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Deep Learning and Practice Markov Decision Process

Markov Decision Processes (MDP)

@ A Markov Decision Process 1s a tuple
<SS, A, P, R, y>

— & 1s a finite set of states

— A 1s a finite set of actions

— P 1s a state transition probability matrix (part of the environment),
Pet = P[Serq =5'| Sp=5,4; = a]

— R 1s areward function,
RS = E[Rt41|S: = 5,A¢ = a]

— v 1s a discount factor y€ [0, 1].
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Deep Learning and Practice Reinforcement Learning

Model-free Reinforcement Learning

@ Temporal Difference (TD) Learning
— TD methods learn directly from episodes of experience
— TD 1s model-free: no knowledge of MDP transitions / rewards
— TD learns from incomplete episodes, by bootstrapping
— TD updates a guess towards a guess

@ Monte-Carlo (MC) Learning
— MC methods learn directly from episodes of experience
— MC 1s model-free: no knowledge of MDP transitions / rewards
— MC learns from complete episodes: no bootstrapping
— MC uses the simplest possible 1dea: value = mean return
— Caveat: can only apply MC to episodic MDPs

» All episodes must terminate

— Monte-Carlo Tree Search (MCTYS) 1s a successful one based on MC
learning.
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Deep Learning and Practice Reinforcement Learning

Monte-Carlo Learning

@ Incremental Monte-Carlo

— Update value V (S;) toward actual return G,
V(S:) « V(S +a(G, —V(S:))

— a: learning rate, or called step size.

@ Unbiased, but high variance.
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Deep Learning and Practice Reinforcement Learning

Temporal-Difference Learning

@ Simplest temporal-difference learning algorithm: TD(0)

— Update value V (S;) toward estimated return R, + ¥V (S¢41)
V(S) «V(S) + a(Res1 + ¥V (Ses1) —V(S)

— TDtarget: Ryy1 + YV (S¢41)

— TD error: Repq + YV (Sey1) — V(S;)

— a: learning rate, or called step size.

@ Biased, but lower variance
Riy1 +YV(Set1)
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Algorithm Selection

Assume two different sorting algorithm
e Shell Sort (O(n1.5))
e Bubble Sort (O(n"2))

If we use only problem size, n, to decide which algorithm to
run, the algorithm selection problem reduces to finding an
optimal cutoff n’ such that we sort lists of fewer than n’
items with bubble sort and longer lists with shell sort.



Algorithm Selection

e Merge Sort (O(n log n))

initial sequence




Algorithm Selection
as an MDP
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Algorithm Selection
as an MDP

T(n)=2T(n/2)+0(n), T(1)=06(1)
V(sn) =2V (8p/2) + R(sn,am), V(s1)=0

T(n)=E |y T(n;) +t(n)| V(sa)=E |D_ V(sn,)+ R(sn,a)

L -
Q(sn,a) = E | ) min{Q(sn,,a")} + R(sn, a)
_j:1 |
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Learning Mechanism

Q(t+1) (Sta at) —
General (1 — @)QW (ss,at) + & [Reyq + ming {Q® (s41,a)}]

Non- QU (s4,a:) = (1 — @)QY (54, a1) + aR(s¢, az)
recursive

Q(t+1)(3ta a't) — (1 o a)Q(t) (Sta at)+

Recursive N [R(st, a;) + mgn {Q(t)(sl,a)} 4 mgn {Q(t)(82,a)}]
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Learning Mechanism

Monte-Carlo Return Rr(s) = > ; R(st,ar)
Pure QU (s4,a:) = (1 — @)QW (8¢, as)+
Monte-Carlo a|R(st,at) + Rr(s1) + Rr(s2)]

Q(t+1) (sta a't) — (1 T a)Q(t) (staat)_I'

Final Form
a | R(st,a:) +Rr(s1) +m(3n {Q(t)(SQ, a)}

-
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Learning Mechanism

Time Step Temporal Difference (TD) H Exploration (EX)
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Results
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Figure 3. Results for order statistic selection (tabular case).
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Figure 4. Order statistic selection (linear architecture).



