Virtualization at the Network Edge: A Performance Comparison

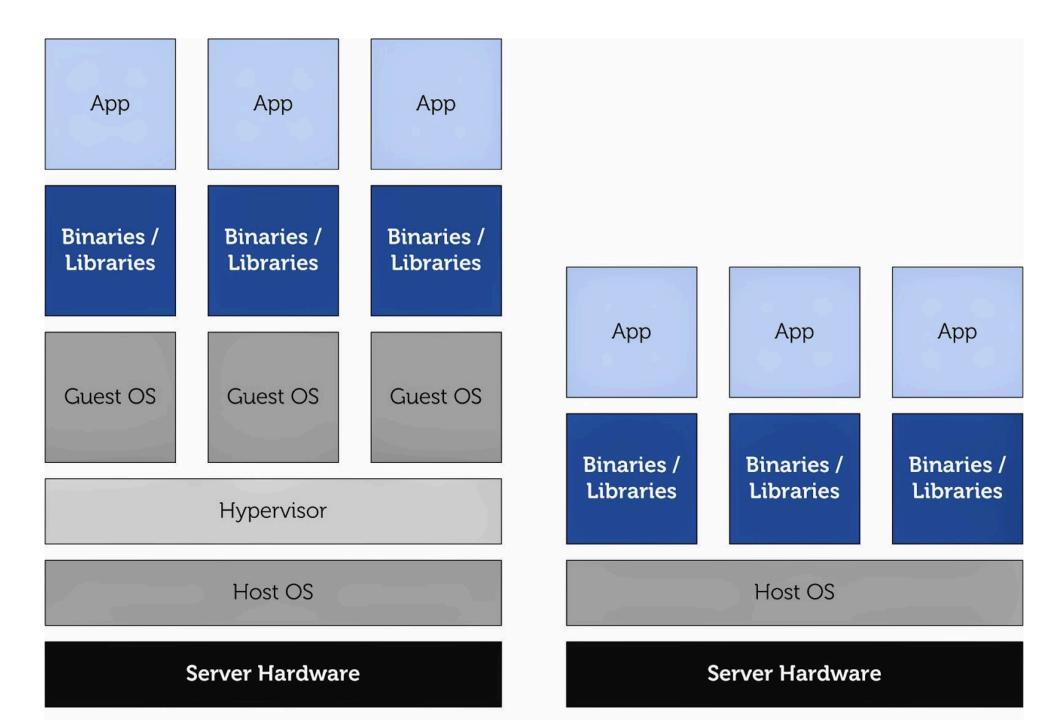
2016 IEEE 17th International Symposium On

A World of Wireless, Mobile and Multimedia Networks
(WoWMoM)

Fla´vio Ramalho and Augusto Neto

• The study was performed through the execution of several synthetic benchmarks providing an insight in the performance overhead introduced by Docker containers (lightweight-virtualization) and KVM VMs (hypervisor-virtualization) running at network edge devices.

• The intent is to quantify the level of overhead introduced by these techniques compared to a non-virtualized environment, when running on a typical edge device.


VIRTUALIZATION TECHNIQUES OVERVIEW

Hypervisor-Based Virtualization

• The core of the hypervisor based virtualization is a software technology called hypervisor, which allows several operating systems to run side-by-side on a given hardware.

Container-Based Virtualization

- Containers are a lightweight approach to virtualization that can be used to rapidly develop, test, deploy, and update IoT applications at scale.
- Docker is an open platform for container-based virtualization on Linux, it is built on top of facilities provided by the Linux kernel.

	Virtualization (i.e. kvm, xen)	LXC Containers		
Footprint	Requires a hypervisor	Does not require a hypervisor or a separate operating system image.		
OS supported	Any OS supported by the hypervisor	Most Linux distros, uses same kernel as host		
Typical server deployment	10 - 100 VMs	100 - 1000 containers		
Boot time	Less than a minute	Seconds		
Physical resources use (i.e. memory, CPU)	Each VM has resource reserved for its own use	Shared by all containers		

PERFORMANCE EVALUATION (1)

- Computer model
 - Cubieboard2
- Platform
 - Native
 - Docker
 - Kernel-based Virtual Machine (KVM)
- The benchmark tools measure
 - CPU
 - Memory
 - Disk I/O
 - Network I/O

TABLE I CPU BENCHMARK: NBENCH

PERFORMANCE EVALL

CPU Evaluation

- NBench
 - a synthetic computing benchmark pr measure CPU, FPU, and Memory Syst

Platform	Memo	ry Index	Intege	r Index	Floatin	g-Pt Index
Native	4.028	%	4.243	%	0.417	%
Docker	4.024	-0.10%	4.209	-0.80%	0.417	0.00%
KVM	3.856	-4.27%	4.121	-2.88%	0.411	-1.44%

Docker 145.918		+0.25%	9.695	+34.77%	
KVM	147.250	+1.17%	78.529	+991.65%	

- SysBench
 - a multi-threaded benchmark tool that evaluating a variety of low-level system

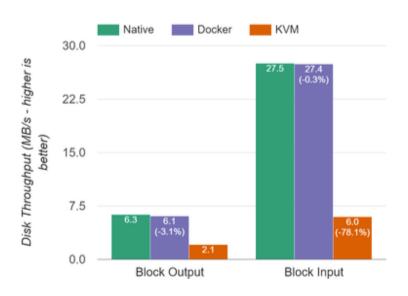
Fig. 1. The value of Linpack results on each platform over 15 runs. In this case N=2000.

LINPACK benchmarks

- measure the computer's floating-point rate of execution
- the algorithm uses a random matrix A (size N),
 and a right hand side vector B that is defined as follows: A * X = B.

PERFORMANCE EVALUATION (3)

Disk I/O Evaluation


- Bonnie++
 - an open-source benchmark tool that is suited to perform a number of simple tests of hard drive and file system to characterize the disk performance

erat

ata

file

• using a file size of 3 GiB.

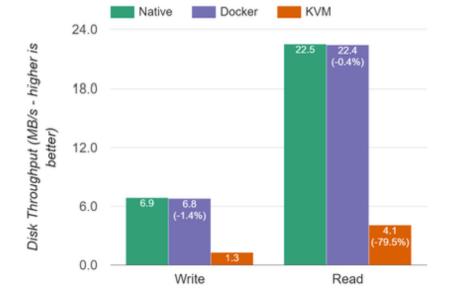


Fig. 2. Disk throughput results from running Bonnie++ using a file size of 3 GiB.

Fig. 3. Disk throughput results from running DD using a file size of 3 GiB. 8

PERFORMANCE EVALUATION (4)

- Memory Evaluation
 - STREAM
 - benchmark the performance of Memory I/O
 - memory bandwidth (in MB/s)
 - four simple kernel different operations:
 - Copy, Scale, Add and Triad

TABLE III MEMORY BENCHMARK: STREAM

Platform	Сору		Scale		Add		Triad	
Native	1759.4	%	806.8	%	654.6	%	534.7	%
Docker	1754.5	-0.28%	804.8	-0.25%	652.8	-0.27%	533.2	-0.28%
KVM	1723.4	-2.05%	786.3	-2.54%	641.2	-2.05%	523.7	-1.78%

PERFORMANCE EVALUATION (5)

Network Evaluation

- Netperf
 - a benchmark tool embedded with seve measure the performance of different

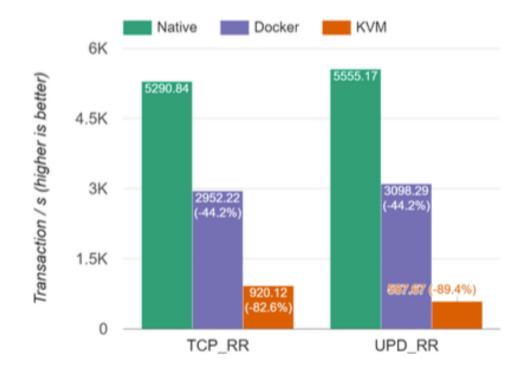


Fig. 5. Network request/response results from running netperf.

CONCLUSION

 While the results on the hypervisor-based solution showed a significant overhead that cannot be easily mitigated, the results of the Docker platform are promising.

• Linux containers seems to take advantage over hypervisor- based virtualization for deploying applications at the network edge.