
Comparison of streaming 
processing framework



Distributed processing approach
• Batch Processing
– has access to all data
– might compute something big and complex
– more concerned with throughput that latency
– higher latencies

• Stream Processing
– a one-at-a-time processing model
– data are processed immediately upon arrival
– computations are relatively simple and generally 

independent
– sub-second latency



Stream processing approach

• Native stream processing



Stream processing approach

• Micro-batching processing



Stream processing framework

• Storm
• Storm with Trident
• Spark
• Samza
• Flink



Comparing table

Storm Trident Spark Samza Flink
Streaming Model Native Micro-batching Micro-batching Native Native

API Compositional Declarative Compositional Declarative

Guarantees At-least-once Exactly-once Exactly-once At-least-once Exactly-once

State Management Not Built-in Dedicated
Operation

Dedicated 
DStream

Stateful
Operation

Stateful
Operation

Latency Very Low Medium Medium Low Low

Throughput Low Medium High High High



API

• Compositional
– Provide basic building blocks like source or

operator
– Must be tied together to create expected topology

• Declarative
– System creates and optimize topology itself



API

• Compositional

• Declarative



Guarantee

• Message	Delivery	Guarantees
– At	most	once:	data	may	be	lost
– At	least	once:	data	may	be	duplicated
– Exactly	once:	data	neither	lost	nor	duplicated



Comparing table

Storm Trident Spark Samza Flink
Streaming Model Native Micro-batching Micro-batching Native Native

API Compositional Declarative Compositional Declarative

Guarantees At-least-once Exactly-once Exactly-once At-least-once Exactly-once

State Management Not Built-in Dedicated
Operation

Dedicated 
DStream

Stateful
Operation

Stateful
Operation

Latency Very Low Medium Medium Low Low

Throughput Low Medium High High High


