A Scalable Video Coding Dataset and Toolchain for Dynamic Adaptive Streaming over HTTP

Christian Kreuzberger, Daniel Posch and Hermann Hellwagner Institute of Information Technology (ITEC) Alpen-Adria-Universität (AAU) Klagenfurt, Austria

Motivation

- Inherent caching on network nodes
- Dash propose to use many representations at various quality
- Roughly 50% of storage space could be saved

Scalable video Coding(SVC)

- Videos are split into several independent layers
- Base layer (BL) 、 Enhancement layer (EL)
- Provide EL layers only when resource are available

TOOLCHAIN

 Proprietary MainConcept SVC/H.264 Encode in favour of the JSVM reference encoding software

Encoder Settings

- Force I-Frames to be at the beginning of every segment
- Segments independently decodable
- Video resolution, bitrate and QP need to be chosen per layer

De-Multiplexing the H.264/SVC Bitstream

- Access Units (AUs)
- AU represents a frame and Network Abstraction Layer Units (NALUs)
- NALU contains header information and describes the frame for a specific layer

De-Multiplexing the H.264/SVC Bitstream

Туре	(D,T,Q)	Frame	
H.264/SVC Header		(init-file)	
New AU			
AVC-I	(0,0,0)	1	$\rightarrow BL$
SVC-I	(1,0,0)	1	\rightarrow EL 1
SVC-I	(2,0,0)	1	\rightarrow EL 2
New AU			
AVC-B	(0,1,0)	2	$\rightarrow BL$
SVC-B	(1,1,0)	2	\rightarrow EL 1
SVC-B	(2,1,0)	2	\rightarrow EL 2
New AU			
AVC-B	(0,0,0)	3	$\rightarrow BL$
SVC-B	(1,0,0)	3	\rightarrow EL 1
SVC-B	(2,0,0)	3	$\rightarrow \text{EL } 2$
:	:		
New AU			
AVC-P	(0,1,0)	48	$\rightarrow \mathrm{BL}$
SVC-P	(1,1,0)	48	\rightarrow EL 1
SVC-P	(2,1,0)	48	\rightarrow EL 2
H.264/SVC Header		(segment border)	
New AU			
AVC-I	(0,0,0)	49	$\rightarrow \mathrm{BL}$
SVC-I	(1,0,0)	49	\rightarrow EL 1
SVC-I	(2,0,0)	49	$\rightarrow \text{EL } 2$
:	:	:	
: End of Stream	•	•	

End of Stream

Bitrate and Spatial Resolution

- Using too many enhancement layers would have a negative impact on the client
- Encode the content with MainConcept's VBR with four different variants

LayerId	Resolution	AVC bitrate	SVC bitrate
I.1.BL	640x360	$600 \mathrm{~kbps}$	600 kbps
I.1.EL1	640 x 360	$900 \mathrm{~kbps}$	$990 \mathrm{~kbps}$
I.1.EL2	640 x 360	$1250 \mathrm{~kbps}$	$1500 \mathrm{~kbps}$
I.1.EL3	640x360	$1600 \mathrm{~kbps}$	$2075 \mathrm{~kbps}$
I.2.BL	1280x720	$1500 \mathrm{~kbps}$	$1500 \mathrm{~kbps}$
I.2.EL1	1280×720	$2500 \mathrm{~kbps}$	$2750 \mathrm{~kbps}$
I.2.EL2	1280×720	$4000 \mathrm{~kbps}$	$4800 \mathrm{~kbps}$
I.2.EL3	1280×720	$6000 \mathrm{~kbps}$	$7800 \mathrm{~kbps}$
I.3.BL	1920×1080	$4000 \mathrm{~kbps}$	4000 kbps
I.3.EL1	1920×1080	$5000 \mathrm{~kbps}$	$5500 \mathrm{~kbps}$
I.3.EL2	1920×1080	$6000 \mathrm{~kbps}$	$7200 \mathrm{~kbps}$
I.3.EL3	1920×1080	$8000 \mathrm{~kbps}$	$10400 \mathrm{~kbps}$

ResolutionAVC bitrates [kbps]SVC bitrates [kbps]480x360180, 220, 370180, 242, 4441280x720780, 1000, 1500780, 1100, 18001920x10802000, 2900, 31902000, 3190, 5040

Table 4: Variant II – Resolution and bitrates based on [10], with 10 % overhead per layer [7]

Table 3: Variant I – Resolution and bitrates based on [7], with 10 % overhead per layer [7]

DATASET ANALYSIS

 The SVC encoded videos were decoded and analyzed in terms of PSNR and SSIM

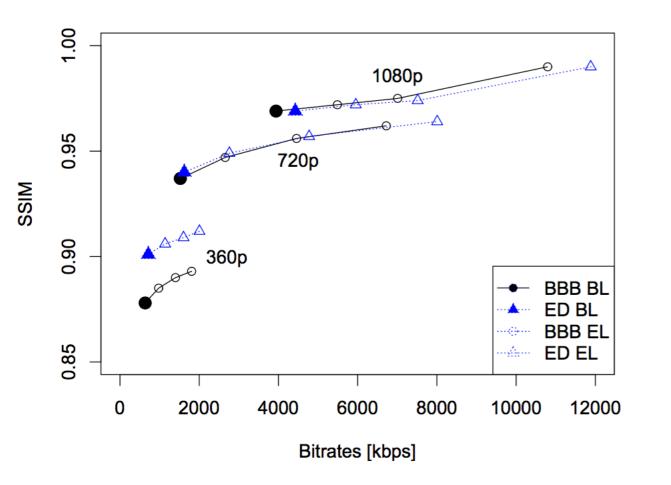


Figure 2: SSIM values (at 1080p) for BBB and ED (SVC Variant I)

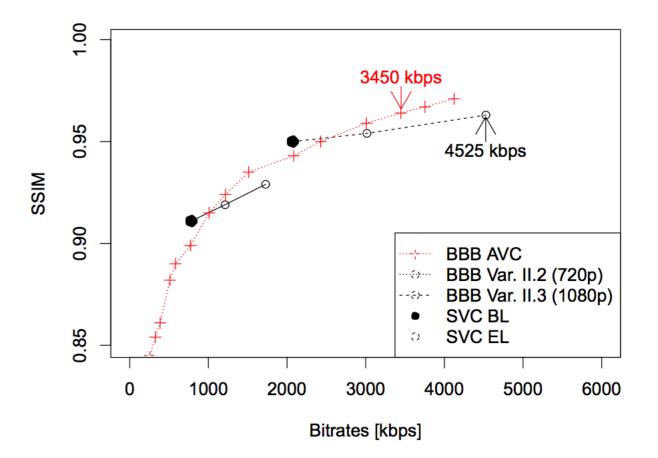


Figure 3: SSIM values (at 1080p) for BBB for SVC Variant II and DASH with AVC