QoS-Aware Shared Component
Composition for Distributed
Stream Processing Systems

Thomas Repantis, Member, IEEE, Xiaohui Gu, Member, IEEE, and
Vana Kalogeraki, Member, IEEE
IEEE Transactions on Parallel and Distributed Systems, 20(7), 968-982

Introduction - Distributed Stream Processing Systems

Distributed Stream Processing Systems

High-volume, continuous Processed . .
input streams result streams Distributed Stream

/\ Component Processing Application
\Y

Q

. _
i
\ & - g’;_g_;ﬁ

On-line processing functions / continuou
query operators implemented on each node:

Accommodating Bur. ted Stream Pro 3

nnnnnnnnnn

Motivation

* In DSPSs (Distributed Stream Processing Systems),
streams continuously arrive components,

components need to process Input streams In real time to generate
output streams.

Major challenge:

Select among different component to compose stream processing
applications on demand.

Motivation

* focuses on enabling sharing-aware component composition for
efficient distributed stream processing.

 Sharing-aware composition allows different applications to utilize:
* previously generated streams
» already deployed stream processing components

System model - Synergy Architecture

i Distributed Stream
Processing Application

Sessions |

Fun‘lpﬂ nemnt Composition

| Streams

— { Synergy Monitoring || Discovery Reouting
i f

Operating Sy stem

Fig. 2. Synergy system architecture.

Algorithm - Synergy component composition protocol

Input: query (&, Q¢), node vg Output: application component graph \

02 A o4 |
- Y\
h 4 _\\‘ S8 ——

06‘};>

—»\f o1

N / "\\ P4 5=
Source — B Destination

03 ‘@»{ 05

Fig. 5. Query plan example.

Algorithm - Synergy component composition protocol

1 vs 1dentifies maximum sharable point(s) in &
2 vg spawns initial probes

O1 02
=2 CO—
s o b | D
Fig 3 Probing example Probing path: 1. S->C1->C3->D

2.S5->C1->C4->D
3.S->C2->C3->D
4.5->C2->C4->D

Algorithm - Synergy component composition protocol

3 for each v; in path

4 checks available resources

5 AND checks QoS so far in Q¢

6 AND checks projected QoS impact

Fig. 3. Probing example.

Algorithm - Synergy component composition protocol

7 1if probed composition qualifies

8 sends acknowledgement message to upstream node
9 performs transient resource reservation at v;

10 discovers next-hop candidate components from &
11 deploys next-hop candidate components if needed
12 spawns probes for selected components

13 else drops received probe C2, 63,
02 >~ 04
oy 52 T T \se
_ .Zrl _x\- .f//_ _H‘“\ -
S0 06 %
Source @@ " Destination
S3\.,]
None N/ S7

Algorithm - Synergy component composition protocol

14 vs selects most load-balanced component composition A
15 vs establishes stream processing session

Experimental Evaluation - Setup

 Implemented as a multithreaded system including about 20,000 lines
of Java code

* Running on each of 88 physical nodes of PlanetLab.
 Based on the SpiderNet service composition framework.

* One hundred components were deployed uniformly across the nodes,
with a replication degree of 5.

* Application requests asked for two to four components chosen
randomly and for the corresponding streams between the components.

* Generate approximately nine requests per second throughout the
system, using a Zipf distribution with o = 1.6

Experimental Evaluation - Setup

« Compared Synergy against two different composition algorithms:

1. A Random algorithm that randomly selected one of the candidates for each
application component

2. a Composition algorithm performs QoS-aware composition but does not
consider result stream reuse or component reuse

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Experimental Evaluation

Average application end-to-end delay

Average Application End-to-End Delay (sec)

Random Composition Synergy

400

350

300

250

200

150

100

50

Successful application requests

Successful Application Requests

Random Composition Synergy

Number of Probe Messages

Experimental Evaluation

Protocol overhead

Protocol Overhead

600 Breakdown of average setup time

Random
Composition "

500 k Syneray ---Jik-- . Setup Time (ms) Random Composition Synergy
Discovery 240 188 243

400 . Probing 4509 4810 3141

00 | . | Total 4749 4998 3384

200 |- .‘ .

100 | l :

0.-" 1 | 1 | 1 | |

10 20 30 40 50 60 70 80 90
Number of Nodes

Conclusions

e Synergy:
* built on top of a totally decentralized overlay architecture
* reuse existing streams and components

« ensure that the QoS requirements of the currently running applications

* Prototype implementation of Synergy over PlanetLab shows that:

« sharing-aware component composition can enhance QoS provisioning for
distributed stream processing applications.

