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Introduction - Distributed Stream Processing Systems

Component



Motivation

• In DSPSs (Distributed Stream Processing Systems), 

streams continuously arrive components, 

components need to process input streams in real time to generate 
output streams.

Major challenge: 

Select among different component to compose stream processing 
applications on demand.



Motivation

• focuses on enabling sharing-aware component composition for 
efficient distributed stream processing. 

• Sharing-aware composition allows different applications to utilize:

• previously generated streams 

• already deployed stream processing components



System model - Synergy Architecture

Middleware



Algorithm - Synergy component composition protocol



Algorithm - Synergy component composition protocol
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Probing path: 1. S -> C1 -> C3 -> D

2. S -> C1 -> C4 -> D

3. S -> C2 -> C3 -> D

4. S -> C2 -> C4 -> D
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Algorithm - Synergy component composition protocol



Algorithm - Synergy component composition protocol
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Algorithm - Synergy component composition protocol
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Experimental Evaluation - Setup

• Implemented as a multithreaded system including about 20,000 lines 
of Java code

• Running on each of 88 physical nodes of PlanetLab. 

• Based on the SpiderNet service composition framework. 

• One hundred components were deployed uniformly across the nodes, 
with a replication degree of 5. 

• Application requests asked for two to four components chosen 
randomly and for the corresponding streams between the components. 

• Generate approximately nine requests per second throughout the 
system, using a Zipf distribution with  α = 1.6



Experimental Evaluation - Setup

• Compared Synergy against two different composition algorithms:

1. A Random algorithm that randomly selected one of the candidates for each 
application component 

2. a Composition algorithm performs QoS-aware composition but does not
consider result stream reuse or component reuse 



Experimental Evaluation

Average application end-to-end delay Successful application requests



Experimental Evaluation

Protocol overhead

Breakdown of average setup time



Conclusions

• Synergy: 

• built on top of a totally decentralized overlay architecture 

• reuse existing streams and components

• ensure that the QoS requirements of the currently running applications 

• Prototype implementation of Synergy over PlanetLab shows that:

• sharing-aware component composition can enhance QoS provisioning for 
distributed stream processing applications.


