A Survey of Network Function Placement

Xin Li and Chen Qian Department of Computer Science, University of Kentucky

Hardware NF Placement

- Independent Passive NFs
- passive monitor
- trade-off between COVERAGE and COST
- Chain NFs
- Service Chain : require Correctness, Efficientcy (eg. firewall - IDS - proxy)
- min LATENCY

Hardware NF Placement

NF type	Location	Traffic steering	Placement objective
Independent NFs	in-line	optional	max cov./min cost
Chained NFs	off-line	compulsory	min latency

TABLE I

COMPARISON BETWEEN INDEPENDENT PASSIVE NFS & CHAINED NFS.

Software NF Placement Monolithic Consolidating - CoMb

- multiple application on hardware platform
- Iocation independent

Software NF Placement Cross-border On-path Placement - MIDAS

• Location dependent

- Steps
- ■1) compute utilization balancing across NFPs and location dependency

Software NF Placement Path Loosely Controlled Placement – E2

- minimize inter-server traffic
- Steps
- 1) redraw the service chain into pGraph
- 2) determine the number of instances of each NF
- 3) convert pGraph to iGraph
- 4) actual instance placement

(a) Original pGraph

(b) iGraph with split NF B

(c) iGraph with split NF A and B

(d) Optimized iGraph

Figure 4: Transformations of a pGraph (a) into an iGraph (b, c, d).

Software NF Placement

Path Tightly Controlled Placement – VNP-OP

- Control the Routing Path by SDN
- minimize the cost
- VNF deployment cost
- Energy cost
- Traffic forwarding cost
- Penalty for SLO violation
- Reduce to Trans-shipment problem, NP-hard

Software NF Placement Unordered Placement-PACE

- Service Chain can be UNORDERED and partially unordered
- more flexible

monitor

Satisfy more requests

Other

Element-based Framework-Slick

- implement NFs as a chain of lightweight functions(element)
- steps
- 1) Consolidate element if necessary
- 2) place element
- element's inflation factor
- log(fout/fin) f:traffic volumes
- place negative inflation factor near source

Other Distributed NFs-CSamp

- Create a new NF : monitor NFs
- Avoiding redundant measurements : hash-based packet selection
- distributed redundant elimination have been implement

Other Host-based Framework - ETTM

- place at endpoints
- Provide fault-tolerance and reliability

Software NF Placement(4)

NFV form	NFV framework	Placement strategy	On path?	Mangling NF?	Location dependency?	Order preserve?
Thread-based	CoMb [25]	Monolithic consolidating	~	\checkmark	Х	\checkmark
	MIDAS [1]	Cross-border on-path placement	~	Х	✓	~
VM-based	E2 [22]	Path-loosely-controlled placement	Х	Х	Х	~
	Statos [10]	Path-loosely-controlled placement	Х	✓	Х	~
	VNP-OP [4]	Path-tightly-controlled placement	Х	✓	Х	~
	PACE [18]	Unordered placement	Х	Х	Х	Х
Other Forms	Slick [3]	Partial consolidating	~	Х	✓	~
	CSamp [27]	On-path distributed placement	~	N/A	✓	N/A
	ETTM [8]	Monolithic consolidating	~	✓	Х	~

TABLE II COMPARISON BETWEEN DIFFERENT NFV FRAMEWORKS

Challenges & Future Work

- NFV offers new opportunities for performance optimization.
- Performance of ensure correct forwarding in face of mangling NFs.

Conclusion

- issue both hardware and virtualized NFs
- design and strategy of each NFs placement
- future challenges and opportunities

