Algorithm Selection using
Reinforcement Learning

Michail G. Lagoudakis and Michael L. Littman
In Proceeding ICML '00 Proceedings of the Seventeenth
International Conference on Machine Learning

Deep Learning and Practice Markov Decision Process

Markov Decision Processes (MDP)

@ A Markov Decision Process 1s a tuple
<SS, A, P, R, y>

— & 1s a finite set of states

— A 1s a finite set of actions

— P 1s a state transition probability matrix (part of the environment),
Pet = P[Serq =5'| Sp=5,4; = a]

— R 1s areward function,
RS = E[Rt41|S: = 5,A¢ = a]

— v 1s a discount factor y€ [0, 1].

@@I I-Chen Wu 5 2)page 21

Deep Learning and Practice Reinforcement Learning

Model-free Reinforcement Learning

@ Temporal Difference (TD) Learning
— TD methods learn directly from episodes of experience
— TD 1s model-free: no knowledge of MDP transitions / rewards
— TD learns from incomplete episodes, by bootstrapping
— TD updates a guess towards a guess

@ Monte-Carlo (MC) Learning
— MC methods learn directly from episodes of experience
— MC 1s model-free: no knowledge of MDP transitions / rewards
— MC learns from complete episodes: no bootstrapping
— MC uses the simplest possible 1dea: value = mean return
— Caveat: can only apply MC to episodic MDPs

» All episodes must terminate

— Monte-Carlo Tree Search (MCTYS) 1s a successful one based on MC
learning.

®
@ ! I-Chen Wu 3 3¢age 6

Deep Learning and Practice Reinforcement Learning

Monte-Carlo Learning

@ Incremental Monte-Carlo

— Update value V (S;) toward actual return G,
V(S:) « V(S +a(G, —V(S:))

— a: learning rate, or called step size.

@ Unbiased, but high variance.

Gy

Al At At+1 AT—I
1 R, t R,. t+1 R,., T—-1 R, T
9
@! I-Chen "Wu 4 Page 37

Deep Learning and Practice Reinforcement Learning

Temporal-Difference Learning

@ Simplest temporal-difference learning algorithm: TD(0)

— Update value V (S;) toward estimated return R, + ¥V (S¢41)
V(S) «V(S) + a(Res1 + ¥V (Ses1) —V(S)

— TDtarget: Ryy1 + YV (S¢41)

— TD error: Repq + YV (Sey1) — V(S;)

— a: learning rate, or called step size.

@ Biased, but lower variance
Riy1 +YV(Set1)

Ar_q

A1 At At‘l'l =
1 R, t R,. as) IV Gy I
4
! I-Chen "'Wu . Page 38

Algorithm Selection

Assume two different sorting algorithm
e Shell Sort (O(n1.5))
e Bubble Sort (O(n"2))

If we use only problem size, n, to decide which algorithm to
run, the algorithm selection problem reduces to finding an
optimal cutoff n’ such that we sort lists of fewer than n’
items with bubble sort and longer lists with shell sort.

Algorithm Selection

e Merge Sort (O(n log n))

initial sequence

Algorithm Selection
as an MDP

- Running Time >
Preprocessing Recursive Calls Postprocessing
POt ' [
Level / :
Subproblem 1 Subproblem 2 \
? ' . : \
: = " - i
m Il, ,}‘ \\\ \\ l . \
et Y ¢ \ \ R
S \ \
] E H - B R
v E]

Algorithm Selection
as an MDP

T(n)=2T(n/2)+0(n), T(1)=06(1)
V(sn) =2V (8p/2) + R(sn,am), V(s1)=0

T(n)=E |y T(n;) +t(n)| V(sa)=E |D_ V(sn,)+ R(sn,a)

L -
Q(sn,a) = E |) min{Q(sn,,a")} + R(sn, a)
_j:1 |

9

Learning Mechanism

Q(t+1) (Sta at) —
General (1 — @)QW (ss,at) + & [Reyq + ming {Q® (s41,a)}]

Non- QU (s4,a:) = (1 — @)QY (54, a1) + aR(s¢, az)
recursive

Q(t+1)(3ta a't) — (1 o a)Q(t) (Sta at)+

Recursive N [R(st, a;) + mgn {Q(t)(sl,a)} 4 mgn {Q(t)(82,a)}]

10

Learning Mechanism

Monte-Carlo Return Rr(s) = > ; R(st,ar)
Pure QU (s4,a:) = (1 — @)QW (8¢, as)+
Monte-Carlo a|R(st,at) + Rr(s1) + Rr(s2)]

Q(t+1) (sta a't) — (1 T a)Q(t) (staat)_I'

Final Form
a | R(st,a:) +Rr(s1) +m(3n {Q(t)(SQ, a)}

-
Riiq

11

Learning Mechanism

Time Step Temporal Difference (TD) H Exploration (EX)

UOISININY

\J

t Include

Monte-Carlo / No Explorai:ion Temporal Difference Exploration
(MC) (NE) (TD) (EX)
t+1 < \d
*. Include in Ry, |
MC ¢ NE TD y NE | TD ¥ EX “‘

w2 o D < ‘~. >/

SN IS LON

12

Results

i Deterministc
Select /
f

- _—
Cut off Point
Aqarhm

1

| earned
Algorithm

\
%
;
//

1

Ceterministic
Seleci

Learnsd
A goritnm

Heap Sclect

S0
nid=x

2000 SUoU R W)

Figure 3. Results for order statistic selection (tabular case).

60C0

00

50C0
Index

-lUs g0 1000 0 1000 2000 3000 4000

13

600 7002

2000 90C0

10000

Figure 4. Order statistic selection (linear architecture).

