Comparison of streaming
processing framework

Distributed processing approach

* Batch Processing
— has access to all data
— might compute something big and complex
— more concerned with throughput that latency
— higher latencies

* Stream Processing
— a one-at-a-time processing model
— data are processed immediately upon arrival

— computations are relatively simple and generally
independent

— sub-second latency

Stream processing approach

* Native stream processing

Native stream processing systems
continuous operator model

@® record Processing Operator

Source Operator v ‘ Sink Operator
O @
°® “ep
eoo > |
Processing Operator
PN . . oV
AN o

records processed one at a time

Stream processing approach

* Micro-batching processing

Processing Operator

I -

ooo> >
© LN ©® s’ @

Records processed in short batches Processing Operator

Stream processing framework

Storm

Storm with Trident
Spark

Samza

Flink

Comparing table

| strm | CTrident | Spark | Samza | Flink _
Streammg Model Native Micro-batching Micro-batching Native Native

_ Compositional Declarative Compositional Declarative
At-least-once Exactly-once Exactly-once At-least-once Exactly-once
State Management Not Built-in Dedicated Dedicated Stateful Stateful

Operation DStream Operation Operation

Very Low Medium Medium Low Low
Throughput Low Medium High High High

API

* Compositional

— Provide basic building blocks like source or
operator

— Must be tied together to create expected topology
* Declarative

— System creates and optimize topology itself

v B wWwN

API

* Compositional

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout"”, new RandomSentenceSpout(), 5);

builder.setBolt("split"”, new Split(), 8).shuffleGrouping("spout");
builder.setBolt("count"”, new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

e Declarative

val conf = new SparkConf().setAppName("wordcount™)
val ssc = new StreamingContext(conf, Seconds(1l))

val text = .

val counts text.flatMap(line => line.split(" "))
> (word, 1))

.reduceByKey(_ + _)

.map (word

counts.print()

ssc.start()
ssc.awaitTermination()

Guarantee

* Message Delivery Guarantees
— At most once: data may be lost
— At least once: data may be duplicated
— Exactly once: data neither lost nor duplicated

Comparing table

| strm | CTrident | Spark | Samza | Flink _
Streammg Model Native Micro-batching Micro-batching Native Native

_ Compositional Declarative Compositional Declarative
At-least-once Exactly-once Exactly-once At-least-once Exactly-once
State Management Not Built-in Dedicated Dedicated Stateful Stateful

Operation DStream Operation Operation

Very Low Medium Medium Low Low
Throughput Low Medium High High High

