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Introduction - Distributed Stream Processing Systems
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Motivation

* In DSPSs (Distributed Stream Processing Systems),
streams continuously arrive components,

components need to process Input streams In real time to generate
output streams.

Major challenge:

Select among different component to compose stream processing
applications on demand.



Motivation

* focuses on enabling sharing-aware component composition for
efficient distributed stream processing.

 Sharing-aware composition allows different applications to utilize:
* previously generated streams
» already deployed stream processing components



System model - Synergy Architecture
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Fig. 2. Synergy system architecture.



Algorithm - Synergy component composition protocol
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Fig. 5. Query plan example.




Algorithm - Synergy component composition protocol
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Algorithm - Synergy component composition protocol

3 for each v; in path

4 checks available resources

5 AND checks QoS so far in Q¢

6 AND checks projected QoS impact

Fig. 3. Probing example.



Algorithm - Synergy component composition protocol

7 1if probed composition qualifies

8 sends acknowledgement message to upstream node
9 performs transient resource reservation at v;

10 discovers next-hop candidate components from &
11 deploys next-hop candidate components if needed
12 spawns probes for selected components

13 else drops received probe C2, 63,
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Algorithm - Synergy component composition protocol

14 vs selects most load-balanced component composition A
15 vs establishes stream processing session




Experimental Evaluation - Setup

 Implemented as a multithreaded system including about 20,000 lines
of Java code

* Running on each of 88 physical nodes of PlanetLab.
 Based on the SpiderNet service composition framework.

* One hundred components were deployed uniformly across the nodes,
with a replication degree of 5.

* Application requests asked for two to four components chosen
randomly and for the corresponding streams between the components.

* Generate approximately nine requests per second throughout the
system, using a Zipf distribution with o = 1.6



Experimental Evaluation - Setup

« Compared Synergy against two different composition algorithms:

1. A Random algorithm that randomly selected one of the candidates for each
application component

2. a Composition algorithm performs QoS-aware composition but does not
consider result stream reuse or component reuse
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Number of Probe Messages

Experimental Evaluation

Protocol overhead
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Conclusions

e Synergy:
* built on top of a totally decentralized overlay architecture
* reuse existing streams and components

« ensure that the QoS requirements of the currently running applications

* Prototype implementation of Synergy over PlanetLab shows that:

« sharing-aware component composition can enhance QoS provisioning for
distributed stream processing applications.



