
QoS-Aware Shared Component
Composition for Distributed
Stream Processing Systems

Thomas Repantis, Member, IEEE, Xiaohui Gu, Member, IEEE, and

Vana Kalogeraki, Member, IEEE

IEEE Transactions on Parallel and Distributed Systems, 20(7), 968-982

Introduction - Distributed Stream Processing Systems

Component

Motivation

• In DSPSs (Distributed Stream Processing Systems),

streams continuously arrive components,

components need to process input streams in real time to generate
output streams.

Major challenge:

Select among different component to compose stream processing
applications on demand.

Motivation

• focuses on enabling sharing-aware component composition for
efficient distributed stream processing.

• Sharing-aware composition allows different applications to utilize:

• previously generated streams

• already deployed stream processing components

System model - Synergy Architecture

Middleware

Algorithm - Synergy component composition protocol

Algorithm - Synergy component composition protocol

1

2

Probing path: 1. S -> C1 -> C3 -> D

2. S -> C1 -> C4 -> D

3. S -> C2 -> C3 -> D

4. S -> C2 -> C4 -> D

3

4

5

6

Algorithm - Synergy component composition protocol

Algorithm - Synergy component composition protocol

7

8

9

10

11

12

13

C1

C2, C3

None

Algorithm - Synergy component composition protocol

14

15

C1

C7
C8

C11

C3

Experimental Evaluation - Setup

• Implemented as a multithreaded system including about 20,000 lines
of Java code

• Running on each of 88 physical nodes of PlanetLab.

• Based on the SpiderNet service composition framework.

• One hundred components were deployed uniformly across the nodes,
with a replication degree of 5.

• Application requests asked for two to four components chosen
randomly and for the corresponding streams between the components.

• Generate approximately nine requests per second throughout the
system, using a Zipf distribution with α = 1.6

Experimental Evaluation - Setup

• Compared Synergy against two different composition algorithms:

1. A Random algorithm that randomly selected one of the candidates for each
application component

2. a Composition algorithm performs QoS-aware composition but does not
consider result stream reuse or component reuse

Experimental Evaluation

Average application end-to-end delay Successful application requests

Experimental Evaluation

Protocol overhead

Breakdown of average setup time

Conclusions

• Synergy:

• built on top of a totally decentralized overlay architecture

• reuse existing streams and components

• ensure that the QoS requirements of the currently running applications

• Prototype implementation of Synergy over PlanetLab shows that:

• sharing-aware component composition can enhance QoS provisioning for
distributed stream processing applications.

