
Distributed QoS-Aware
Scheduling in Storm

In the 9th ACM International Conference on Distributed Event-Based
Systems

Outline

• Qos-aware scheduling

• Implement distributed scheduling in Storm

• Experiment

• Conclution

Qos-aware scheduling

• Goal:

• Implement a distributed scheduling algorithm that is aware of QoS attributes -
latency, availability and utilization.

• Cost Space:

• 4-dimension metric space including :

• 2-dimension refer to latency

• 2-dimension refer to availability and utilization

Qos-aware scheduling

• Placement Algorithm including:

• Virtual Placement Algorithm

• Physical Placement Algorithm

Qos-aware scheduling

• Virtual Placement Algorithm

• Solve the minimum network usage configuration of the operators is like to
solve the minimum energy configuration of the spring system

• each operator opi moves = the force Fi

• the latency Lat(l) = spring extension si

• the data rate over that link DR(l) = the spring constant kl

• => opi moves = DR(l) x Lat(l)

Qos-aware scheduling

• Physical Placement Algorithm

• The distance between Pi = (Ppl1i, Ppl2i, Pai, Pui) and Pj = (Ppl1j,
Ppl2j, Paj, Puj) is computed as follows:

Implement distributed scheduling in Storm

Implement distributed scheduling in Storm

• QoSMonitor: provides the QoS awareness to each distributed
scheduler

• AdaptiveScheduler: executes the distributed scheduling policy on
every worker node.

• A single loop iteration is executed periodically (every 30 s), and is
composed by the following phases of the MAPE reference model for
autonomic systems:

• Monitor, Analyze, Plan, and Execute

Implement distributed scheduling in Storm

• Monitor phase:

• the AdaptiveScheduler acquires the information collected by the QoSMonitor
and identifies the set of local executors that could be moved.

• Analysis phase

• the AdaptiveScheduler runs the Virtual Placement Algorithm

• Plane:

• determine which worker node will execute ei. To this end, the planner executes
the Physical Placement Algorithm to find the worker node closest to ~Pi which
has at least a free worker slot and can thus host ei

Implement distributed scheduling in Storm

• Excute phase:

• if a new assignment must take place, the executor eiis moved to the new
candidate node.

• The new assignment decision is shared with the involved worker nodes
through ZooKeeper

Experiment 1

Experiment 2

CONCLUSIONS

• designed and implemented a distributed QoS-aware scheduler for DSP
systems based on Storm.

• outperforms than centralized default one

• enhances the system with adaptation capabilities to react to changes in
a distributed fashion.

