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中中中文文文摘摘摘要要要

本論文針對高速通訊網路下非對稱的頻寬和資源問題，提出了一個

在有限資源下的非對稱冗餘消除演算法 (RCARE)，利用多餘的下載頻

寬和接收端的資源，以加速上傳的數據傳輸。該系統可以部署於客戶

端或代理伺服器上。RCARE與現有的非對稱演算法不同，它使用更加

靈活的匹配機制來識別冗餘資料，並使用一個傳送端的暫存器吸收過

高的下載流量。和現有的冗餘消除演算法相比，它提供了一個可根據

資源與效能調整的傳送端暫存器。我們從多個伺服器和校園網路記錄

了真實的流量資料，並利用這些資料評估 RCARE的效能。由我們的

模擬結果顯示， RCARE可比目前的非對稱式通訊演算法達到更高的

上傳增益，以及更低的下載流量。我們也為有限資源的傳送端設計了

動態調整演算法。此演算法可根據目前的樣本資料，預測並分配資源

給目前的數據流，以達到最大的上傳增益。與平均分配資源的基準演

算法相比較，動態調整演算法提高了高達 87％的上傳增益。在前 10%

的實驗結果中 ( 以最佳的上傳增益排序 ) ， RCARE平均達到了高達

40.5%的上傳增益。
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Abstract

We focus on the problem of efficient communications over access net-
works with asymmetric bandwidth and capability. We proposea resource-
constrained asymmetric redundancy elimination algorithm(RCARE) to lever-
age downlink bandwidth and receiver capability to accelerate the uplink data
transfer. RCARE can be deployed on a client or a proxy. Differentfrom ex-
isting asymmetric algorithms, RCARE uses flexible matching mechanism to
identify redundant data, and allocates a small sender cacheto absorb the high
downlink traffic overhead. Compared to redundancy elimination algorithms,
RCARE provides a scalable sender cache which is adaptive based on resource
and performance. We evaluate RCARE with real traffic traces collected from
multiple servers and a campus gateway. The trace-driven simulation results
indicate that RCARE achieves higher goodput gains and reduces downlink
traffic compared to existing asymmetric communication algorithms. We de-
sign an adaptation algorithm for resource-constrained senders sending multi-
ple data streams. Our algorithm takes samples from data streams and predicts
how to invest cache size on individual data streams to achieve maximal up-
link goodput gain. The adaptation algorithm improves the goodput gain by
up to 87% compared to the baseline. In first 10% of data streams(sorted by
the optimal goodput gains), RCARE achieves up to 40.5% goodput gain on
average.
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Chapter 1

Introduction

1.1 Overview

Content redundancy often exists in network traffic. Variousredundancy eliminational-

gorithms [4,6,16,18,24,29,33] leverage the redundancy bysending condensed informa-

tion rather than redundant data, in order to increase thegoodput, which is the effective

application-level throughput, excluding protocol and error-recovery overhead. We define

goodput gainof a redundant elimination algorithm as the relative goodput improvement

compared to the standard TCP transfer. When the resources at the sender and receiver

are unconstrained, the existing redundancy elimination algorithms may achieve nontriv-

ial goodput gains. However, many network communication scenarios haveasymmetric

resource constraints in terms of networkbandwidthand end-devicecapability.

Fig. 1.1(a) illustrates the bandwidth asymmetry. This scenario often occurs in the ac-

cess networks. Example access networks with asymmetric bandwidth are Asymmetric

Digital Subscriber Lines (ADSLs), cable modems, 3G/4G cellular networks, and hybrid

satellite-terrestrial access [7,23], in which a high speedsatellite downlink is paired with a

telephone line for uplink traffic. The downlink bandwidth ofthese channels could be up

to 1,000 times higher than the uplink bandwidth [9,12,31], due to business concerns and

technology limitations. Sharing large files, such as documents, music, videos, and pic-

tures over these channels results in long upload time, sluggish playouts, and degraded user

experience. Fig. 1.1(b) shows capability asymmetry among hosts. In this scenario, end-

devices, such as smartphones and sensors, have limited memory size, processing power,

and battery capacity. Moreover, the end-devices are often heterogeneous in capability.

Although these hosts are not capable to run complex algorithms, they are often connected

to powerful servers and clouds. Recently, the negative impacts of capability asymmetry

are gradually surfacing, for example: (i) more smartphone applications push computa-

tions into the cloud, which may dramatically increase the network traffic [21], and (ii)
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Figure 1.1: We consider both: (a) bandwidth and (b) capability asymmetric scenarios.

the Internet of Things (IoT) paradigm connects a huge numberof sensors to the public

Internet, which imposes tremendous traffic load [8,36].

We collectively call network communications over bandwidth and capability asym-

metric channels asasymmetric communications. The existing redundancy elimination

algorithms [4, 6, 16, 18, 24, 29, 33] can not: (i) utilize excessive downlink bandwidth to

increase uplink goodput gain in bandwidth asymmetric scenarios, nor (ii) be executed on

resource-constrained end-devices in capability asymmetric scenarios. Therefore, users

of asymmetric communications have to resort to upgrading their channels or end-devices,

which are costly and could render some business models less viable. Hence, a redundancy

elimination algorithm designed for resource-constrainedasymmetric communication is

desirable.

In this thesis, we study the problem of increasing uplink goodput in asymmetric com-

munications by capitalizing on the otherwise wasted downlink bandwidth and receiver

capability. More specifically, we design a new asymmetric communication algorithm on

top of the transport protocols to maximize the uplink goodput gain. Several asymmet-

ric communication algorithms have been proposed in the literature [3, 10, 13, 14, 22, 32].

Trang et al. [28] use synthetic traces to evaluate the performance of these algorithms, but

their performance on actual network traffic has never been studied. In the thesis, we em-

ploy real network traces to evaluate the existing asymmetric communication algorithms,

and identify their limitations.

To cope with their limitations, we develop aparameterizedResource-Constrained

Asymmetric Redundancy Elimination (RCARE) algorithm, which isgeneral in the sense

that many system parameters can be adjusted on-the-fly. We also propose an adaptation

mechanism to optimally allocate the resources among data streams. We empirically study

the data streamcharacteristics, quantified by several features, such as entropy and packet

size. In particular, several data stream features are computed from the first few hundreds

of network packets belonging to a data stream, and the optimal allocation arrangement is

2



Table 1.1: Per-packet performance of dynamic algorithms
Algorithm Bits from Receiver Bits from Sender Rounds

DBES (H +O(1)) logN H + n logN
M +O(1) H +O(1)

TreeQuery 2N − 1 H + n logN
M +O(1) 1

ListQuery ⌊N1/k⌋⌈logN⌉ kH + n logN
M +O(1) 1

QueueQuery ⌊N1/k⌋⌈logN⌉ kH + n logN
M +O(1) 1

decided based on an empirically-trainedmodelso as to maximize the goodput gain. The

model is derived using a large set of real life network tracescollected from a high-speed

campus network [20]. Trace-driven simulations indicate that the proposed RCARE al-

gorithm outperforms the existing asymmetric communication algorithms and is close to

redundancy elimination algorithms. Moreover, RCARE is much more flexible and suit-

able under heterogeneous network and host resource constraints.

The rest of this thesis is organized as follows. In this chapter, Sec. 1.2 surveys the

related work in the literature. We conduct trace-driven simulations in Sec. 1.3 to quan-

tify the performance of the existing asymmetric communication algorithms. Based on

the findings made in Sec. 1.3, we propose a new asymmetric algorithm and evaluate the

performance in Ch. 2. Ch. 3 proposes an adaptation mechanism for multiple data streams

and shows the goodput gains of RCARE. Ch. 4 concludes this thesis.

1.2 Related Work

1.2.1 Asymmetric Communication Algorithms

The existing asymmetric communication algorithms can be categorized into two classes:

static and dynamic. The static asymmetric communication problem is first considered

by Adler and Maggs [3]. The problem is static because it assumes the communication

packets follow a known and fixed probability distribution. In particular, the problem

considers a sender sendingM packets to a receiver. The packets are chosen fromN

possible packets following a probability distribution that is known to the receiver but not

the sender. The entropy of this distribution is denoted asH. Adler and Maggs propose two

algorithms to increase the uplink goodput. The static problem is also considered in other

work [10,22,32], in which new algorithms are proposed. We refer to these algorithms as

static algorithms.

It is reported that the static problem is built on top of a strong assumption that the

receiver knows the probability distribution of packets, which is unrealistic [13,14]. Gagie

therefore considers a dynamic problem, in which multiple clients sendM packets to a

3



server, and these packets are chosen fromn packets (out ofN possible packets in total)

following a probability distribution that is unknown to both senders and the receiver [13,

14]. Gagie writes the distribution entropy asH, and proposes algorithms for the dynamic

problem [13]. We refer to these algorithms as dynamic algorithms. In our work, we do

not assume a receiver knows the probability distribution ofthe packets, and thus we only

consider dynamic algorithms throughout this thesis.

We present the main idea behind dynamic algorithms below. Generally, each asym-

metric communication algorithm maintains acacheat the receiver, to keep track oft seen

packets sent from one or more senders, wheret is a system parameter. The receiver uses

this cache in the following way. For each incoming packet, the receiverguessesthe packet

according to the cache, andasksthe sender if the guess is correct. The sender either: (i)

confirms the correctness of the guess and moves on to the next packet or (ii) sends the

receiver ahint to adjust its guess on the same packet in the next round. Each packet is de-

livered in multiple roundsr ≥ 1. A receiver updates its cache once successfully receiving

a packet, in order to leverage on the known packet pattern forfewer guess rounds.

We emphasize that the cache is online and consists of not onlyseen packets but also

their statistics such as hit counts and last-seen timestamps. Since the packet distribution is

unknown and dynamic, the receiver may saturate all educational guesses, and has to ask

the sender to transmit the packet as-is. A sender also sends apacket as-is if the number

of roundsr exceeds an algorithm-specific thresholdrmax, in order to avoid long latency.

Table 1.1 summarizes the asymptotic performance of variousasymmetric communi-

cation algorithms. We briefly describe the algorithms below.

• Dynamic Bit-Efficient-Split (DBES) uses a leaf oriented binary search tree of seen

packets as the cache, in which distinct packets are stored aslexicographically sorted

leaf nodes. To make a guess on each new packet, the receiver traverses the cache

from its root, and transmits the packet stored at the currentnode to the sender. The

sender replies withsmaller, larger, or same. With smaller/larger, the receiver then

descends one-level closer to the leaf nodes. When running outof nodes, the receiver

requests the sender to send the packet itself. DBES setsrmax = ∞.

• TreeQuery, different from DBES, it reduces the number of communicationrounds

by encoding the whole binary search tree into adata bundle. The receiver transmits

the binary tree to the sender, and the sender replies with thetraversal path also in a

single data bundle. The sender transmits a packet as-is if itcannot be found in the

tree. TreeQuery setsrmax = 1.

• ListQuery maintains a cache of seen packets sorted by their hit counts in non-

decreasing order. Different from TreeQuery, ListQuery uses a parameterk ≥ 1 to

control the amount of downlink traffic. That is, the receiverencodes the sublist of

4



thet1/k most popular packets into a data bundle and transmits it to the sender. If the

new packet is in the sublist, the sender transmits its identification; otherwise, the

sender transmits that packet itself. ListQuery setsrmax = 1.

• QueueQuery is very similar to ListQuery. The main difference is, instead of a

sublist of most popular packets, the receiver transmits a queue oft1/k most recently

seen packets to the sender.

Trang et al. [28] implement DBES and ListQuery algorithms in NS-2 simulator [25].

They conduct simulations with synthetic traces and observe24% uplink goodput gain. In

my thesis, we also conduct trace-driven simulations quantify the potential of DBES, List-

Query, and QueueQuery using real network traces. The results are indicated in Sec. 1.3.

1.2.2 Redundancy Elimination Algorithms

There are several redundancy elimination algorithms proposed in the literature, which

can also be used to increase uplink goodput of asymmetric communications to some de-

gree. These algorithms can be categorized into two classes:online compression algo-

rithms [18, 24, 33] and protocol-independent redundancy elimination algorithms [4, 6].

Yang et al. [18, 33] implement LZ77 compression algorithm with VLSI architecture. It

uses the content addressable memory to design a high-speed data compressor. Munteanu

et al. [24] use LZ compression algorithm to do the packet compression on the fly. They

evaluate the performance using HTTP traffic. The results reveal that it can reduce the traf-

fic up to 38%. Online compression algorithms compress the data payload in real time and

have been deployed in commercial routers [29]. Protocol-independent redundancy elim-

ination algorithms remove duplicated packets. For example, in Aggarwal et al. [4], the

server maintains per-client caches for downlink redundancy elimination. Some of these

algorithms have been employed as WAN optimization techniques [1].

In redundancy elimination algorithms, the fingerprinting algorithm is one of the main

factors in detecting redundant data. The fingerprinting algorithm and it’s configuration

also affects the processing speed. Aggarwal et al. [4] evaluate the performance of cur-

rent fingerprinting algorithms such as MODP, MAXP, and FIXED. They then propose

a new fingerprinting algorithm, called SAMPLEBYTE, which is much faster than cur-

rent algorithms. Halepovic et al. [15] study on the influenceof sampling overlap and

oversampling. Overlap and oversampling incur much higher overhead but they improve

redundancy elimination by 9-14%. They observe the content type also affect the perfor-

mance. For example, text data has higher probability to achieve better results than com-

pressed data. They propose a method to dynamically adjust the sampling period based on

the textiness ratio. With the method, they can avoid unnecessary oversampling to reduce

5



overhead.

In contrast to RCARE, while redundancy elimination algorithms[4,6,16,18,24,29,33]

may reduce the uplink traffic amount, they cannot leverage ondownlink bandwidth and

receiver capability for faster upload speed. Moreover, existing redundancy elimination

algorithms demand considerable resources, including memory, CPU cycles, and energy

at senders, and thus are not suitable when the senders have limited resources. Last, unlike

the proposed RCARE, they cannot leverage redundancy across multiple senders.

Recently, Zohar et al. [35] study the downlink redundancy elimination problem in

clouds. They propose areceiver-drivenredundancy elimination algorithm, called PACK

to shift the resource demands from the senders in clouds to receivers on residential/corporate

networks, so as to reduce the cost of cloud customers. PACK links transmitted data to-

gether, which is like a chain. It uses these chains to predictthe next incoming data so

as to reduce the transmitting cost. PACK is probably the work closest to the proposed

RCARE algorithm, despite PACK was designed to minimize the cost of cloud customers

at the expense of potentially overloading mobile computersand sensors that are down-

loading from cloud. While PACK shifts all the overhead from a sender to a receiver, our

RCARE allows dynamic resource allocations between the sender and receiver for higher

goodput gains without overloading the receivers. The authors of [35] mention that PACK

is more suitable to larger objects such as video and email attachments, and recommend to

fall back to sender-driven (traditional) redundancy elimination algorithm [35] for smaller

objects. In fact, even for videos, PACK leads to slightly lower goodput gain compared to

a sender-driven redundancy elimination algorithm as reported in [35].

Compared to RCARE, the existing redundancy elimination algorithms [1, 4, 6, 18,

24, 29, 33, 35] suffer from three limitations: (i) they require high computational power

at the sender to identify data redundancy and large storage space for caching historical

traffic, which are not available at resource-constrained senders, (ii) they do not leverage

redundancy among data from different senders, which could be nontrivial, especially in

mobile and IoT applications, and (iii) they do not capitalize the already-paid downlink

bandwidth and receiver capability.

Last, a preliminary version of this work was presented in Li et al. [19]. This thesis

contains a new adaptation algorithm, more extensive analysis, and additional simulation

results, compared to [19].
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Table 1.2: Packet traces from real servers
Trace Server Type Location Duration (hr) Size (MB)

T1 Enterprise Server US East Coast 168 59

T2 Enterprise Server US West Coast 98 153

T3 Home Server Taiwan 60 404

T4 Home Server US West Coast 122 821

T5 University Server Canada West Coast 47 12,568
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Figure 1.2: Goodput gains achieved by ListQuery, results from: (a) protocol-independent

cache, (b) HTTP cache, and (c) per-protocol caches with cache size 1 GB.

1.3 Limitations of Current Asymmetric Communication

Algorithms

Table 1.1 presents the asymptotic performance of the current asymmetric algorithms.

While the asymptotic analysis sheds some lights on the effectiveness and efficiency of

the algorithms, it does not reveal the potential of these algorithms in real life scenarios. In

this section, we collect actual network traces from real servers, and conduct trace-driven

simulations to quantify the performance of these algorithms.

1.3.1 Potential of Asymmetric Communication Algorithms

We collected egress packet traces from five real servers in enterprise, home, and university

networks usingtcpdump. All the servers ran Linux, and had 4-12 local users. We col-

lected the traces without asking users to change their dailyusage patterns. Some services,

e.g., Web services, may have many anonymous remote users. Table 1.2 summrized the

information of individual traces. The trace files enable us to perform realistic trace-driven

simulations.

Trang et al. [28] implemented the DBES, ListQuery, and QueueQuery algorithms in

the NS-2 simulator. We however found that conducting NS-2 simulations is quite time

consuming. Therefore, we also developed our own event-driven simulator using C/C++,

which runs more than 100 times faster than NS-2 when the network topology is simple.
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We ran several simulations using both NS-2 and our simulator, and carefully compared

the simulation results to verify the correctness of our simulator. In the rest of this work,

we report the simulation results from our own simulator.

We let the packet size be 1,500 bytes, and vary the cache size from 3 to 1,500 MB.

We setk = 1 for ListQuery and QueueQuery algorithms. We conduct two sets of simula-

tions. First, we use each trace file to drive the simulator with one of the three considered

algorithms. This is to emulate the scenarios where a protocol-independent cache is used

between any pair of sender and receiver. Second, we split each trace file into smaller

trace files based on their port numbers. We then run the simulators with the split trace

files, so as to emulate the scenarios where a per-protocol cache is employed. We use the

uplink goodput gain as the performance metric. The goodput gain is defined as the rela-

tive goodput increase of an asymmetric communication algorithm compared to a standard

TCP data stream.

The simulation results indicate that DBES never results in positive goodput gain. Fur-

thermore, throughout our simulations, QueueQuery always achieves similar, but slightly

worse uplink goodput gain compared to ListQuery. Therefore, we only report results from

ListQuery. We found that the uplink goodput gain does not increase when cache size is

larger than 250 MB; hence, we only plot the results with cache size in [3, 250]. We first

present the results from ListQuery. We plot its protocol-independent uplink goodput gain

in Fig. 1.2(a). This figure shows that only one trace (T1) results in uplink goodput gain

higher than 7%; three traces (T2, T3, and T5) lead to negligible (< 2%) uplink good-

put gain. Next, we report the per-protocol uplink goodput ofHTTP traffic in Fig. 1.2(b).

Compared to Fig. 1.2(a), the uplink goodput gain of HTTP is generally higher. Never-

theless, majority of the traces (T2, T3, and T5) still lead tosmall (< 3%) uplink goodput

gain. Last, we compute the uplink per-protocol goodput gainof individual traces, and

plot their mean, minimum, and maximum gains in Fig. 1.2(c). This figure shows that the

uplink goodput gains are low, with exceptions of the HTTP (port 80) and SMTP (port

25) protocols. Even for HTTP and SMTP, the worst per-trace uplink goodput gains are

< 10%.

1.3.2 Discussion

We take a closer look at the packets in the traces to determinethe root causes of the in-

ferior performance of the current asymmetric communication algorithms. We found that

these algorithms are limited in the sense that they only leverage the redundancy ofexact-

matchpackets. In actual traffic traces, however, exact-match packets do not occur too

often. Rather, we often observe packets that are almost matching except a fewcritical

bytesthat are different from one another. Despite there is a high redundancy between
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the two packets, the current algorithms will treat them as different packets. Furthermore,

a common byte range may appear in different positions of two packets, which are then

considered as different packets by the current algorithms.Take HTTP packets as exam-

ples, meta-data such as timestamps, cookie IDs, and hit counts are critical bytes, which

may have variable length. This in turn results in diverseoffsets. We refer to packets that

only differ by critical bytes and diverse offsets aspartial-matchpackets. We believe that

the current algorithms achieve low uplink goodput gains because they cannot identify the

partial-matches. We develop a new asymmetric communication algorithm to address this

limitation in the next section.

1.4 Contributions

This thesis makes the following main contributions:

• We propose an asymmetric redundancy elimination algorithm, RCARE, which, to

the best of our knowledge, is the first redundancy elimination algorithm tailored for

resource-constrained asymmetric communications.

• We study the correlation between unlink goodput gain and data stream features, and

derive an adaptation algorithms for allocating the cache size based on data stream

features.

• Extensive trace-driven simulations show that RCARE outperforms the state-of-the-

art asymmetric communication algorithms [13,14] by far: upto 50 times improve-

ment on uplink goodput gain and up to 384 times reduction on downlink traffic

amount are observed.
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Chapter 2

RCARE

In this chapter, we present a first efficient asymmetric redundancy elimination algorithm.

We conduct trace-drvien simulations to evaluate the performance and compare it with

existing algorithms.

2.1 A new Asymmetric Communication Algorithm: RCARE

We present the RCARE algorithm in this section. For the ease of presentation, we consider

a single data stream in this section. Other deployment scenarios will be discussed in Ch. 3.

2.1.1 Overview

The main objective of RCARE is to maximize the uplink goodput gain by supporting

partial-match, which allows us to capitalize common byte ranges with arbitrary offsets

and lengths shared between the current and a historical packet. The secondary objective

of RCARE is to be parameterized, in order to adapt to data streamswith diverse charac-

teristics. RCARE resides in between the transport and application layers, and provides

a boosted uplink data transfer service to applications. Fig. 2.1 illustrates that RCARE

can be deployed on two hosts of asymmetric communications (Fig. 2.1(a)), or on an in-

network proxy (Fig. 2.1(b)). Fig. 2.1 only presents a simplified network topology. More

elaborated topologies are possible. For example, two hostsof asymmetric communica-

tions may connect through a common proxy for goodput gains inbothdirections. Multiple

proxies at different Internet Service Providers (ISPs) mayalso collaborate with each other

by establishing high-bandwidth channels among them.

10
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Figure 2.1: RCARE can be deployed on: (a) hosts and (b) proxies.

2.1.2 Packet Caches

Similar to existing asymmetric communication algorithms,RCARE maintains a cache

of historical packets at the receiver. We let the receiver cache size beBr MB, which

is determined by the receiver’s capability. RCARE also allocates a packet cache at the

sender, and we let the sender cache size beBs MB, which is determined by the sender

capability. At the sender, each new packet is compared against the historical packets in

the sender cache to find the longest common byte range. The matching byte ranges are

then encoded for reducing the uplink data redundancy.

In RCARE, the receiver cache cannot be smaller than the sender cache, otherwise

some encoded byte ranges might not be decodable at the receiver. Therefore, we have

Br ≥ Bs. Having a larger receiver cache makes sense for capability-constrained mobile

and sensing devices, because the receiver canhelp the senders to memorize more histor-

ical packets for higher uplink goodput gain. More specifically, the receiver periodically

transmits a subset of the receiver cache to the sender. The sender then uses this cache

subset to replace the old, potentially outdated, sender cache. This is referred to ascache

update. The receiver also keeps a copy of the sender cache for the decoding purpose,

which is called sender cacheshadowin RCARE.

The cache update is performed once everyf packets, whereupdate frequencyf is a

system parameter. The update frequency controls the tradeoff between downlink traffic

amount and uplink goodput gain, because less frequent updates result in more outdated

sender cache, but save some downlink traffic. In RCARE, we assumethe size of each

cache update isBs for simplicity. That is, the receiver alwaysfills up the entire sender

cache in each cache update.1

Given thatBr ≥ Bs, RCARE may not copy the entire receiver cache to the sender.

Therefore, RCARE has to define aselection policyto maximize the chance of identifying

1More elaborated update strategies are possible, e.g., partial cache updates or incremental cache updates
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common byte ranges at the sender for higher uplink goodput gain. Typical selection

policies include: (i) Most-Recently-Used (MRU) and (ii) Most-Frequently-Used (MFU)

packets. We consider a generalhybrid policy Pβ (0 ≤ β ≤ 1), which selectsβ MRU

and1 − β MFU packets. It is clear thatPβ covers the full spectrum of selection policies

between (and including) MRU and MFU. Upon there is a common byte range falls in

a packet, RCARE increases its hit count by one and/or updates itslast-seen timestamp.

Different fromf , β does not affect the downlink traffic amount, yet may affect the uplink

goodput gain.

2.1.3 Efficient Partial-Match Algorithm

A simple approach to find common byte ranges between the current packet and a single

historical packet in the sender cache is to traverse througheverysingle byte of that histor-

ical packet. Then the simple approach checks all historicalpackets in the sender cache.

Such a naive approach is clearly not feasible in real-time systems given the huge number

of comparisons to be done. To speed up the partial-match process, we employ the follow-

ing techniques: (i) selecting representative windows, (ii) hashing representative windows,

(iii) locating matching byte range, and (iv) encoding the matching byte range. These tech-

niques are inspired by redundancy elimination algorithms in the literature [4, 5, 15, 27].

We discuss these techniques in details below.

Selecting representative windows.To avoid excessive computational complexity at

the receiver, each packet is scanned and marked with one or multiple representativewin-

dows, where each window isw-bytes long. We refer tow as the window size. The partial-

match process uses these representative windows asenteringpoints to locate matching

byte ranges and thus the complexity can be controlled. Moreover, we use a window sam-

pling frequencyp to throttle the number of representative windows. In particular, RCARE

only considers1/p qualified representative windows for the sake of lower computational

complexity.w andp are system parameters, and could affect the performance of RCARE.

We empirically compared severalw andp values and found thatw = 32 andp = 64 result

in a good tradeoff between running time and uplink goodput gain.

After determining the window size and sampling frequency, we need to design a policy

on choosing the representative windows. Aggarwal et al. [4]propose a policy called

SAMPLEBYTE, and show it outperforms other policies. We adoptSAMPLEBYTE in

RCARE. Specifically, the receiver maintains amarker list of m byte values, where1 ≤

m ≤ 256. Whenever the receiver sees a new packet, it traverses through every byte of that

packet, and compares its value against the markers’ values.If there is a match at offset

x, the receiver selects[x, x+w− 1] as the representative window, and skipsp/2 bytes in

order to comply with the sampling frequency. RCARE dynamicallycomputes the marker
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list based on the occurrence frequency of all byte values across the receiver cache. This

is closer to a dynamic approach recently proposed by Halepovic et al. [15]. Different

from redundancy elimination algorithms [4, 5, 15, 27], RCARE pushes the complexity

of computing the marker list, along with other computations, to the powerful receiver.

RCARE employs a marker list refresh thresholdTm packets, for statistically meaningful

marker lists. The receiver updates the marker list once every rm = max(f, Tm) packets,

and transmits the list to the sender. We letTm = 1, 000 if not otherwise specified.

Hashing representative windows.To facilitate fast lookup, we employ Jenkins Hash

function [17] to compute a 32-bit hash code, referred to asfingerprint. The receiver

maintains a hash table with fingerprint as keys, and<historical packet ID, offset> as

values, where historical packet ID points to a specific packet in the cache. This is called

the fingerprint table, which is sent to the sender whenever the receiver does a cache update.

The sender uses this fingerprint table for common byte range lookups.

Locating matching byte range. For each packet, the sender uses the marker list

to locate all representative windows in it. The sender then computes their fingerprints.

Comparing against the fingerprint table, the sender finds the first matching window. It

then expands the matching window to the left and right one byte after another, so as to

maximize the matching byte range. This is similar to the strategy proposed in [4,5,27].

Encoding the matching byte range.The sender sends<historical packet ID, offset,

length> instead of the byte range itself. The receiver uses the sender cache shadow to

reconstruct the original byte range. Given that the tuple ismuch shorter than the raw byte

range, RCARE may achieve high goodput gain.

2.2 Trace-Driven Simulations

We quantify the performance of RCARE in this section.

2.2.1 Setup

We extend the event-driven simulator presented in Sec. 1.3.1 to support RCARE. We

compare RCARE against ListQuery, because ListQuery outperforms all other asymmet-

ric communication algorithms in terms of the uplink goodputgain, which is also shown

in Sec. 1.3.1. We also implement EndRE [4] and GZip [34] algorithm in the simulator

for comparisons. The EndRE algorithm employs symmetric caches for sender-driven re-

dundancy elimination, while GZip compresses the payload ofeach packet before sending

it out. We use actual network traces collected in Sec. 1.3.1 (see Table 1.2) to drive the

simulator. We conduct both protocol-independent and per-protocol simulations. In the
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Figure 2.2: Uplink goodput gain achieved by various protocols, sample results from: (a)

T1 and (b) T5.

latter case, we split each network trace into multiple protocol-specific traces. We ignore

the protocols with fewer than 1,000 packets. We program the simulator to report the per-

formance results after each round of simulation. We consider the following performance

metrics: (i) uplink goodput gain in percentage, (ii) relative overhead, which is defined as

the ratio of downlink traffic amount and the raw uplink trafficamount in percentage, and

(iii) per-packet encoding and decoding time in msec.

For RCARE and EndRE, we let marker list lengthm = 10, update frequencyf =

1, 000, receiver cache sizeBr = 64, sender cache sizeBs = 16, selection policy param-

eterβ = 0.1, and trace file be T1, if not otherwise specified. We emphasizethat, for

fair comparisons, the sender and receiver cache sizesincludeall the storage overhead, in

particular the fingerprint tables. For EndRE, the sender and receiver cache sizes must be

identical, while the proposed RCARE allows the users to specifya smaller sender cache

size. Various system parameters, including the update frequency, selection policy param-

eter, and sender cache size, are varied in the simulations tostudy their implications on

system performance.

2.2.2 Results

Improved uplink goodput gain. We first compare the uplink goodput gain achieved by

all considered algorithms. For fair comparisons, we letBr = Bs ∈ {1, 4, 16, 64, 256, 512}

andf = 1 since EndRE only supports this configuration. We plot the sample results from

T1 and T5 in Fig. 2.2, in which we skipBr = Bs = 512 for brevity, as it leads to the

similar results asBr = Bs = 256. Note that, in this figure, RCARE achieves similar

uplink goodput gain as EndRE; therefore their lines overlap with each other. Fig. 2.2(a)

shows that RCARE outperforms GZip whenBs = Br ≥ 4. Moreover, RCARE always

outperforms ListQuery: up to 1.54 times of uplink goodput gain is possible. Fig. 2.2(b)
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Figure 2.4: Implications ofBr andBs

on uplink goodput gain.

shows that RCARE significantly outperforms ListQuery: about 50times uplink goodput

gain improvement is observed. Fig. 2.3 present the overall results. This figure shows

that RCARE constantly outperforms ListQuery. Given that ListQuery and GZip lead to

inferior performance, and EndRE dictatesBs = Br (thus is inflexible), we concentrate on

the evaluation of RCARE in the rest of this section.

Implications of Br andBs. We varyBr ∈ {1, 4, 16, 64, 256, 512}, andBs = {1, 4, 16, 64}.

We plot the uplink goodput gain in Fig. 2.4, in which we zoom into Br ∈ [0, 100]. We

make two observations. First, withBs ≥ 4, larger receiver cache leads to higher uplink

goodput gain. Second, when sender cache sizeBs = 1, larger receiver cache actually

leads tolower goodput gain. We believe this is because largerBr means more room for

selecting representative windows, and thus scenarios withsmallBs are more sensitive to

the quality of window selection policy. Fig. 2.4 reveals thetight correlation betweenBs

andBr: a joint decision on them need to be made for a good tradeoff between uplink

goodput gain and resource consumption. The algorithm to dynamically adjustBs andBr

are shown in Ch. 3.

Diversity of uplink goodput gain. We plot the protocol-independent and per-protocol

uplink goodput gain in Fig. 2.5. This figure shows that the achieved gain of RCARE is

quite diverse: 3–32% for protocol-independent case (Fig. 2.5(a)) and 2–57% for per-

protocol case (Fig. 2.5(b)). In particular, SMTP (25), POP3S (995), and NFS (2049)

achieve more than 40% gains. Fig. 2.5(b) also shows that the range of gains of a protocal

with different traces could be large. For example, the HTTP protocol with different traces

achieves very different gains. Hence, the uplink goodput gain of RCARE highly depends

on the payload content.

Tradeoff between uplink goodput gain and relative overhead. While larger sender
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Figure 2.5: Diverse goodput gains from: (a) various trace files and (b) per-protocol trace

files.
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Figure 2.6: Tradeoff between: (a) uplink goodput gain and (b) relative overhead.
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Figure 2.7: Time complexity of RCARE, per-packet: (a) encodingand (b) decoding time.

cache results in higher uplink goodput gain, it also leads tomore downlink traffic. We

plot the uplink goodput gain and relative overhead of RCARE and ListQuery withBs ∈

{1, 4, 16, 32, 48, 64} in Fig. 2.6. Fig. 2.6(a) shows that RCARE and ListQuery lead to sim-

ilar gain whenBs ≤ 32, and RCARE outperforms ListQuery whenBs > 32. Fig. 2.6(b)

shows the relative overhead. It clearly illustrates that ListQuery suffers from huge rela-

tive overhead: it incurs up to 18,450 times of downlink traffic amount, compared to the

raw uplink traffic amount. In contrast, RCARE uses a small sendercache toabsorba

huge portion of the downlink traffic, and only incurs at most 48 times of downlink traffic

amount (not visible in this figure due to the Y-axis scale), which is almost 384 times lower

than that of ListQuery.

Encoding and decoding time. Fig. 2.7 shows per-packet encoding and decoding

time, collected from a commodity 3.4 GHz Intel i7 Linux PC. We set receiver cache size

to Br = 64 and vary sender cache sizeBs. This figure demonstrates the efficiency of

RCARE algorithm: encoding overhead is less than 0.5 msec while the decoding over-

head is less than 5.2 msec. Moreover, RCARE is scalable to the cache size because

the lines in this figure are almost flat. We take a closer look and find that the decoding

time in Fig. 2.7(b) is increasing with a small slope. This is because of receiver needs

more resources to compute the cache update for the server when Br increases. In these

two figures, the T5 costs more CPU times because it has longer payload size than oth-

ers. For example, the average payload size of T5 is about 2,000 bytes, while that of T2

is only 300 bytes. We acknowledge that despite we consider all the computational over-

head in the simulator when calculating encoding/decoding time, the reported results might

not include certain overhead in real systems, e.g., the overhead incurred by the network

stack and the multitasking overhead of Operating Systems. Nonetheless, we believe our

RCARE can run in real time after some code optimization. Integrating RCARE in a real

network stack is our future work.
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2.2.3 Observations

We made two observations on the performance of RCARE algorithm out of the simulation

results. First, RCARE outperforms the existing asymmetric communication algorithms

by a large margin. Second, the achieved goodput gain varies alot due to: (i) diverse

characteristics of data streams and (ii) different system parameters. In extreme cases,

RCARE may lead to negligible goodput gain, or even result in goodput loss. Therefore,

how to select the best system parameters for each data streamis critical to the performance

of RCARE. We conduct extensive simulations in the next section,and derive an adaptation

mechanism for this purpose.
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Chapter 3

Dynamic Adaptation Algorithm and

Large-Scale Simulations

In this chapter, we conduct simulations to study how RCARE’s system parameters and

data stream characteristics affect the uplink goodput gain. We then propose a practical

adaptation algorithm for RCARE.

3.1 Data Stream Analysis

In order to study how system parameters and data stream characteristics affect the uplink

goodput gain, we collect real-life traffic trace for furtheranalysis. We then recommend

the best configuration for later simulations.

3.1.1 Real-Life Traffic Trace Collection

We need a larger set of packet traces to make statistically meaningful analysis. To achieve

that, we collected actual packet traces from a campus network [20] at National Chiao

Tung University, Taiwan. More specifically, we rantcpdump on an access router to

record all the packets, including the headers and payloads.With a 2 TB hard disk, we

collected 10-hour traces from 12:00 to 22:00 on February 20th, 2012. Fig. 3.1 shows the

per-hour traffic amount, which reveals that 7 p.m. is the peakhour. We recorded 1,632

GB packet data in total. The traces contain 3,358 distinct IPs on the local network and

3,598,829 distinct IPs from the Internet. We divided the traces into data streams, based

on each packet’s 4-tuple, including source/destination IP/port. To ensure that each data

stream has at least a chance to update the cache, and to avoid high setup overhead of

short-living data streams, we only consider data streams longer than 2 MB data amount.

This gives us 22,330 data streams for our analysis presentedbelow.
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3.1.2 Data Stream Characteristics

The data streams have diverse characteristics, which may bedescribed by trafficfeatures.

The traffic features affect the performance of the RCARE algorithm, and provide hints on

selecting the best system parameters for optimal uplink goodput gain. We consider the

following data stream features in this article.

• Port number. Different protocols may inherently carry different amount of redun-

dancy. For example, HTTP protocol mostly carries unencrypted data, which is

easier to compress, while HTTPS protocol carries encrypteddata, which is harder

to compress. The port number is a good hint for the employed network protocol of

a data stream. We consider the source port throughout this thesis.

• ASCII ratioθ. ASCII data generally contains more redundancy, compared tobinary

data. Therefore, the percentage of data in ASCII may be a good indicator for data

redundancy.

• EntropyH. The average entropy of the identified byte ranges is the mostdirect

indicator of the expected information amount carried by thebyte ranges. How-

ever, computing average entropy ofvariable-lengthbyte ranges is complex, and

thus we compute average entropy of 32-byte longfixed-lengthdata blocks. We

empirically found that the entropy of 32-byte blocks approximates the entropy of

variable-length byte ranges well, compared to 4-, 8-, 16-, and 64-byte data blocks.

• Mean packet length. Large packet length might lead to lower header and control

overhead and thus higher goodput gain.

• Standard deviation of packet length. More uniform packet length may indicate

bulky data transfers, which may consist of more data redundancy.

Depending on the features of each data stream, a different set of system parameters

may be selected for maximizing the goodput gain. The proposed RCARE algorithm takes

the following system parameters: Receiver cache sizeBr, Sender cache sizeBs, Marker

list lengthm, Selection policy parameterβ, and Update frequencyf . We study how the

data stream features and system parameters affect the goodput gain in the next section.

To simplify the problem of choosing the best parameters, we define multiple profiles

for data streams with different features. Each profile consists of a set of pre-defined

parameters, which will be empirically derived in the rest ofthis section. In particular, this

is done by conducting extensive trace-driven simulations with diverse traffic traces.
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3.1.3 Simulation-Based Analysis

We modify the simulator used in Sec. 2.2.1, so that each data stream is considered sepa-

rately. In particular, we create a separate cache for each data stream, and apply RCARE

with different parameters to each data stream. We record theresulting goodput gain for

each set of parameters. We also analyze and report the features of each data stream. We

note that although we consider all the data blocks when analyzing the data stream features,

only the firstα data blocks of each new data stream are sampled in real systems. That is,

we will use sample features to approximate the features of the complete data streams.

We choose three-hour sample traces from 12:00, 15:00, and 19:00. We use each data

stream to drive our RCARE simulator and calculate the average gain of all the 8,147 data

streams from the sample traces. We consider three simulation scenarios, in which we

assumeBr = Bs for simplicity. If not otherwise specified, we letBr = Bs = 4, m = 10,

α = 1, 000, 000, β = 0.1, andf = 1, 000. In scenario I, we varym = {5, 10, 20, 40, 80}.

In scenario II, we letβ = {0, 0.1, 0.25, 0.5, 0.75, 1}. In scenario III, we choosef =

{10, 100, 1000, 10000, 100000}. We report the simulation results from each scenario in

the following.

Scenario I.Fig. 3.3(a) plots the average goodput gain and processing speed with dif-

ferent marker numbers. The processing speed is measured in Mbps and gathered from a

commodity 2.6 GHz AMD workstation. This figure reveals that although more markers

slightly increase the goodput gain, more markers also lead to higher computation over-

head. From our simulation results, the processing speed form = 10 is 230 Mbps and

m = 20 is 80 Mbps. Hence, we recommendm < 20 to keep up with the Ethernet line

speed.

Scenario II. We report the average goodput gain with different selectionpolicy β in

Fig. 3.3(b), which reveals thatβ = 0.1 results in the highest goodput gain. Hence we

recommendβ = 0.1.

Scenario III. Fig. 3.3(c) plots the average goodput gain and downlink overhead un-

der different update frequencyf . We estimate the downlink overhead by computing the

down/up ratiobetween the downlink traffic amount over uplink traffic amount. This figure

reveals that while smallf results in higher goodput gain, it also leads to higher down/up

ratio. Hence, we recommendf = 1, 000. This gives a reasonable down/up ratio of 8.97,

which is roughly in-line with many ISP’s asymmetric access plans, e.g., Verizon’s DSL

plan [30] offers a downlink of 7.1 Mbps to 15 Mbps with an uplink of 768 Kbps.

In summary, we recommendm = 10, β = 0.1, andf = 1, 000 for the best tradeoff

between performance (uplink goodput gain) and overhead (processing speed and up/down

ratio). If not otherwise specified, we use this configurationfor following simulations.

Last, we note that the uplink goodput gains shown in Figs. 3.3(a), 3.3(b), and 3.3(c) are
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Figure 3.3: Implications of the system parameters: (a) marker numberm, (b) selection

policy β, and (c) update frequencyf .

not as high as we observed in earlier sections. This is understandable because these figures

present the average goodput gain overall data streams. The observation emphasizes the

importance of identifying those data streams with more dataredundancy, so that we can

allocate more resources to them for higher overall goodput gain. In the next section, we

present a detailed prediction model for this purpose.

3.2 Dynamic Adaptation Algorithm

In this section, we use the configuration recommended above to build the prediction model

to estimate the goodput gain. With the prediction model, we design an adaptation algo-

rithm which dynamically invests cache size to each data stream.
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3.2.1 Prediction Model

We develop a prediction model that allows us to estimate the goodput gain by analyz-

ing a few packets at the beginning of each data stream. We employ the aforementioned

8,147 sample data streams to drive our simulator. We study the relation between good-

put gain and individual data stream features, under variouscache sizeB = Br = Bs ∈

{1, 2, 4, 8, 16, 32, 64}.

We first analyze the implication of source port number on uplink goodput gain, and

plot the average goodput gain of each port number in Fig. 3.2.Note that, ports between

0 and 1,023 are calledwell-knownports, which are associated with the default protocols.

Fig. 3.2, however, reveals that some higher ports≥ 1024 also achieve high goodput gain.

The actual protocols used on these high ports are unknown to us, and thus we cannot

predict the goodput gain of many high port numbers. While DeepPacket Inspection

(DPI) may help us to infer the protocols used by the data streams, DPI incurs non-trivial

overhead [2,26] and thus we do not consider it in this article.

Features other than port number are continuous, and thus we group the feature values

into 10 bins and calculate the mean of each bin for better mathematical tractability. We

perform linear and quadratic regressions on the mapping between the feature values and

mean goodput gains. Table 3.1 shows theR2 values of single-variable regression with

cache size of 16 MB. This table shows that entropy, the ASCII ratio, and the mean packet

length significantly outperform the standard deviation of packet length; therefore, we no

longer consider the latter feature. We then perform two-variable regressions with a cache

size of 16 MB, and report theR2 values in Table 3.2. This table indicates that all theR2

values of two variable regression are much lower than that ofthe single-variable quadratic

regression of entropy. Thus, we use quadratic regression ofentropy to build the prediction

model.

Fig. 3.4 shows the distribution of uplink goodput gain with different entropy. In par-

ticular, we propose an empirical model to predict the uplinkgoodput gain of each data

stream based on entropyH and cache sizeB. We mathematically write the model as:

γ (B,H) = δB,2H
2 + δB,1H + δB,0, (3.1)

whereH ∈ {0, 2.66, 5.31,7.07, 10.62, 13.28,15.93, 18.59, 21.24, 23.90},B = Br = Bs ∈

{2, 4, 8, 16, 32, 64}, and δB,2, δB,1H, and δB,0 are model parameters derived from the

quadratic regression. For cache sizes and entropy from the sampled values, we use linear

interpolation or extrapolation to approximate the goodputgain. Table 3.3 gives the model

parameters. The averageR2 across all cache size is 0.864, which is fairly accurate. For

visual validation, we plot sample actual and predicted goodput gains in Fig. 3.6, and the

interpolated surface of the predication model in Fig. 3.7. Fig. 3.6 shows that our prediction
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Table 3.1:R2 value of single-variable regression with a 16MB cache

Feature Linear Quadratic

EntropyH 0.74 0.85

ASCII ratioθ 0.08 0.67

Standard diviation of packet length 0.04 0.16

Mean packet length 0.28 0.29

Table 3.2:R2 value of two-variable regression with a 16MB cache
Feature Linear Quadratic

EntropyH and ASCII ratioθ 0.39 0.59

EntropyH and Mean packet length 0.45 0.61

ASCII ratio θ and Mean packet length 0.39 0.48

model closely follows the actual results, while both figuresconfirm that: (i) lower entropy

leads to higher goodput gain and (ii) larger cache size results in higher goodput gain.

3.2.2 Adaptation Formulation and Algorithm

The simulation results presented above reveal that for a given data stream, larger cache

size results in higher goodput gain. However, real systems always have limited mem-

ory size, and how to optimally allocate the memory to multiple concurrent data streams

become a challenging issue. We letS be the total number of data streams andBT be

the total cache size. We useHs to denote the sampled entropy of data streams, where

s = 1, 2, · · · , S. Our problem is to find the best way to distributeBT among allS data

streams in order to maximize the overall goodput gain. We letbs, wheres = 1, 2, · · · , S

be the allocated cache size of data streams, which are the decision variables of our prob-

lem. We use
∑S

s=1
γ (bs, Hs), the overall goodput gain, as our maximization goal.

To formulate the optimization problem, we need to mathematically write the esti-

mated goodput gain of data streams as a function̂γ (·) of the decision variablebs under a

given sampled entropyHs. The prediction model in Eq. (3.1), can be written as a piece-

wise linear function. We letZ be the total number of endpoints of this piecewise linear

function, and write the endpoints as(d1, g1) , (d2, g2) , · · · , (dz, gz), where the cache size

d1, d2, · · · , dz come from the chosenB in the simulations and the predicted goodput gain

gz,Hs
= γ (dz, Hs) , ∀z = 1, 2, . . . , Z.

We plot two sample piecewise linear functions withHs = 5.31 and10.62 in Fig. 3.5

for illustrations. We make an important observation: the slopes of individual segments

are strictly decreasing. That is,gz,Hs−gz−1,Hs

dz,Hs−dz−1,Hs
>

gz+1,Hs−gz,Hs

dz+1,Hs−dz,Hs
for all z = 2, 3, · · · , Z − 1,

and anyHs. Table 3.4 shows the parameters of the piecewise linear functions. We discard
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Table 3.3: Prediction Model Parameters
δ B = 2 B = 4 B = 8 B = 16 B = 32 B = 64

δB,2 0.089 0.086 0.080 0.077 0.076 0.075

δB,1 -3.351 -3.342 -3.256 -3.210 -3.165 -3.130

δB,0 30.465 31.618 32.427 32.753 32.763 32.680
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Figure 3.4: Distribution of uplink goodput gain for all datastreams, with

16MB cache size.
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Figure 3.5: The piecewise linear func-

tions withHs = 5.31 and 10.62.
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Figure 3.7: The interpolated surface of our proposed prediction model.

entropy> 15.933 because of its low goodput gain (less than 3 %). Thus, we have 6

entropy bins. To validate this property that the slopes of individual segments are strictly

decreasing, we check all4× 6 inequalities (since we haveZ = 6 and 6 entropy bins), and

found only 1 out of the 24 inequalities do not hold (Table 3.5)because the large cache

size is enough to hold the redundancy data. Next, we divide each decision variablebs into

Z − 1 intermediate variables, composed of theZ − 1 segments. In particular, we define

0 ≤ b̂s,z ≤ dz+1 − dz, wherez = 1, 2, · · · , Z − 1 as the intermediate variables, and

bs =
Z−1∑

z=1

b̂s,z. (3.2)

Last, since the uplink goodput gain increases dramaticallywhen the per data stream

cache size is small, we reserve aninitial cache sizers for data streams. We let the total

initial cache sizeR =
∑S

s=1
rs. Via extensive simulations, we empirically found that

rs = 128 KB leads to high uplink goodput gain. Hence, we setrs = 128 KB if not

otherwise specified.

With the notations defined above, we write the optimization problem as:

b̂⋆s,z = argmax
S∑

s=1

Z−1∑

z=1

b̂s,zlz,Hs
; (3.3)

s.t.

S∑

s=1

Z−1∑

z=1

b̂s,z ≤ BT −R; (3.4)

0 ≤ b̂s,z ≤ dz+1 − dz, (3.5)

wherelz,Hs
=

gz+1,Hs−gz,Hs

dz+1,Hs−dz,Hs
is the segment slope computed from Eq. (3.1). The formu-

lation is Eqs. (3.3)–(3.5) is a Linear Programming (LP) problem and can be solved by
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Table 3.4: Piecewise Linear Function Parameters
Entropy H Bs = 2MB 4MB 8MB 16MB 32MB 64MB

0 30.465 31.618 32.427 32.753 32.763 32.680

2.656 22.192 23.348 24.345 24.774 24.893 24.893

5.311 15.172 16.287 17.392 17.886 18.087 18.158

7.067 9.403 10.438 11.568 12.088 12.348 12.475

10.622 4.888 5.798 6.873 7.382 7.674 7.843

13.278 1.624 2.368 3.307 3.766 4.067 4.264

15.933 -0.387 0.149 0.870 1.241 1.524 1.736

18.589 -1.145 -0.860 -0.438 -0.194 0.048 0.260

21.244 -0.651 -0.659 -0.617 -0.538 -0.363 -0.164

23.900 1.096 0.753 0.334 0.210 0.292 0.464

Table 3.5: Slopes of the Piecewise Linear Functions
Entropy H l2MB,H l4MB,H l8MB,H l16MB,H l32MB,H

0 0.576 0.202 0.041 0.001 -0.003

2.656 0.578 0.249 0.054 0.007 0.000

5.311 0.558 0.276 0.062 0.013 0.002

7.067 0.517 0.283 0.065 0.016 0.004

10.622 0.455 0.269 0.064 0.018 0.005

13.278 0.372 0.235 0.057 0.019 0.006

various LP solvers, such as CPLEX [11]. Once the optimal solution b̂⋆s,z is computed, the

optimal allocationb⋆s can be derived using Eq. (3.2). We refer to this optimal algorithm

as OPT throughout this thesis. We emphasize that we can successfully allocate resources

because the segment slopes are decreasing, and thus an optimal LP solution always sat-

isfies b̂⋆s,z+1 > 0 ⇒ b̂⋆s,z = dz+1 − dz, for anyz = 1, 2, · · · , Z − 1. In other words, an

LP solver would not invest any memory on segmentz+1 unless no more memory can be

allocated on segmentz.

3.3 Large-Scale Simulations and Evaluations

We use large-scale simulations to evaluate the performanceof the adaptation algorithm

presented above.
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Figure 3.8: Goodput gain, normalized to OPT: (a) predicted and (b) actual.

3.3.1 Evaluations on Adaptation Algorithm

Since solving LP problems may be time consuming, we propose an efficient algorithm,

EFF, which runs in real time. At each iteration, the EFF algorithm invests the remaining

cache size on the data stream that is estimated to achieve thehighest goodput gain. The

algorithm runs until the remaining cache size reaches zero.To evaluate its performance,

which we have also implemented two other adaptation algorithms for comparisons. AVG:

equally divides the total cache size to each data stream, andOPT, which is the CPLEX-

based optimal algorithm.

The adaptation algorithms are triggered periodically every U packets. We set the

adaptation periodU = 1, 000, 000 in the simulations. We only consider the hosts with

8+ data streams, because the adaptation is less meaningful on hosts with very few data

streams.

Goodput gain. We first report the expected uplink goodput gain achieved by different

algorithms. The average goodput gain achieved by OPT is between 1.57% and 5.98%,

and Fig. 3.8(a) gives the goodput gain normalized to that of OPT. This figure reveals

that EFF achieves very similar goodput than that of OPT, and outperforms AVG by up to

45%. Fig. 3.8(b) reports that actual goodput gain computed by the simulator. We make

two observations on Fig. 3.8(a) and 3.8(b): (i) the trends ofgoodput gain are consistent

and (ii) our prediction model is conservative and over-estimates the goodput gain of the

AVG algorithm (Fig. 3.8(a)); in reality the AVG algorithm results in much lower goodput

gain (Fig. 3.8(b)).

Overhead. We next present the overhead of different algorithms. Fig. 3.9 shows the

computational overhead, which is the average running time normalized to that of AVG.

This figure reveals that our EFF algorithm runs as fast as AVG,while OPT may take a

much longer time to terminate. The OPT algorithm also consumes much more memory as

indicated in Fig. 3.10. More specifically, OPT may consume more than 20 MB memory,
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Figure 3.10: Memory consump-

tion under different number of data

streams.

which is nontrivial to some platforms, such as application routers. Given the high time

and space overhead of the OPT algorithm, we no longer consider it in the rest of this

article.

Comparisons against symmetric redundancy elimination algorithm The strengths

of RCARE compared to the current redundancy elimination algorithm are (i) it can adjust

the arrangement of cache sizes for data streams on the fly, (ii) it can leverage storage and

computation overhead from a sender to a receiver, and (iii) the cache on a receiver can

support inter-sender redundancy elimination which is our future work. In order to achieve

these three goals, we sacrifice little goodput gain. We take sample data streams on number

of data streams from 2 to 7 since 93% data streams falling in this range. We letBs = 4,

Br = 16, and varyf ∈ {5, 50, 100, 500, 1000, 2000}. Fig. 3.12 presents the goodput gains

on different update frequencyf . Although we sacrifice little goodput gain on switching

from EndRE to RCARE, the results reveal that the accuracy of selection policy is high.

We only have little degrade on goodput gain with the growingf . The maximum goodput

gain in EndRE is 95.06% and 80.59% in RCARE.

3.3.2 Performance Gain of RCARE

We quantify the benefits of RCARE using extensive traces under two different deploy-

ment configurations: (a)host based, in which each host maintains a cache for each data

stream, and (b)proxy based, in which proxy maintains a cache for each data stream.

For proxy based deployment, we regard each individual source port as different data

streams. Fig. 3.13 illustrates these configurations. We usethe configuration recommended

in Sec. 3.1.3, and letBr = 16, α = 1, 000, 000, andU = 1, 000, 000. We have imple-
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Figure 3.13: Deployment configurations: (a) host based and (b) proxy based.
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Table 3.6: Proxy Based Goodput Gain
Algorithm B = 0.25 GB 0.5 GB 1 GB 4 GB 16 GB

AV G 0.13% 0.12% 0.12% 0.12% 0.13%

EFF 0.60% 1.12% 1.78% 2.66% 2.87%

mented the RCARE with the EFF algorithm, and compare it against the AVG algorithm.

Host based. We varyBs ∈ {4, 8, 16, 32, 64}. We use the 10-hour traces. Since

we want to compare the performance between the two adaptation algorithms, we only

consider the the number of data streams≥ 2 on each host. There are 876 GB trace

data and 1,280 hosts in total. We calculate the average goodput gains of data streams

on each host. Fig. 3.14 shows the average goodput gain of all hosts with different cache

sizes. It shows that EFF always outperforms AVG. For example, the EFF algorithm with

4 MB cache size achieves almost the same goodput gain of the AVG algorithm with 32

MB cache size. Fig. 3.11 presents the relation between the number of data streams and

goodput gains. Each piecewise line represents by the [number of data streams in the

host(amount)]. There are 93% data streams falling in the range [2,7]. They have at least

3.47% goodput gain in average. We zoom in to the first 10% hostsachieving the highest

goodput gain, and plot it in Fig. 3.15. This figure shows that the EFF algorithm achieves

over 40% goodput gain on average.

Proxy based.We letf = 10, 000 and varyBs ∈ {0.25, 0.5, 1, 4, 16} GB. We consider

21.6 GB sample traces, which contain 8,354 data streams. Theaverage goodput gain is

given in Table 3.6. This table shows that the uplink goodput gains of EFF are at least 10

times and at most 22 times higher than that of AVG.

In summary, via extensive trace-driven simulations, we demonstrate that RCARE

achieves much higher uplink goodput gain with the EFF adaptation algorithm, which

runs in real-time. Hence, we recommend using the EFF algorithm.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we proposed a practical asymmetric communication algorithm, called RCARE,

for bandwidth and capability asymmetric communications. RCARE is among the first

practical network algorithms to maximize the uplink goodput gain of resource-constrained

senders by leveraging the already deployed downlink bandwidth and receiver capability.

Our extensive simulation results reveal the merits of RCARE, compared to existing asym-

metric communication algorithms [3, 10, 13, 14, 22, 32], RCARE achieves much higher

uplink goodput gain: up to 50 times improvement is possible,and much lower rela-

tive overhead on downlink traffic: up to 384 times reduction is observed. This shows

that RCARE successfully improves the uplink goodput gain over the existing asymmetric

communication algorithms, such as ListQuery [13, 14], while incurring small downlink

traffic overhead.

RCARE is also different from the state-of-the-art redundancy elimination algorithms [4,

6, 16, 18, 24, 29, 33, 35] in several aspects. First, RCARE leverages the idling downlink

bandwidth and receiver capability for higher uplink goodput gain. Second, RCARE shifts

computational and storage complexity from the sender to receiver, e.g., per-packet encod-

ing time at the sender is only 0.5 msec, while the decoding time at the receiver is about

5 msec. This shows that RCARE is suitable to the considered usagescenarios illustrated

in Fig. 1.1, while protocol-independent redundancy elimination algorithms [4, 5, 27, 35]

dictate the same cache size on the server and receiver, and thus cannot utilize additional

resources at powerful receivers to help resource-constrained senders. Third, RCARE is

flexible on cache size adaptation. In real life, we sometimesrun a heavy applications on

resource-constrained senders. We may temporarily shift some reserved resources from

RCARE to other applications; and shift the resources back once the other applications are

finished.
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Moreover, RCARE is adaptive. We analyze features with sample data streams and

use it to derive prediction models. The analysis helps us to optimally allocate cache size

among the data streams for higher uplink goodput gain. Our proposed adaptation algo-

rithm further enhances the performance of RCARE: (i) it improves 87% uplink goodput

gain compared to a baseline of equal division and (ii) top 10%data streams achieve up to

40% uplink goodput gain on average.

4.2 Future Work

There are several future research directions, for example:

• RCARE has potential to support inter-sender redundancy elimination, which is cru-

cial as most Internet services concurrently or sequentially support many clients.

For such services, maintaining a shared cache at the receiver allows us to further in-

crease the uplink goodput gain and save the computational overhead. Determining

the relevance among multiple data streams is one of our future tasks.

• User have different behavioral patterns. We may create multiple versions of cache,

calledbehavior caches, and use them in different contexts, e.g., two separate caches

may be used for weekdays and weekends, respectively. Incorporating behavior

caches to RCARE is another future task.

• We believe the RCARE can run in real time after some code optimizations. We

plan to implement RCARE in a real network stack and conduct actual experiments

to demonstrate this.

• Cellular ISPs are switching away from unlimited data plans, and thus the total net-

work traffic amount (in both directions) becomes a key concern. Adjusting the

update frequencyf in order to minimize the total traffic amount is one of our future

tasks.

• Some of the RCARE senders may be battery-powered, which have limited energy

budget. We will measure the energy overhead of RCARE on these senders.
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Symbol Table

Symbol Description

Br Receiver cache size

Bs Sender cache size

f Update frequency

β Selection policy parameter

Pβ Selection policy

w Representative window size

p Representative window sampling frequency

m Marker list size

Tm Marker list refresh threshold

rm Marker list update frequency

θ ASCII ratio

H Entropy

α Number of sampling blocks for data stream features

S Total number of data streams

s Data stream

BT Total cache size

b Allocated cache size

Z Total number of endpoints of piecewise linear function

z Endpoint of piecewise linear function

d Cache size on endpoint of piecewise linear function

g Goodput gain on endpoint of piecewise linear function

R Total initial cache size

r Initial cache size

l Segment slope

U Adaptation period
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