates, and the time delay is calculated

and recorded to files.

10

3.2 Data Plane Performance Measurement

Considering data plane performances, packet forwarding latency, delay jitter, and through-

put should be measured. In data plane performance measurement, we should be able to

generate and send customized data plane packets, and record the time when the packet is

sent and received. We use pktgen [31] for customized packet generation. We can gener-

ate series of packets with specific Ethernet types, source and destination MAC addresses,

and source and destination IP addresses. Pcap files are generated and saved in advance

based on the test scenarios we design, which will be descibed in Sec. 5.1. Tcpreplay [9]

is a Linux utility that can be used to send data plane traffic based on any pre-captured

traffic saved in libpcap [8] format. During experiments, we use OFLOPS to insert neces-

sary flows and then use Tcpreplay to send data plane traffic based on the pcap files pre-

generated by pktgen for data plane measurement. Sent and received timestamps of data

plane packets are recorded through tshark [10], a command line utility of Wireshark [38],

that can listen and capture packets on any designated network interfaces.

11

Chapter 4

Control Plane Performance Modeling

We conduct measurement studies for control plane performance modeling on flow inser-

tion time, flow modification time, and flow deletion time.

4.1 Test Scenarios

4.1.1 Factor Considerations

In [27], the authors consider switch diversity important when developing a novel SDN

control system. They conduct several experiments and have detailed discussions on di-

versified characteristics of OpenFlow switches. This motivates our design of the following

test scenarios. Speaking of the control plane performance, they mention that different or-

ders of different types of flow commands on different switches diversify the time delays

for updating the flow table, so we need to analyze the performances of separate com-

mands. In addition, TCAM in most hardware switches is required to update flow entries

in priority order, so we should also consider the impact of different priority distribution

of existing table flows along with the existing number of flows.

We design a series of test scenarios based on the following factors.

Priority distribution. As for table like TCAM, priority plays an important role in

updating flow entries in the flow table. Therefore, we design three different priority distri-

butions, ascending, descending, and same priority distribution, for measurement studies.

For adding new flows into the table, the priority distribution mean the priority order

we used. For example, ascending priority and descending priority means that we send

the flow mod commands with the priority value increasing or decreasing by one every

subsequent command. Ascending priority order starts from the priority value 65535 while

descending priority order starts from 501. Same priority order uses only one priority value

501 for all flows inserted. Fig. 4.1(a) shows an example of adding three new flows using

12

(a)

(b)

Figure 4.1: Example of different priority distributions when: (a) adding 3 flows and (b) 3

flows in the flow table.

these three priority distributions. For modifying or deleting existing flows in the table,

different priority distribution means the range of priority values of flows in the table.

Fig. 4.1(b) shows an example of three flows in the flow table in three different priority

distributions.

Flow with higher priorities should be matched first, so the flows must be kept in the

priority order in TCAM. For descending and same priority distributions, no higher priority

flows are inserted each time, but for ascending priority distribution, the new flows are

come with higher priorities each time, so the existing flows in the table should be shifted

for higher priority flows to be put into the table. Therefore, flows with higher priority

values are kept in the top position, as shown in Fig. 4.1(b).

Notice that we avoid using priority values no greater than 500 since we consider that

priority values within the range [0, 500] may be kept for special uses in some OpenFlow

switch implementations.

Number of existing flows. For switches such as OvS, software tables are used. Dif-

ferent number of flows in the table may affect the time for searching and updating a flow

in the flow table. Yet, we are also not sure about its impact on other implementations of

flow tables, so this should be taken into considerations. We will test the time delay of

three commands under different number of existing flows in the flow table, which ranges

13

from [1− 7000].

Number of batch commands. Switch implementations may manage to gain benefits

from batching a number of commands and reduce time from optimizing processing proce-

dures of those commands, such as command order rearrange. We measure the time delays

with different numbers of OpenFlow commands sent back to back per time. The intervals

between commands are short enough under the time-out time for separating commands in

different batches. The command size ranges from [1 − 100]. We also manage to find out

the maximal batching size from those measurement studies.

4.1.2 Scenarios

1: for each priority distribution ω = desc, asc, same do

2: for each existing flow size e = 1, 5, 10, 20, 50, 100, 500, . . . , 7000 do

3: for each batch command size q = 1, 3, 5, 10, 20, 50, 80, 100 do

4: insert e flows with priority distribution ω, output port 2, and record the

time delay

5: randomly select q flows, modify the output port to port 3, and record the

time delay [Flow modification scenario]

6: insert another q flows with priority distribution ω and output port 2, and

record the time delay [Flow insertion scenario]

7: delete q flows so that there are e flows in the table

8: send deletion command that match all flows in the table and record the

time delay when the barrier replay message is received [Flow deletion

scenario]

9: end for

10: end for

11: end for

Figure 4.2: The pseudo code of the control plane measurement procedures.

The flows we use in the measurements are configured with following fields: ingress

port, Ethernet type, destination MAC address, destination IP address, and egress port.

Following are the three test scenarios we design in our measurement study.

Flow insertion scenario. We first preinstall a number of flows to setup the switch

flow table with different existing flow size. Then, we send flow insertion commands under

different existing flow size and measure the time to complete the commands. Average time

is calculated as per flow insertion time. Different priority orders are tested to study on the

impact of flow shifting and differences between different priorities and same priority test

14

performances. Different numbers of insertion commands are also tested to study on any

batching effects.

Flow modification scenario. Similar setup to the flow insertion time test scenario,

we send flow modification commands under different existing flow size and measure the

time for command completion. Average time is calculated as per flow modification time.

Different priorities and same priority cases for flows in the flow table are tested. Different

number of flow modification commands are also tested as we have designed for insertion

tests.

Flow deletion scenario. For deletion time, we also preinstall a number of flows.

Then, we send a deletion command that matches all flows in the flow table. The total time

cost is measured with different number of flows deleted. The notification of operation

completion is through barrier messages.

In our measurement results, each sample is derived from the mean value of 10 runs

of measurements with the same setup, and the 95% confidence intervals are calculated as

errorbars shown in our measurement results.

Control plane performance profiling procedure. Fig. 4.2 shows the automatic pro-

filing procedure of control plane performance measurement. We first add e number of

flows into the flow table and record the time delay to add e flows. Then, q flows are se-

lected and modified, and the time delay for modifying q flows under existing flow size e

is obtained. We add another q flows and record the time delay for adding q flows under

existing flow size e. By this time, there are (e + q) flows in the flow table. In order to

measure the time delay for deleting e flows, we randomly select q flows and delete them

from the flow table. At last, a wildcarded deletion command that matches all flows in the

table is sent and the time delay for deleting e flows is recorded.

4.2 Additional Measurements

4.2.1 Multiple Flow Tables

Aside from test scenarios in 4.1, we have also conducted several experiments for switches

with multi-level flow tables. Fig. 4.3 shows time delays for adding different number of

flows to Pica8 P-3297, and the result reveals that the growing trend changes in between

existing flow size of 4000 to 4500, which indicates a fact that different tables are used so

as to result in different behaviors and thus different insertion performances.

We manage to include usage of multiple tables into our performance models. We

consider the multi-level table structure as similar to the cache architecture. Therefore,

there are two main issues that need to be addressed. One is the flow table size since we

15

0 2000 4000 6000
0

5

10

15

Number of Flow Insertions

T
im

e
(s
ec
)

Figure 4.3: A sample result of flow insertion time with different number of flows inserted.

need to know when the first level of the table is full and when the higher-level tables are

used. The other is how flows are populated in multiple tables; we refer it as the cache

algorithm. It is necessary since we need to know which tables are involved for every

OpenFlow commands so that we can accurately model the performance.

Flow table size inference. As the Fig. 4.3 indicates different trends happen before

and after existing flow size of 4000 and 4500. The first level flow table size should basi-

cally fall into the range [4000, 4500], and there are two levels of flow tables. A possible

approach to obtain a more exact number of table limit is to send a bunch of flows over

4500 to fill up the cache. Then, we send one or two data plane packets per flow and

record the packet forwarding latency. After the results are collected, we can do clustering

based on the forwarding latency using clustering tool like K-Means. The cache table size

can be derived from the cluster size with smaller values of the cluster center (i.e., shorter

latency).

Cache replacement algorithm inference. Another issue is that cache algorithm

should be inferred and included in performance models with multi-level tables. We

consider following flow attributes as possible cache algorithms that decide which flows

should be discarded when the cache (i.e., first-level flow table) is full.

• Last modification timestamp. The timestamp should indicate when the flow is

inserted into the flow table or when it is last modified if any.

• Last used timestamp. The timestamp records the time when the last data plane

traffic matches the flow for packet forwarding.

• Traffic counts. All matched data plane packets of the flow should be counted in

bytes and record as traffic counts.

16

1: let policies W = used,modified, traffic, priority

2: let unique policies X = modified

3: let T be the cache size

4: let CA be an empty array

5: while CA do not contain members in X do

6: add 2× T flows with random priorities in 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th parti-

tion orders

7: send data plane traffic in 1st, 2nd, 5th, 6th, 3rd, 4th, 7th, 8th partition orders with

packet size 400, 200, 400, 200, 400, 200, 400, 200 bytes

8: send probing traffic and record the packet forwarding latency

9: cluster into multiple partitions based on the latency

10: find the relation between the cluster and attribute coverage, and determine the

cache algorithm with the highest relation

11: add the cache algorithm to CA array

12: end while

Figure 4.4: The pseudo code of an example of cache algorithm inference experiments.

Figure 4.5: Different coverage of replacement choices using different cache algorithm.

• Priority. Priority value of the flow.

We consider both increasing and decreasing orders for those attributes. For example,

for last modification timestamp, we examine the possibility of cache algorithm for top

newest timestamps (decreasing order) or oldest (increasing) timestamps. We also infer

the order of those attributes when attribute values are the same. That is, if we infer the

cache algorithm as traffic counts for instance, when the traffic counts are the same, we

need another attribute as cache algorithm. This is referred to as the order of the attributes.

17

There are three main steps for our cache inference experiments. Fig. 4.4 shows an

example of the inference experiment. First, we insert twice the cache size of flows with

random priorities. We separate the inserted flows into 8 partitions for following steps.

Second, we send data plane packets for one partition per time to make flows in differ-

ent partitions with different last used timestamp and traffic counts, so different attributes

should result in different coverage of partitions. For instance, flows are inserted following

the order from 1st to 8th partition, so the last modification timestamp in increasing order

is {1, 2, 3, 4, ..., 8}. We send data plane traffic in partition orders of {1, 2, 5, 6, 3, 4, 7, 8}

with traffic counts of {400, 200, 400, 200, 400, 200, 400, 200} bytes, respectively. The

last used timestamp in increasing order is {1, 2, 5, 6, 3, 4, 7, 8}, and the traffic counts

in increasing order is {2, 4, 6, 8, 1, 3, 5, 7}. All attributes in both orders cover differ-

ent combinations of partitions as Fig. 4.5 shows. The last step is to send probing data

plane traffic under such condition and record the packet forwarding latency. We cluster

the latency to separate them into different tables and calculate the relations of the cluster

with higher latency (i.e., the flows to be discarded from the cache) and the corresponding

partition coverage of each attribute in increasing or decreasing orders. The attribute with

the highest relations will be considered the cache algorithm.

To determine the next order of the attribute, we conduct the same experiment again,

but we keep the values of previous order of the attribute the same to exclude the attribute

from effects. For instance, if priority with increasing order is decided as the first cache

algorithm, the next experiment will insert flows with same priority in order to examine

only the impact of the rest attributes. Note that the experiment will end when the attribute,

last modified timestamp, is selected since each flow has a unique last modified timestamp

value.

Obtaining both the cache size and cache algorithm from above experiments, we can

conduct the three aforementioned test scenarios, insertion, modification and deletion time

tests for the existing flow size over cache size. By using the cache algorithm, we can

control the insertion, modification, and deletion commands to occur in the second or later

level of flow tables. Then, the later level flow table performances can be successfully mea-

sured in our measurement studies and considered into control plane performance models.

4.2.2 Batch Commands

We assume that there may be optimization implementations for command batching, and

we also observe it in the measurement result described later in Sec. 4.3. There should be

two issues for command batching. First question is that when should the command batch-

ing happen. Commands arrive at different time, and we consider there is a countdown

timer for deciding whether to collect commands for batch processing. The commands

18

are collected as same batching before the timer times up, and the timer should reset when

new commands arrive before time up. All commands collected should considered as same

batch and will be processed together for performance optimization. However, if there are

hundreds of commands come in short time and collected as same batch, switch will be

very busy processing those commands, which may starve other processes on the switch,

such as switch statistics checking or reply of hello messages from the controller. This

may cause problem to the switch; for instance, if the switch cannot reply a hello message

back in time, the controller may consider the switch to be disconnected or something. So

there should be a maximal size for batch processing.

Time-out time. We conduct experiments to send control plane commands with dif-

ferent inter-packet time by inserting sleep between two consecutive commands. We start

from 0 inter-packet time and increase by 100 microseconds each time until we observe a

sudden jump of the commands completion time. The threshold is recorded as the batching

timer.

Maximal batch command size. For maximum command batching size, in test sce-

narios described in 4.1, we conduct experiments to send different number of insertion

commands, ranging from 1 to the flow table size. We calculate the per insertion command

processing time by taking the average values. We examine the per insertion command

processing time and find the minimum time. We take the number of insertion commands

as the maximal batching size at the minimal time value.

4.3 Measurement Results

4.3.1 Results of Sample Switch, Pica8 P-3297

Per flow insertion time grows linearly with the increase of existing flow size, but

increasing rate depends on the priority distributions and batch command size in

TCAM. We observe that the per flow insertion time grows linearly along with the increase

of the existing flow size for different priority distributions, as Fig. 4.6 show. But among

them, the insertion time of ascending priority distribution grows much faster than the

other two since it requires more time to rearrange existing flows and new inserted flow

in priority order. The performances of same priority and descending priority distribution,

on the other hand, grow in a much slower rate. We consider the growing trend as the

processing overheads from switch implementations, and performances for single priority

and multiple priorities are different, as well. For same and descending priority order, with

more flow insertion commands, the per flow insertion time grows less, and we consider it

as optimization benefits from batch processing. For ascending priority, since the shifting

19

0 2000 4000 6000
0

10

20

30

40

50

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(a) Same priority distribution.

0 2000 4000 6000
0

50

100

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(b) Descending priority distribution.

0 2000 4000 6000
0

100

200

300

400

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(c) Ascending priority distribution.

Figure 4.6: Sample results for flow insertion time on Pica8 P-3297.

20

0 2000 4000 6000
0

50

100

150

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(a) Same priority distribution.

0 2000 4000 6000
0

100

200

300

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(b) Descending priority distribution.

0 2000 4000 6000
0

100

200

300

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(c) Ascending priority distribution.

Figure 4.7: Sample results for flow modification time on Pica8 P-3297.

21

0 2000 4000 6000
0

20

40

60

80

Number of Existing Flows

T
im

e
(m

se
c)

Figure 4.8: A sample result for flow deletion time in ascending priority distribution on

Pica8 P-3297.

time dominates the time delays, there are not much differences among different batch

command size.

Per flow insertion time is constant, but the values depend on the batch command

size in the software table. For results in the second level table (i.e., the software table of

Pica8 switch), the performances are independent from the existing flow size. But batching

effects still can be observed from the results; it takes less time for per flow insertion when

more commands are sent back to back per time. In addition, different priority distributions

have little impact on the performances, which means the flow shifting is not needed in the

software table.

Per flow modification time grows linearly with the increase of existing flow size

in TCAM and software table. The modification time as in Fig. 4.7 show, the time grows

along with the increase of existing flow size for three different priority distributions. We

refer the increasing rate as processing overheads of flow modification. Different increas-

ing rates are observed between single priority and multiple priority distributions (i.e.,

ascending and descending priority distributions). In our model, we will separate and gen-

erate model parameters under single and multiple priority conditions. As similar to what

we observe in per flow insertion time results, per flow modification time also takes ben-

efits from batch processing. For results in the software table, the behavior is similar to

what we observe in TCAM although the time delays are much less.

Flow deletion time is proportional to the number of flows deleted in TCAM and

software table. Since different priority distributions do not matter much for flow deletion

time, here we show the sample result of existing flows with ascending priority distribution

in Fig. 4.8. With more existing flows, it requires more time to delete all flows from the

22

flow table no matter it is in TCAM or software table.

4.3.2 Results of Sample Switch, Open vSwitch

Since the flow insertion with different priorities are installed using hashing in OvS, dif-

ferent priority distributions basically do not matter the flow insertion time. The results

are as we expect, and for the results of modification and deletion test scenarios, priority

distributions also have little impact. So here we take the descending priority distribution

as sample results for three test scenarios as shown in Fig. 4.9.

Flow insertion time is constant, but the constant time depends on the batch com-

mand size. Since the flow table implementation is done with hash table, and there is no

flow shifting required to put new flows into the table with greater priority as it does in

TCAM of Pica8 switch, the per flow insertion time is constant under any number of ex-

isting flows as Fig. 4.9(a) shows. But with higher batch command size, the constant time

decreases.

Flow modification time grows linearly with the increase of existing flow size. As

similar to the Pica8 results, we consider the increasing as the processing overheads. The

increasing rates also depend on different batch command size. With more batch command

size, the increasing rate decreases as Fig. 4.9(b) shows.

Flow deletion time grows linearly with more number of flows deleted. More num-

ber of flows require more processing time to delete flows so the time is proportional to the

number of flows deleted as Fig. 4.9(c) shows.

4.4 Performance Models

OpenFlow specification defines three main flow table modification commands, insertion,

modification, and deletion of flow entries. Different commands on different switches may

require different processing procedures. For inserting flows in flow tables like TCAM, it

takes time to arrange flows in priority order. We refer the arrangement overheads as the

shifting time since it requires to shift existing flow entries to make vacant spaces for new

flows entries with higher priorities. Moreover, in regards of modification and deletion

of existing flows, there is overhead to search table entries and collect all matched flows.

We refer the overhead to be the matching time. And the basic flow table modification

overhead (without all preprocessing overheads like flow shifting or flow matching, only

the action to write changes to the table) is referred to as operation time.

From analysis of measurement results of Sec. 4.3, we consider following as our mod-

eling inputs. Table 4.1 shows the symbols we use in this thesis.

23

0 2000 4000 6000
0.1

0.15

0.2

0.25

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(a) Flow insertion time.

0 2000 4000 6000
0

50

100

150

200

Number of Existing Flows

T
im

e
(m

se
c)

Batch size=5
Batch size=10
Batch size=20

(b) Flow modification time.

0 2000 4000 6000
0

2

4

6

8

10

Number of Existing Flows

T
im

e
(m

se
c)

(c) Flow deletion time.

Figure 4.9: Sample results on Open vSwitch with same priority.

24

• Command c from the controller. flow table modification command types, fc and

the priority value, pc need considering since fc determines which performance mod-

els we should choose, and pc helps infer the number of shifting times, s.

• Priority distribution of existing flow entries. ω We keep track of numbers of

flows etp for every priority values p in table t since we need to infer the number of

shifting times from the priority distribution and priority value at command c.

• Number of existing flow entries, e. As observed in the measurement results, both

insertion and modification time is dependent on the number of existing flow entries

in the flow table, so we take this into consideration.

• Number of shifting times, s. Number of shifting times affect insertion time when

different priorities are present. As we observe in the insertion time results of as-

cending priority distribution, the time grows dramatically because shifts of flows

are present in this scenario. We count the number of shifts from the priority dis-

tribution ωt
c and the priority of the coming command pc. Number of flows with

priority that is lower than pc in the priority distribution ωt
c should be counted.

• Number of matching flows, m. For flow modifications and deletions, a flow table

modification commands may match multiple flows in the table, which require more

than one write operations, so m is used to infer the number of write operations we

need to perform.

• Number of batch commands, q. We observe that flow insertion time and flow

modification time decrease if we insert (or modify) many number of flows at one

time, and we consider it to be optimization benefits from batch processing of flow mod

commands arriving within batch timeout α.

• Number of flow tables, T . Number of tables used in the switch. For instance, Pica8

P-3297 uses two tables to store flows, TCAM and software table. We consider dif-

ferent tables as different switch implementations, so we will generate parameters

separately for different flow tables from the measurement results of those tables.

The parameters can then be used to characterize TCAM and software table, respec-

tively, in our models.

• Switch-dependent parameters. Flow shifting S or matching M overheads may

differ among different switch implementations. For example, switches may or may

not require flow shifting, so the shifting time may be zero or non-zero values. For

different flow tables used, matching time also differs. Therefore, we need to define a

set of switch-dependent parameters to represent different switch implementations.

25

We consider different tables used as similar to use another switch, so we derive

parameters for different tables, respectively. The parameters for insertion, modifi-

cation, and deletion models will be detailed described later.

Following we will detailed describe our three models separately.

Dadd =
P t
fc,ωt

c

Rt
fc,ωt

c

(qc)
× etc + St × stc +Wt (4.1)

stc =

pc∑

i=0

etc,i (4.2)

Flow insertion time. Eq. (4.1) shows the model for inserting 1 flow into the flow

table. P , R, S, and W are the switch-dependent parameters, and t, ω, q, e, and s are

model inputs. If multiple tables are present, which flow table to insert the flow should

determined first. Table t is determined by the switch existing flow size ec and table sizes

N ; if the table is full, higher-level will be used, and the cache algorithm should determine

which flow will be moved to higher-level tables.

Observations from Sec. 4.3, flow insertion time is linearly proportional to the existing

flow size in both Pica8 and OvS switches, but the increasing rate depends on the switches,

flow command types f , flow tables t, batch command size q, and existing flow priority dis-

tributions ω. The increasing rate is determined by the base processing overheads, P t
fc,ωt

c

,

and the batch processing decreasing rate, Rt
fc,ωt

c

. Rt
fc,ωt

c

is a quadratic function with input

qc.

Obviously, fc is insertion for the flow insertion time model. For priority distributions

ω, our model supports two conditions, single priority or multiple priorities conditions, in

choosing the P and R values. If commands ito (i + n) arrive before the batch command

timeout α times up, commands i, i+1, . . . i+n are included in the same batch with same

batch command size equal to (n − 1). (n − 1) should be no greater than the maximal

batch command size Q. etc is the number of existing flows in table t.

For result like ascending priority distribution, the time increases drastically since the

shifting times increases with the existing flow size (in face, equal to the existing flow

size). The shifting times is proportional to the time delays. St denotes the time to move

one flow entry to the adjacent vacant space, and stc is the number of shifting times required

if command c is processed. stc is calculated from priority distribution ωt
c and the priority

value pc given in Eq. (4.2). One insertion command requires 1 write operation time, Wt.

Dmod =
T∑

t=1

(
P t
fc,ωt

c

Rt
fc,ωt

c

(qc)
× etc +Mt +Wt ×mt

c) (4.3)

Flow modification time. The modification time model is given in Eq. (4.3). P , R, M ,

and W are switch dependent parameters, while ω, q, e, and m are model inputs. Per flow

26

modification time also contains processing overheads proportional to the existing flow

size in table t, which is determined by Pfc,ωt
c

and Rfc,ωt
c
. fc should be modification type

for sure. As described in the insertion model, ω is used to determined whether it is single-

priority or multiple-priority conditions in the current switch state. qc is also determined

as aforementioned.

Time for searching all matched flows in the table Mt should be counted. Multiple

flows may be matched if wildcarded values are used. mt
c denotes the number of matched

flows. Write operations should be performed mt
c times.

Ddel =
T∑

t=1

(Mt +Wt ×mt
c) (4.4)

Flow deletion time. Eq. (4.4) shows the deletion time model, where M and W are

switch-dependent parameters, and m is the model input. Similar to flow modification

command, deletion requires time Mt to search all flow entries in table t for mt
c matched

flows in table t. mt
c times of write operation Wt is needed to remove matched flows from

the flow table.

Switch-dependent parameters. We derive the switch-specific parameter values fol-

lowing the steps below. Parameters are generated for different switches and different flow

tables. Deletion requires searching for matched flows M and remove flows with m write

operations to the flow table. As we observe from the deletion result, the time is linearly

increasing with the number of matching flows, i.e., the number of flows deleted. We per-

form curve fitting using a first-degree polynomial, and obtain function (a + bx). a is the

matching time M and b is the write operation time W .

We perform curve fitting on insertion test scenarios with a first-degree polynomial for

different batch command sizes. The fitted increasing rate is the processing overheads for

different batch command sizes. The base processing overhead, Padd,single and Padd,multi

(where add refers to insertion command type, single and multi are referred to as single

priority and multiple priorities), is obtained from the results of batch command size 1 with

same priority distribution and descending priority distribution, respectively. The increas-

ing rate decreases quadratically from batch command size 1 to maximal batch command

size. The ratios of increasing rate over P for different batch command sizes in [1, Q] are

calculated, and curve fitting is performed with a second-degree polynomial. The coeffi-

cients of fitted functions are Radd,single and Radd,multi when same priority distribution and

descending priority distribution results are used, respectively.

We expect the differences between descending priority distribution and ascending pri-

ority distribution results are on the number of shifting times. Descending priority distri-

bution should be 0 while ascending priority should be equal to the number of existing

27

flows et. Therefore, we calculate the mean differences between ascending results and de-

scending results under different number of existing flows and perform curve fitting with

a first-degree polynomial. The coefficient of the first-degree term is considered as the S,

and S should be non-negative values. If fitted result is negative, then 0 is recorded as S

instead.

For Pmod,single, Pmod,multi, Rmod,single, and Rmod,multi (where mod of fc is modifica-

tion) , similar deriving procedures to the P and R for insertion are used. P is derived

from the result of batch command size of 1, and R is derived from the increasing rates of

different batch command sizes.

4.5 Model Validation

We have four test scenarios for model validation, insertion, modification, deletion, and

random command tests. Figs. 4.10, 4.11, 4.12, and 4.13 show the validation results for

insertion, modification, and deletion commands of Pica8 P-3297 and Open vSwitch. The

figures show the sample results of using batch command size of 20 with three different

priority distributions on Pica8, and the sample results of batch command size of 20 with

ascending priority distribution on OvS.

Aside from validations of three commands separately, we have conducted experiments

to send random commands (mix of insertions, modifications, and deletions) with random

priorities, random arrival time, and random IP addresses. Randomized priorities range

from 501 to 65535. We simulate the arrival time using Poisson process with rate 100

since as [12] measurement results suggested, the observed number of flows per second of

a switch in the measured networks is at most 10000 flows. Measured networks include

campus networks, private enterprise networks, and cloud data centers running different

services, and over 10 data centers are measured. We test different number of commands

from 100 to 2000 and generate 16 random configurations for each command size. Er-

ror rate is calculated by
abs(modeled−groundtruth)

groundtruth
. Mean and 95% confidence interval are

calculated from the results of 16 random configurations, and the error rates for different

command sizes are shown in Fig. 4.14 for Pica8 and OvS. Expect for command size of

2000 on Pica8 P-3297, the error rates are all under 30%, which is quite acceptable.

28

Table 4.1: Symbol Table

Symbol Description

T Number of flow tables

t Index of flow tables

Nt Flow table size of table t

α Batch command timeout

Q Maximal batch command size

c Index of controller-to-switch flow mod commands

fc Flow mod command types at command c, including insertion, modification,

or deletion

pc Priority value at command c

ec Number of existing flows in the switch at command c

qc Number of batch commands at command c

etc Number of existing flows in table t at command c

stc Number of flow shifts in table t at command c

mt
c Number of matching flows in table t at command c

ωt
c Existing flow priority distribution at command c in table t

etc,p Number of existing flows with priority value p at command c in table t

P t
f,ω Processing overheads for command type f and priority distribution ω

in table t

Rt
f,ω Batch processing decreasing rate of processing overheads for command type f

and priority distribution ω in table t

St Time for shifting a flow entry to the adjacent vacant space in table t

Mt Time for searching all matching flows in table t

Wt Time for writing changes to a flow entry in table t

k Index of data plane packets

hk Matching fields at packet k, including L2, L3, and L2L3

ak Inter-packet time between packet k − 1 and packet k

ek Existing flow size at packet k

bk Packet size of packet k

A Base inter-packet time

E Base existing flow size

B Base packet size

∆a Level differences between inter-packet time a and base inter-packet time A

∆e Differences between exist flow size e and base existing flow size E

∆b Differences between packet size b and base packet size B

βt
h Base forwarding delay time in table t at base inter-packet time A, base existing flow

size E, base packet size B, and matching field h

γt
a Increasing rate of forwarding delay in table t for different inter-packet time

γt
e Increasing rate of forwarding delay in table t for different exist flow sizes

γt
b Increasing rate of forwarding delay in table t for different packet sizes

29

1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(a) Per Flow Insertion Time Comparison.

0 2000 4000 6000
0

20

40

60

80

100

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(b) Per Flow Modification Time Comparison.

0 2000 4000 6000
0

20

40

60

80

100

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(c) Deletion Time Comparison.

Figure 4.10: Validation results on insertion, modification, and deletion time with ascend-

ing priority distribution.

30

1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(a) Per Flow Insertion Time Comparison.

0 2000 4000 6000
0

20

40

60

80

100

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(b) Per Flow Modification Time Comparison.

0 2000 4000 6000
0

20

40

60

80

100

120

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(c) Deletion Time Comparison.

Figure 4.11: Validation results on insertion, modification, and deletion time with descend-

ing priority distribution.

31

1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(a) Per Flow Insertion Time Comparison.

0 2000 4000 6000
0

20

40

60

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(b) Per Flow Modification Time Comparison.

0 2000 4000 6000
0

20

40

60

80

100

Number of Existing Flows

T
im

e
(m

se
c)

Pica8 P-3297
Modeled Result

(c) Deletion Time Comparison.

Figure 4.12: Validation results on insertion, modification, and deletion time with same

priority distribution.

32

1000 2000 3000 4000 5000 6000 7000
0.1

0.15

0.2

0.25

Number of Existing Flows

T
im

e
(m

se
c)

Open vSwitch
Modeled Result

(a) Per Flow Insertion Time Comparison.

0 2000 4000 6000
0

10

20

30

40

Number of Existing Flows

T
im

e
(m

se
c)

Open vSwitch
Modeled Result

(b) Per Flow Modification Time Comparison.

0 2000 4000 6000
0

5

10

15

20

Number of Existing Flows

T
im

e
(m

se
c)

Open vSwitch
Modeled Result

(c) Deletion Time Comparison.

Figure 4.13: Validation results on insertion, modification, and deletion time with ascend-

ing priority distribution.

33

0

10

20

30

40

50

10
0

20
0

50
0

10
00

20
00

Number Commands

M
ea

n
E
rr
o
r
(%

)

(a) Pica8 P-3297.

0

10

20

30

10
0

20
0

50
0

10
00

20
00

Number Commands

M
ea

n
E
rr
o
r
(%

)

(b) Open vSwitch.

Figure 4.14: Validation results on random commands.

34

Chapter 5

Data Plane Performance Modeling

In terms of data plane performance modeling, we focus on packet forwarding latency and

throughput.

5.1 Test Scenarios

We design a series of test scenarios to study on the data plane performances based on the

following factors.

• Matching fields. We categorize table flows into three groups, flows with matching

fields from L2 only, L3 only, and L2 and L3 both. In our experiments, L2 matching

fields use ingress port, Ethernet type, and Ethernet destination address. L3 matching

fields use ingress port, Ethernet type, and IP destination address. L2 and L3 use both

Ethernet destination address and IP destination address for flow entries to match

against coming packets.

• Number of existing flows. Different flow tables used will result in different im-

plementations on matching data plane packets among the existing flows in the flow

table, so the number of existing flows in the flow table may have impact on packet

forwarding delay.

• Inter-packet time. Data plane packets arrive in different inter-packet time. Data

plane traffic may be either overloaded that the switch can be unable to handle in

time or underloaded that the switch may queue until there are enough traffic to

handle. Either of the conditions may affect the forwarding latency.

• Packet size. Dataplane packets are in different packet sizes.

We design a test scenario to measure forwarding delays and throughput using different

factors stated above. Fig. 5.1 shows our automatic profiling procedures for data plane

35

1: let base matching field H = l23

2: let base existing flow size E = 500

3: let base inter-packet time A = 100 microseconds

4: let base packet size B = 128 bytes

5: for each matching field h = l2, l3, l2l3 do

6: for each packet size b = 64, 128, 256, 512, 1024 do

7: insert corresponding flows with h matching fields set and insert other flows

to fill up to existing flow size of E

8: start packet capturer, tshark, and listen on ingress and egress network inter-

faces

9: send data plane packets with packet size of b bytes and inter-packet time of A

microseconds

10: end for

11: end for

12: for each existing flow size e = 100, 200, 500, 1000, 1200, 1500, 2000 do

13: insert corresponding flows with h matching fields set and insert other flows to fill

up to existing flow size of e

14: start packet capturer, tshark and listen on ingress and egress interfaces

15: send data plane packets with packet size of B bytes and inter-packet time of A

microseconds

16: end for

17: for each inter-packet time a = 100, 200, 500, . . . , 1000000 do

18: insert corresponding flows with H matching fields set and insert other flows to

fill up to existing flow size of E

19: start packet capturer, tshark and listen on ingress and egress interfaces

20: send data plane packets with packet size of B bytes and inter-packet time of a

microseconds

21: end for

Figure 5.1: The pseudo code of the data plane measurement procedures.

36

performance measurements. First, we insert a number of flows in the switch flow table.

Different matching fields and different number of flows are used for the flows we insert

in each of the measurements. Then, we send 100 distinct data plane packets that match

the flows in the flow table with same inter-packet time and packet size for all packets.

Every test, we use different packet sizes and different inter-packet time. At the same

time, we capture packets on both sender and receiver side and calculate the mean latency

and throughput from the captured packets.

5.2 Measurement Results

The sample results are collected with L2/L3 matching fields and existing flow size of 500

for flows in the flow table, and inter-packet time of 100 milliseconds and packet size of

128 bytes for data plane packets if not specify, on Pica8 and OvS switches. Similar trends

of packet forwarding latency are observed on both Pica8 and OvS switches as shown in

Figs. 5.2 and 5.3.

Larger packet sizes result in higher forwarding delays. Switch processing time or

the transmission delay can be affected by the packet size. With larger packet size, the

processing time and transmission delays increase accordingly for both Pica8 and OvS.

Existing flow sizes have little impact on forwarding delays. Since TCAM is used

in Pica8, flow matching can be done quicker and in constant time with different number

of existing flows. For OvS, the delay is much higher than that of Pica8 switch since

software-implemented switch is used.

Multi-levels of forwarding delays with different inter-packet time. Delay time is

basically constant with different inter-packet time, but it can start to grow when the inter-

packet time reaches a certain threshold. We suppose there can be more than two levels,

which we observe in the OvS result. In this way, even the results are linearly increasing or

decreasing in other switches, our model can still work since linearly increasing/decreasing

line can be viewed as multiple levels with only one element in every level.

5.3 Performance Models

We consider the factors described in Sec. 5.1 as our modeling inputs.

Ddelay = βt
hk

+ γt
a ×∆ak + γt

e ×∆ek + γt
b ×∆bk (5.1)

Packet forwarding delay model. Eq. (5.1) shows the model of packet forwarding

latency of each incoming packet. βh, γa, γe, and γb are the switch-dependent parameters,

37

0 200 400 600 800 1000
0

20

40

60

Packet Size (bytes)

D
el
a
y
(u

se
c)

L2
L3
L2 and L3

(a) Sample results on different packet sizes and different matching

fields.

0 500 1000 1500 2000
10

15

20

25

30

Number of Existing Flows

D
el
a
y
(u

se
c)

(b) Sample results on different existing flow sizes.

100 1000 10000 100000 1e+06
15

20

25

30

35

40

Inter-packet Time (usec)

D
el
a
y
(u

se
c)

(c) Sample results on different inter-packet times.

Figure 5.2: Sample results on Pica8 P-3297.

38

0 200 400 600 800 1000
60

80

100

120

Packet Size (bytes)

D
el
a
y
(u

se
c)

L2
L3
L2 and L3

(a) Sample results on different packet sizes and different matching

fields.

0 500 1000 1500 2000
50

60

70

80

Number of Existing Flows

D
el
a
y
(u

se
c)

(b) Sample results on different existing flow sizes.

100 1000 10000 100000 1e+06
50

100

150

200

250

Inter-packet Time (usec)

D
el
a
y
(u

se
c)

(c) Sample results on different inter-packet time.

Figure 5.3: Sample results on Open vSwitch

39

and ak, ek, and bk is the modeling inputs. βh refers to a base delay time at base inter-

packet time A, base existing flow size E, base packet size B, and matching field h. The

base inter-packet time A is 100 microseconds, base existing flow size E is 500, and base

packet size B is 128 bytes. Base delay time of different matching fields βh is recorded,

respectively. As for existing flow size and packet size, linearly increasing trends are

observed in the measurement results of both Pica8 and OvS. A increasing rate is calculated

compared to the base delay time and base values of different factors. γt
e and γt

b refer to

the rates for existing flow size and packet size for table t, while ∆ek and ∆bk refer to the

differences between existing flow size and packet size to the base values, respectively. For

inter-packet time, multi-level of constant delays are observed. We consider the average

delay time of each level and do a linear curve fitting. γt
a is the increasing rate for different

levels for table t, and ∆a is the level difference between current inter-packet time ak and

base inter-packet time A.

Switch-dependent parameters.

• Base delay time, β. We define the base delay time when packets are sent with inter-

packet time of 100 microseconds and packet size of 128 bytes under existing flow

size of 500. Delays are increased or decreased when packet size, inter-packet time,

or existing flow size changes. The increasing or decreasing rates are also defined as

our parameters (described below).

• Different rates, γa, γe, and γb. Increasing or decreasing rates for forwarding delay

based on the differences between the current states with the base inter-packet time,

packet size, or existing flow size values.

• Number of inter-packet time levels. As we observe in the measurement study,

the results for different inter-packet time are neither constant nor linearly increas-

ing/decreasing, but like stairs, the delay time increases when it reaches a threshold.

We allow multiple levels of delays in our models and record the number of levels.

• Mapping between inter-packet time and inter-packet time levels. As described

above, we assume there can be multiple levels of delay time for different inter-

packet time. For each inter-packet time level, we record the inter-packet time

threshold when the delays start to change.

The derivation of every parameters is described as the following. Base delay time,

βl2, βl3, βl2l3, is the delay time obtained under the base states we define for three different

matching fields. Delays are linearly increasing or constant for different existing flow sizes

and packet sizes. Curve fitting with a first-degree polynomial is performed for results of

40

different existing flow size and packet size to the forwarding delays, respectively. The

first-degree term for both results are γe and γb.

For number of inter-packet time levels and mappings between inter-packet time and

inter-packet time levels, we examine the forwarding delays under different inter-packet

time. For any two consecutive inter-packet time samples, we check if the forwarding de-

lays are close enough to be put in the same level. We calculate delay ranges with upper

bound equal to the forwarding delay plus the standard deviation of the forwarding de-

lay and lower bound equal to the delay minus the standard deviation. Obtaining delay

ranges for two inter-packet time samples, we check if the range is overlapped. If they

are overlapping, we consider both samples are in the same level; if not, they are differ-

ent levels. We examine through all inter-packet time samples and generate a mapping

between inter-packet time and inter-packet time levels by recording the threshold of each

inter-packet time level. The average forwarding delays are calculated for each level, and

curve fitting of a first-degree polynomial is performed on the delays of every level. Then,

the first-degree term is the increasing rate for different inter-packet time levels, γa.

5.4 Model Validation

We validate our modeling results in two test scenarios. Firstly, we use the same scenarios

as we use for our profiling measurements. Different matching fields, existing flow size,

packet size, and inter-packet time are used. Performance metrics of latency and through-

put are compared against the ground truth in our validation results. Figs. 5.4, 5.5, 5.6,

and 5.7 show the results for packet forwarding delay and throughput on Pica8 P-3297 and

Open vSwitch, respectively. The modeling results follow the measured results closely on

both Pica8 and OvS.

We also validate our model under a random test scenario. The data plane packets

are from a real world trace [7], which is captured from a small educational organiza-

tion with about 35 employees and 100 students working and studying at the site. 100

Mbps for LAN connection in this location and 1 Gbps for core networks are used. Over

2000000 packets are captured in this real world trace. The traffic over the measured

link is mildly loaded during the measurement period, May to June in 2007. Our vali-

dation experiments test under different number of data plane packets sent, and they are

{100, 200, 500, 800, 1000, 2000}. We randomly select packets from this trace. For each

number of packet, we randomly select 16 different traces for the experiments. We com-

pare the modeling results by calculating the error rates for each number of packet. Error

rate is given by the differences between the modeling results and the ground truth divided

by the ground truth. Average values and 95% confidence intervals are calculated from

41

0 200 400 600 800 1000
20

25

30

35

40

45

Packet Size (bytes)

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(a) Different packet sizes.

0 500 1000 1500 2000
20

22

24

26

28

30

Number of Existing Flows

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(b) Different existing flow sizes.

100 1000 10000 100000 1e+06
10

20

30

40

Inter-packet Time (usec)

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(c) Different inter-packet time.

Figure 5.4: Validation results on delays with different factors on Pica8 P-3297.

42

0 200 400 600 800 1000
0

20

40

60

80

100

Packet Size (bytes)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(a) Different packet sizes.

0 500 1000 1500 2000
5

10

15

Number of Existing Flows

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(b) Different existing flow sizes.

100 1000 10000 100000 1e+06
0

5

10

15

Inter-packet Time (usec)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(c) Different inter-packet time.

Figure 5.5: Validation results on throughputs with different factors on Pica8 P-3297.

43

0 200 400 600 800 1000
60

80

100

120

Packet Size (bytes)

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(a) Different packet sizes.

0 500 1000 1500 2000
60

65

70

75

80

Number of Existing Flows

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(b) Different existing flow sizes.

100 1000 10000 100000 1e+06
50

100

150

200

250

300

Inter-packet Time (usec)

D
el
a
y
(u

se
c)

Measured Data
Modeled Data

(c) Different inter-packet time.

Figure 5.6: Validation results on delays with different factors on Open vSwitch.

44

0 200 400 600 800 1000
0

20

40

60

80

100

Packet Size (bytes)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(a) Different packet sizes.

0 500 1000 1500 2000
5

10

15

Number of Existing Flows

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(b) Different existing flow sizes.

100 1000 10000 100000 1e+06
0

5

10

15

Inter-packet Time (usec)

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

Measured Data
Modeled Data

(c) Different inter-packet time.

Figure 5.7: Validation results on throughputs with different factors on Open vSwitch.

45

0

5

10

15

20

25

10
0

20
0

50
0

80
0

10
00

20
00

Number of Packets

M
ea

n
E
rr
o
r
(%

)

(a) Pica8 P-3297.

0

10

20

30

10
0

20
0

50
0

80
0

10
00

20
00

Number of Packets

M
ea

n
E
rr
o
r
(%

)

(b) Open vSwitch.

Figure 5.8: Validation results using a real world trace.

46

the 16 samples for each number of packet. Fig. 5.8 shows the validation result for Pica8

P-3297 and Open vSwitch, respectively.

47

Chapter 6

Emulator Implementations and

Evaluations

The essential criteria of our emulator design is to gather switch state information and

integrate performance models that leverage the state information as input to achieve better

performance accuracy. As a result, the control plane performance can conform to a real

OpenFlow switch.

6.1 Design

Fig. 6.1 shows the design of our detailed emulator. To better emulate control plane per-

formance, the first key point is to detect and capture flow mod events from those con-

troller/switches messages. Therefore, when an OpenFlow controller sends messages to

the switch via a dedicated control channel, an OpenFlow Event Detector examines the

incoming messages and extracts OpenFlow flow mod events from them, and flow mod

events are put into a OpenFlow Event Queue for further event handling process. Subse-

quent OpenFlow events sometimes come in with relatively shorter intervals, so a burst

data transmission may cause multiple OpenFlow events to wait. We suppose there is op-

timization technique implemented to leverage this characteristics for more efficient pro-

cessing. So the design of a event queue is to emulate multiple OpenFlow events come and

wait for batch processing at the same time.

An OpenFlow Event Handler fetches events from the event queue and processes

the events accordingly, including flow insertions, flow modifications, and flow deletions

(which already implemented in OvS). The event information is passed to Clock Time

Manager, which adjusts the time by adding delays based on the event information, the

parameters specified in the configuration file, and switch state information. The event

information is at the same time passed to a Switch State Maintainer, which monitors the

48

!"#$%&'()#*#$+,-

!"#$%&'(.

/'$+0'&�

!"#$%&'()1&'(23'4)#*#$+)5$6'037+5'$

/'$+0'&)8&7$#-

9+7+5,+5:,-

0'&)8

!"#$%&'();*#$+)<7$4�-

!"#$%&'();*#$+)=#+#:+'0-

!"#$%&'();*#$+)>?#?#-(;*

;*#

1&'(23'4)#*#$+,-

/&':@)A53#)

B7$7C#0-
9+7+5,+5:,)

D#"'0+#0-

9(5+:E)9+7+#)

B75$+75$#0-

E 9 9 5

1&'(23'4)#*#$+,-

!"#$)*9(5+:E

B7$7C#0-B7$7C#0-C
87073#+#0,-

/'$15C?07+5'$)

%5&#-

Figure 6.1: System Design.

switch states, such as number of flows in the flow table and the priority distribution of ex-

isting flows, so that we can do accurate modeling using those information for clock time

manager to adjust the clock time. After the clock time adjustment for better performance

accuracy, the event information is then passed down to a Statistics Reporter. The statistics

reporter is responsible to record every control plane event information and the processing

time of each event into a file.

6.2 Implementation

In this section, we will detailed describe how each component in Fig. 6.1 is implemented.

Parameter configuration. Each time when an OvS in Mininet is created and ini-

tialized, the parameter configuration file is read and the corresponding parameters are

initialized by the values written in the configuration file. The configuration file is written

as a xml file. Each parameter is declared within the corresponding xml tag. In OvS, we

compile with opensource library libxml2 and leverage libxml2 API to parse configuration

files and obtain switch-dependent parameters.

OpenFlow event queue. In our implementation, we mainly focus on the flow mod

messages such as flow insertion, modification, and deletion time, so we implement a event

49

queue that can buffer flow mod events from the controller. We implement a circular queue

to hold flow mod events. In the original design of OvS, it treats all kinds of OpenFlow

events the same way before it goes down to next steps (messages processing). We es-

pecially extract flow mod events from the very beginning and puts them into our event

queue. The event queue is in a first-come-first-serve (FCFS) sense. So the flow mod

event handler fetches the oldest events from the event queue and follows the originally-

implemented flow mod process in OvS. Since two handlers (OpenFlow event detector and

handler) access the same event queue at the same time, we keep two variables to indicate

where we should put events and where we could get events from the queue. The design

of the event queue is to emulate the batch processing in switch implementations. Every

event arrive before time up will be saved in the same batch (event queue) at the same time.

Switch state maintainer. Each event may involve modifications to the flow table.

The responsibility for switch state maintainer is to extract necessary data and update the

switch states accordingly. We mainly maintain two values of switch states. One is the

number of existing flows, and the other is the priority distribution of existing flows. The

event contains information about which type of flow mod operation is used now. For

flow insertion events, each time only one flow can be added, so the existing flow size

is increased by 1 when a flow insertion event is detected. For flow modification events,

it does not change the existing flow size, so the value remains unchanged. For deletion

events, there may be two conditions. If the flow is strictly matched, only one flow will

be involved; otherwise, if wildcarded matching is used, we should examine the value that

indicates number of flows in the table matched to the coming command, and the number

of existing flows should decrement accordingly.

For priority distribution, since the priority value ranges from 0 to 65535, so we define

an array with size 65536, each maintains the number of flows using this priority value.

For instance, if we want to know how many flows are using priority 5, we simply obtain

the value with index 5, array[5]. Any insertion and deletion event will change the priority

distribution. Each time a flow insertion is detected, the specified priority is extracted and

the corresponding number is updated. For deletion event, every matching flow should be

examined and decrement the number accordingly.

Clock time manager. When the switch is created and initialized, the parameters are

also read from file and initialized. With switch-dependent parameters, event information,

and switch states maintained by switch state maintainer, we can calculate the delays using

our performance models and place delays accordingly. For all three types of commands,

we need to examine the priority distribution first to see if single or multiple priorities is

used, and then choose the performance models based on the flow mod command type.

Control plane statistics reporter. After processing by clock time manager, the

50

flow mod event information is passed down. We record the command type, such as add,

modify, delete, and idle timeout delete. The starting timestamp of the command records

the time we receive this command, and delay indicates the processing time of the com-

mand.

6.3 Evaluations

We have conducted the same series of test scenarios we define in Ch. 3, flow insertions,

flow modifications, and flow deletions.

We setup the OFLOPS controller on a Ubuntu desktop with Intel i7-4790 3.6 GHz 8-

core CPU and 8 GB memory. We use OFLOPS testing modules to measure performances

for three different testbeds: Pica8 P-3297, Mininet, and modified Mininet. Pica8 P-3297

testbed setup is the same as we describe in Ch. 3. For Mininet and our modified Mininet,

we setup the emulator on the same PC that runs the OFLOPS controller. We instantiate a

network topology of one switch with two hosts connected for both testbed setup.

Fig. 6.2 show the evaluation results for flow insertion, flow modification, and flow

deletion scenarios. Original Mininet use a software-based flow table, and the flow table

is implemented using hashtable-based design so that flow table modification whatever

insertion, modification, or deletion OpenFlow event occur under different switch state,

the time cost is relatively small due to less computation and higher power of CPU. So

the Mininet/OvS results are far differently from the Pica8 switch. While for our detailed

emulator, by inserting delays based on the model and parameters we derive from mea-

surement study, the performance is quite close to the result from Pica8 under three test

scenarios.

51

0 500 1000 1500 2000
0

5

10

15

20

25

Number of Existing Flows

In
se
rt
io
n
T
im

e
(m

se
c)

Pica8 P-3297
Unmodified Mininet/OVS
Modified Mininet/OVS

(a) Flow insertion time.

0 500 1000 1500 2000
0

20

40

60

80

Number of Existing Flows

M
o
d
ifi
ca

ti
o
n
T
im

e
(m

se

Pica8 P-3297
Unmodified Mininet/OVS
Modified Mininet/OVS

(b) Flow modification time.

0 500 1000 1500 2000
0

5

10

15

20

Number of Deleted Flows

D
el
et
io
n
T
im

e
(m

se
c)

Pica8 P-3297
Unmodified Mininet/OVS
Modified Mininet/OVS

(c) Flow deletion time.

Figure 6.2: Evaluation results of three test scenarios.

52

Chapter 7

Conclusion

We conducted extensive measurement studies on hardware and software-implemented

OpenFlow switches in terms of control plane and data plane performances. Switch per-

formance models were proposed in order to accurately emulate OpenFlow switch per-

formances. Our models take inputs of switch states and several configurable switch-

dependent parameters. By adjusting the parameters, the performance models are able to

emulate different switch implementations from different vendors. The switch-dependent

parameters can be generated from our proposed automatic switch profiling procedures,

which were derived from the measurement studies we conducted. Each switch has its

own set of switch-dependent parameters. We also conducted several validation experi-

ments to validate accuracy of our performance models. We generated random commands

with match fields set in random-generated values for control plane performances vali-

dation. The error rates were mostly under 30% for both Pica8 and OvS. For data plane

performance accuracy validation, we used a real world PCAP trace and randomly selected

a series of packets from it. The error rates were all under 20% in our experiments on Pica8

and OvS.

We also integrated our performance models into an existing OpenFlow emulator,

Mininet/OvS. We conducted several experiments to examine the emulator implementa-

tions. With the integration of our performance models, modified Mininet/OvS had great

improvements in control plane performance emulations compared to the original Mininet

implementations and was closely following the performance results from the switch we

managed to emulate.

7.1 Future Directions

Following are several directions to work on.

53

Deep insight into the switch implementations. Several measurement results re-

veal interesting observations that we can further look into in details. Control plane per-

formances, such as insertion and modification delays, reveal that batch processing for

a bunch of commands may be present, and performances can take benefits from opti-

mizations of command batch processing. Also in some control plane performance mea-

surement results, the outcome is not intuitive to the best of our knowledge, such as lin-

early increasing delays for insertion command processing with same priority distribution

or modification command processing under different numbers of existing flows. In data

plane performance measurement results with different packet inter-arrival time, the results

are almost constant under a certain packet rate. The presence of queues or other imple-

mentations of switch data plane should be detailed examined. Above all, the hardware

switch implementations are more sophisticated than we thought of. To further understand

how the underlying switch works, design of series of experiments and studies of extensive

measurement results can be conducted. Open vSwitch group newly released a paper [32]

on its switch architecture and implementations. Though switch implementations differ,

they should still share similarly on the high level design and ultimate goal, and thus the

implementation details on data plane and flow table can still give ideas to the design of

experiments.

Packet forwarding delays should be excluded from control plane performances.

For control plane performance measurements, the flow completion is notified by the re-

ception of corresponding data plane packets. Though the forwarding delays are relatively

small compared to the control plane performances, it should be excluded for more ac-

curate measurement results. It can be done by modifying OFLOPS testing modules. In

addition to recording the starting time of flow mod events and flow completion time, send-

ing and receiving timestamps of notification-use data plane packets should be recorded by

Packet Handler in order to take packet forwarding delays into considerations.

Accuracy of control and data plane performance modeling. From above, more

measurements can be conducted to study in details on the switch architecture. More

observations and information of switches can be obtained. Also the proposed performance

models still have room for improvements if more general conditions of network traffic

are considered. Performance models can be improved from a further study on switch

architecture.

Complete data plane measurements, implementations, and evaluations. Data

plane performance measurements on software table need conducting to complete the over-

all data plane performance measurements on Pica8 switch. In addition, currently our em-

ulator design is based on control plane performance. The data plane performance model

has not yet been integrated into Mininet/OvS. With data plane implementations, more

54

thorough and general performance accuracy evaluations of the detailed emulator can also

be conducted, for instance, real world traces can be used to evaluate the correctness of the

emulator.

Update OFLOPS to OpenFlow 1.3 compatible. Currently, our automatic switch

profiling procedures are based on the open source project, OFLOPS. However, OFLOPS

is implemented based on OpenFlow specification 1.0.0, but several available OpenFlow

switches are upgraded to newer version of OpenFlow, though some switches are back-

ward compatible, there are still others only compatible with OpenFlow 1.3 or any newer

version. For switch performance measurements and more switch-dependent parameters

derivation, update OFLOPS to a newer version should be necessary.

55

Bibliography

[1] Engineered elephant flows for boosting application performance in large-

scale clos networks. http://zh-tw.broadcom.com/collateral/wp/

OF-DPA-WP102-R.pdf.

[2] Mininet: An instant virtual network on your laptop. http://http://

mininet.org/.

[3] ns-3: OpenFlow switch support. http://www.nsnam.org/docs/release/

3.13/models/html/openflow-switch.html/.

[4] Oflops. http://archive.openflow.org/wk/index.php/Oflops.

[5] Open vswitch: Production quality, multilayer open virtual switch. http://

openvswitch.org/.

[6] OpenFlow switch specification 1.4.0. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.4.0.pdf.

[7] Pcap traces. http://www.simpleweb.org/wiki/Traces#Pcap_

Traces.

[8] Tcpdump and libpcap. http://www.tcpdump.org.

[9] Tcpreplay: Pcap editing and replay tools for *nix. http://tcpreplay.

synfin.net.

[10] tshark-dump and analyze network traffic. https://www.wireshark.org/

docs/man-pages/tshark.html.

[11] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Sime-

onidou. An analytical model for software defined networking: A network calculus-

based approach. In IEEE Global Communications Conference (GLOBECOM’13),

2013.

56

[12] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers

in the wild. In Proc. of the 10th ACM SIGCOMM conference on Internet measure-

ment (IMC’10), 2010.

[13] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. OpenFlow switching: Data plane

performance. In IEEE International Conference on Communications (ICC’10),

2010.

[14] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteristics of

virtual switching. In IEEE International Conference on Cloud Networking (Cloud-

Net’14), 2014.

[15] H. Farhady, H. Lee, and A. Nakao. Software-defined networking: A survey. Com-

puter Networks, 81:79–95, April 2015.

[16] M. P. Fernandez. Comparing OpenFlow controller paradigms scalability: Reactive

and proactive. In IEEE 27th International Conference on Advanced Information

Networking and Applications (AINA’13), 2013.

[17] A. Gelberger, N. Yemini, and R. Giladi. Performance analysis of software-defined

networking (SDN). In IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS’13), 2013.

[18] M. Gupta, J. Sommers, and P. Barford. Fast, accurate simulation for SDN proto-

typing. In Proc. of ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking (HotSDN’13), 2013.

[19] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. Repro-

ducible network experiments using container-based emulation. In Proc. of the

8th International conference on emerging networking experiments and technologies

(CONEXT’12), 2012.

[20] B. Heller. Reproducible network research with high-fidelity emulation. PhD thesis,

Stanford University, 2013.

[21] T. R. Henderson, M. Lacage, and G. F. Riley. Network simulations with the ns-3

simulator. In Sigcomm Demo, 2008.

[22] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch models for

software-defined network emulation. In Proc. of the 2nd ACM SIGCOMM Work-

shop on Hot Topics in Software Defined Networking (HotSDN’13), 2013.

57

[23] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia. Model-

ing and performance evaluation of an OpenFlow architecture. In Proc. of the 23rd

International Teletraffic Congress (ITC’11), 2011.

[24] X. Kong, Z. Wang, X. Shi, X. Yin, and D. Li. Performance evaluation of software-

defined networking with real-life ISP traffic. In IEEE Symposium on Computers and

Communications (ISCC’13), 2013.

[25] D. Kreutz, F. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uh-

lig. Software-defined networking: A comprehensive survey. Proc. of the IEEE,

103(1):14–76, January 2015.

[26] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for

software-defined networks. In Proc. of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks (Hotnets-IX’10), 2010.

[27] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and M. Yu. Tango:

Simplifying SDN control with automatic switch property inference, abstraction, and

optimization. In Proc. of the 10th ACM International on Conference on Emerging

Networking Experiments and Technologies (CONEXT’14), 2014.

[28] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel. On the modeling of

OpenFlow-based SDNs: The single node case. In Proc. of Computer Science and

Information Technology (CS&IT’14), 2014.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: Enabling innovation in campus networks.

SIGCOMM Computer Communication Review, 38(2):69–74, March 2008.

[30] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti. A survey of

software-defined networking: Past, present, and future of programmable networks.

IEEE Communications Surveys and Tutorials, 16(3):1617–634, February 2014.

[31] R. Olsson. Pktgen the linux packet generator. In Proc. of the Linux Symposium,

2005.

[32] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,

J. Stringer, P. Shelar, K. Amidon, and M. Casado. The design and implementation of

Open vSwitch. In Proc. of 12th USENIX Symposium on Networked Systems Design

and Implementation (USENIX NSDI’15), 2015.

58

[33] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. OFLOPS: An

open framework for openflow switch evaluation. In Proc. of the 13th International

Conference on Passive and Active Measurement (PAM’12), 2012.

[34] M. Shibuya, A. Tachibana, and T. Hasegawa. Efficient performance diagnosis in

OpenFlow networks based on active measurements. In Proc. of the 13th Interna-

tional Conference on Networks (ICN’14), 2014.

[35] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and N. Duffield.

Efficient network-wide flow record generation. In Proc. IEEE INFOCOM, 2011.

[36] S. Wang. Comparison of SDN OpenFlow network simulator and emulators: EstiNet

vs. Mininet. In IEEE Symposium on Computers and Communication (ISCC’14),

2014.

[37] S. Wang, C. Chou, and C. Yang. EstiNet openflow network simulator and emulator.

IEEE Communication Magazine, 51(9):110–117, September 2013.

[38] Wireshark official site, August 2010. http://www.wireshark.org.

[39] W. Xia, Y. Wen, C. Foh, D. Niyato, and H. Xie. A survey on software-defined net-

working. IEEE Communications Surveys and Tutorials, 17(1):27–51, March 2014.

[40] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of Software-Defined

Networking. IEEE Communication Magazine, 51(2):136–141, 2013.

59

