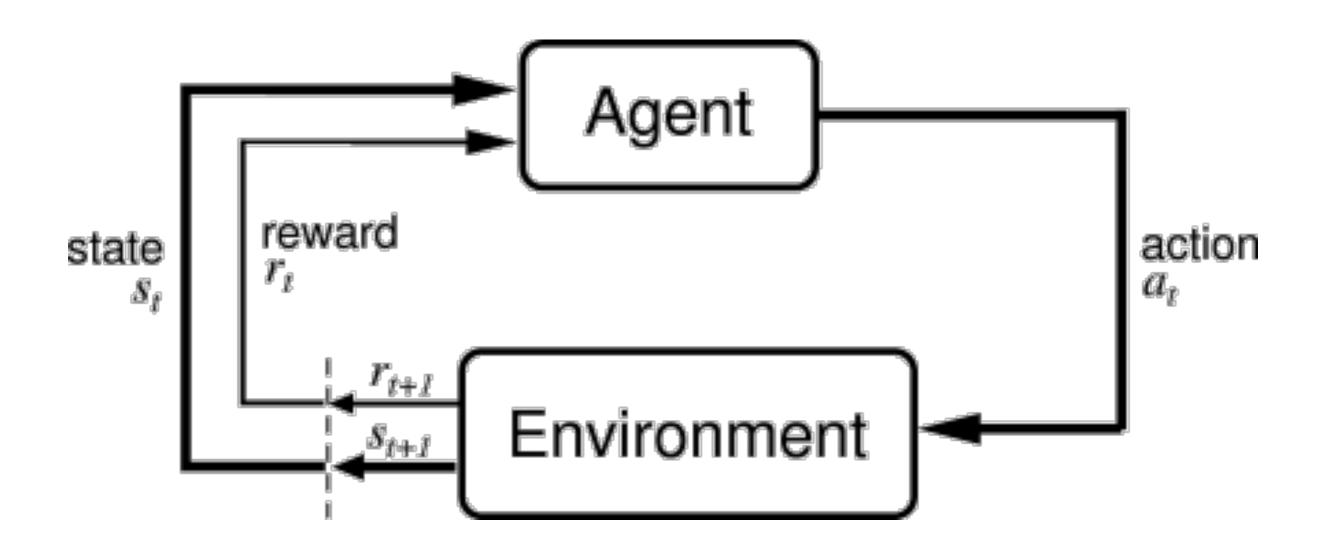
Human-level control through deep reinforcement learning

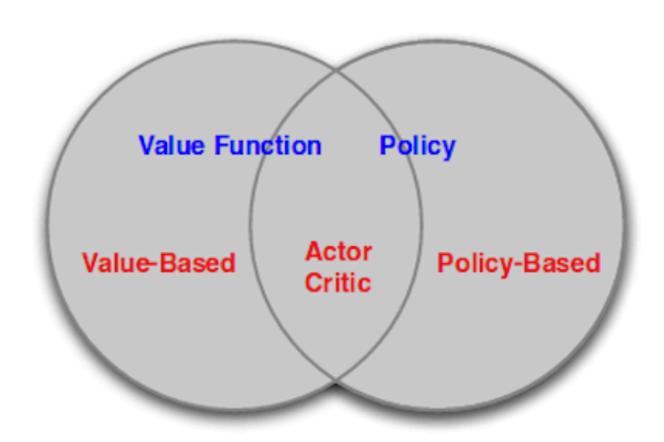
Volodymyr Mnih, Koray Kavukcuoglu, David Silver et. al 26 FEBRUARY 2015 | VOL 518 | NATURE

Reinforcement Learning



Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy



Value Based Method

- DQN (Deep Q-Learning Network)
 - Double Deep Q-Learning
 - Continuous DQN (CDQN or NAF)
 - Dueling network DQN (Dueling DQN)
- Deep SARSA

Policy Based Method

- Policy Gradient
 - Deep Deterministic Policy Gradient (DDPG)
 - Cross-Entropy Method (CEM)
- Actor Critic
 - Asynchronous Advantage Actor-Critic (A3C)

Q-learning

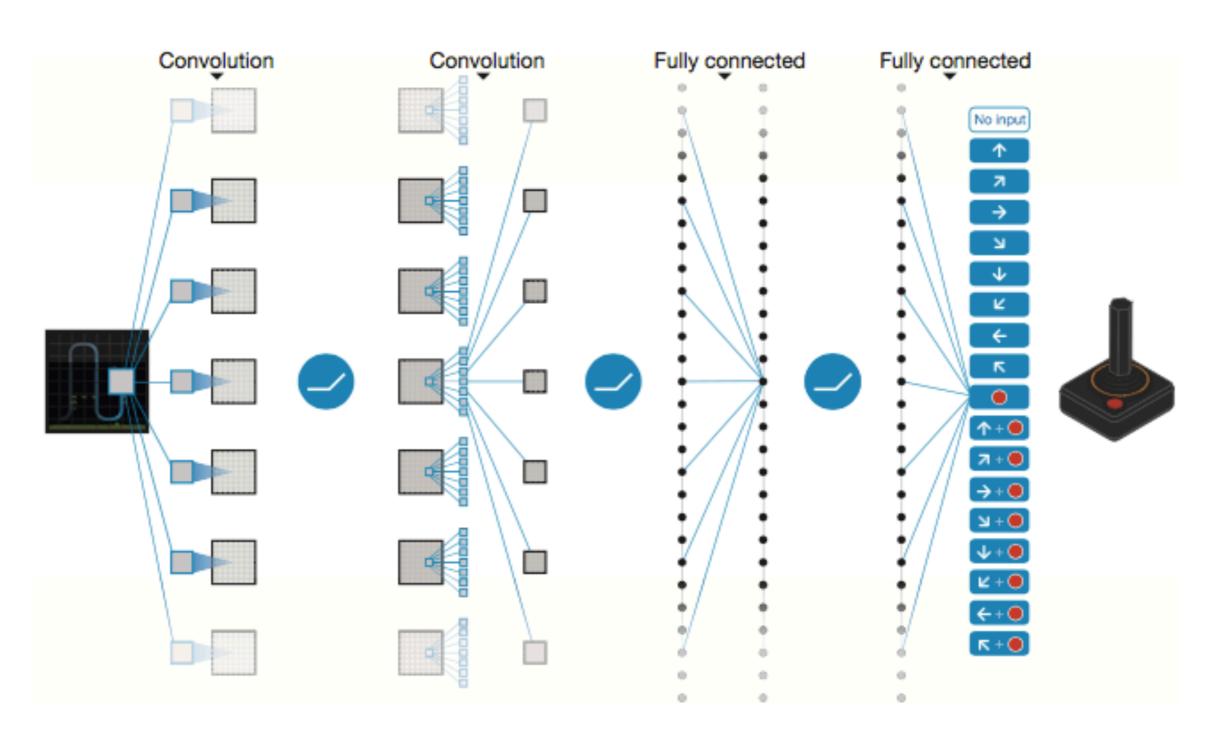
$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\frac{\alpha}{\text{learning rate}}}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{\frac{r_{t+1}}{r_{t+1} + \underbrace{\gamma}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}}$$

- Learning rate:新資訊的重要程度,和一般機器學習的 learning rate 意義一樣
- Discount factor: 代表未來獎勵的重要程度
 - 0:看當前,短視近利
 - 1:看長期,需要注意的是,接近超過1時容易發散

Loss Function

$$loss = \left(r + \gamma \max_{a} \hat{Q}(s, a) - Q(s, a)\right)^{2}$$
Target Prediction

Convolutional Neural Network



Deep Q-learning

```
Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity N
```

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

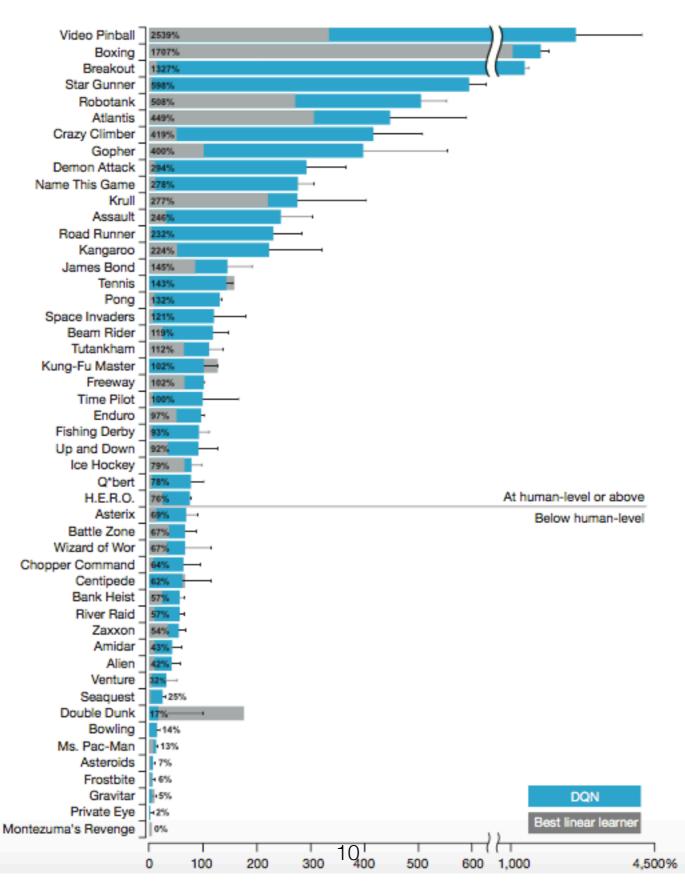
Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Q-Learning V.S. DQN



Demo - Breakout

