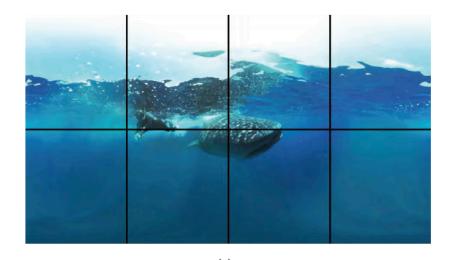
QoE-Oriented Resource Allocation for 360-degree Video Transmission over Heterogeneous Networks

Wei Huang*, Lianghui Ding*, Hung-Yu Wei[‡] Member, IEEE,
Jenq-Neng Hwang[†] Fellow, IEEE, Yiling Xu*, and Wenjun Zhang* Fellow, IEEE,
*Cooperative Media Network Innovation Center, Shanghai Jiao Tong University, Shanghai, China

[†]Department of Electrical Engineering, University of Washington, Seattle WA, USA


[‡]Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Introduction

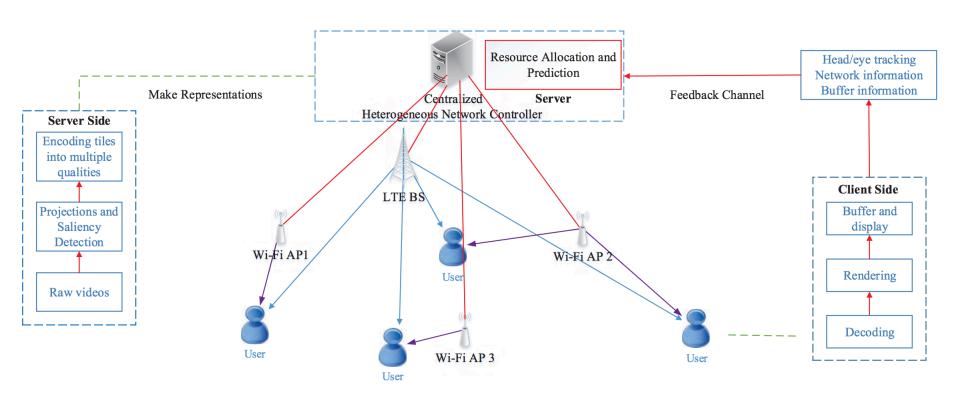
- immersive media has gained increasing popularity
- A lot of researchers have tried to better exploit the bandwidth by utilizing the heterogeneous LTE and WLAN multi-radio networks
- application-layer (APP-layer) resource allocation scheme for 360-degree/VR video transmissions over multi-RAT systems with multiple users

Tile-Based 360-degree VR Video

\overline{n}	User index
\overline{N}	Total number of users
U_n	The Utility of user n
A,B	Normalization coefficients of U_n
j	Tile index
J	Total number of tiles in one video
A, B	Normalization coefficients of U_n
m	Tile representation level index
M	Total Number of tile representation
D_m	Video rate of tile representation m
θ_0	The prediction filed of view on sphere
φ	Azimuth angle in spherical coordinate
θ	Polar angle in spherical coordinate
ρ	Guarantee probability of FoV prediction
y	Probable FoV index
Y_n	Total number of probable FoV for user n
$P_y^{(n)}$	The probability of probable FoV n for user n
$D_{n,j}$	Video rate of tile j on user n
m	Tile representation index
M	Total number of tile representation in server
d_n	Total transmission rate of user n through LTE and WLAN
d^{LTE}	Transmission rate of user n through LTE channel
$d_{n,i}^{wifi} \ r_n^{LTE}$	Transmission rate of user n on AP i
r_n^{LTE}	Achievable rate of user n through LTE channel
$r_{n,i}^{wifi}$	Achievable rate of user n when connected to AP i
$W_{n,j}$	Saliecny weight of tile j on user n
$C_{n,j}^m$	Cost of tile j on user n when m -th representation is selected
$ ilde{U}_{n,j}^m$	Improvement utility of tile j on user n when m -th represen-
10,5	tation is selected
$ u_{n,j}^m$	Utility over cost of tile j on user n when m -th representation
70,5	is selected
B_1	Buffer threshold length
B_2	Buffer maximum length
B_c	Current buffer length
μ	Coefficient of QoE metric
l	Coefficient of buffer strategy
σ	Coefficient of penalty function

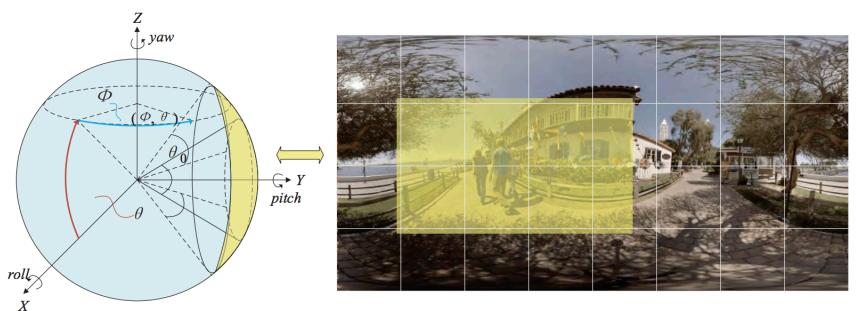
0.1	0.3	0.21	0.07
0.04	0.13	0.13	0.02

System Models


Utility Model

$$U(D) = A \log B \frac{D}{D_M},$$

Video Quality


$$\sum_{j \in \text{FoV}} U_{n,j} * W_{n,j} + \mu \min_{j \in \text{FoV}} (U(D_{n,j}))$$

The system of Tile-based 360-degree Video Transmission in Multi-RAT Network

Resource Allocation in Multi-RAT Networks

FoV Probability

• Expected QoE
$$\sum_{y}^{Y_n} \left(\sum_{j \in \text{FoV}_y} U(D_{n,j}) * W_{n,j} + \mu \min_{j \in \text{FoV}_y} \left(U(D_{n,j}) \right) \right) P_y$$

Problem Formulation

n	User index
N	Total number of users
U_n	The Utility of user n
A,B	Normalization coefficients of U_n
j	Tile index
J	Total number of tiles in one video
A,B	Normalization coefficients of U_n
\overline{m}	Tile representation level index
M	Total Number of tile representation
D_m	Video rate of tile representation m
θ_0	The prediction filed of view on sphere
φ	Azimuth angle in spherical coordinate
θ	Polar angle in spherical coordinate
ρ	Guarantee probability of FoV prediction
y	Probable FoV index
Y_n	Total number of probable FoV for user n
$P_y^{(n)}$	The probability of probable FoV n for user n
$D_{n,j}$	Video rate of tile j on user n
m	Tile representation index
M	Total number of tile representation in server
d_n	Total transmission rate of user n through LTE and WLAN
d_n^{LTE}	Transmission rate of user n through LTE channel
$\mid d_{n,i}^{wiji} \mid$	Transmission rate of user n on AP i
r_n^{LTE}	Achievable rate of user n through LTE channel
$r_{n,i}^{wifi}$	Achievable rate of user n when connected to AP i
$W_{n,j}$	Saliecny weight of tile j on user n
$C_{n,j}^m$	Cost of tile j on user n when m -th representation is selected
$ ilde{U}_{n,j}^m$	Improvement utility of tile j on user n when m -th representation is selected
$ u_{n,j}^m$	Utility over cost of tile j on user n when m -th representation
10,5	is selected
B_1	Buffer threshold length
B_2	Buffer maximum length
B_c	Current buffer length
μ	Coefficient of QoE metric
l	Coefficient of buffer strategy
σ	Coefficient of penalty function

OPT-1:

$$\max \sum_{n}^{N} \left(\sum_{j \in \text{FoV}_{y}} U(D_{n,j}) W_{n,j} + \mu \min_{j \in \text{FoV}_{y}} U(D_{n,j}) \right) P_{y},$$

s.t.
$$\sum_{j} D_{n,j} \le d_n, \ \forall n,$$
 (4)

$$d_n = d_n^{\text{LTE}} + \sum_i d_{n,i}^{\text{wifi}},\tag{5}$$

$$\sum_{n} \frac{d_n^{\text{LTE}}}{r_n^{\text{LTE}}} \le 1,\tag{6}$$

$$\sum_{n} \frac{d_{n,i}^{\text{wifi}}}{r_{n,i}^{\text{wifi}}} \le 1, \ \forall i, \tag{7}$$

$$\operatorname{card}(\left[d_{n,1}^{\text{wifi}}, \cdots, d_{n,I}^{\text{wifi}}\right]) = 1, \tag{8}$$

$$D_{n,j} \in \{D_1, \cdots, D_M\}. \tag{9}$$

Algorithm 1: Greedy

Algorithm 1 Greedy Algorithm

```
Variable definition:
    Q_B: the set of fixed users and corresponding association;
    Q_C: the set of users have not been placed;
    (n,i): the user n is connected to Wi-Fi AP i;
Initial: Q_B = \Phi, Q_C = \{1, 2, \dots, N\};
 1: while Q_C! = \Phi do
       sum = 0; j = 0; t = 0;
 2:
       for n = 1, n \le N, n + + do
         if n \in \mathcal{Q}_C then
 4:
            for i = 1, i < I, i + + do
 5:
               solve the OPT-1 when user n is fixed to Wi-Fi
 6:
               AP i:
               temp = \max U_{\mathcal{Q}_B + \{(n,i)\}},
               D^* \leftarrow \arg \max U_{\mathcal{Q}_B + \{(n,i)\}};
               if temp > sum then
 7:
                  sum = temp; j = n, t = i;
 8:
               end if
 9:
            end for
10:
         end if
11:
       end for
12:
       update Q_B \leftarrow Q_B + \{(j,t)\}; Q_C \leftarrow Q_B - \{j\} and
13:
       D^*;
14: end while
15: Round D^* to appropriate representation.
```

Algorithm 2: Heuristic Algorithm with Penalty Function

 introducing a penalty function into the problem and relaxing the OPT-1 into a convex problem

OPT-2:

$$\max \sum_{n}^{N} \left(\sum_{j \in \text{FoV}_{y}}^{Y_{n}} (\mu \min_{j \in \text{FoV}_{y}} U(D_{n,j}) + \sum_{j \in \text{FoV}_{y}}^{} U(D_{n,j}) W_{n,j}) P_{y} \right)$$

$$- \sigma \sqrt{\sum_{n} \left(\sum_{i}^{} d_{n,i}^{\text{wifi}} \right)^{2}}$$
s.t.
$$\sum_{j}^{} D_{n,j} \leq d_{n}, \ \forall n,$$

$$\sum_{j}^{} \frac{d_{n}^{\text{LTE}}}{r_{n}^{\text{LTE}}} \leq 1,$$

$$\sum_{j}^{} \frac{d_{n}^{\text{LTE}}}{r_{n}^{\text{LTE}}} \leq 1,$$

$$\sum_{j}^{} \frac{d_{n,j}^{\text{wifi}}}{r_{n,j}^{\text{wifi}}} \leq 1, \ \forall i,$$

$$d \geq 0,$$

$$\sum_{j}^{} \frac{d_{n,j}^{\text{wifi}}}{r_{n,j}^{\text{wifi}}} \leq 1, \ \forall i,$$

$$\sum_{j}^{} \frac{d_{n,j}^{\text{wifi}}}{r_{n,j}^{\text{wifi}}} \leq 1, \ \forall i,$$

 $D_1 \leq D_{n,i} \leq D_m$.

Algorithm 2 Heuristic Algorithm with Penalty Function

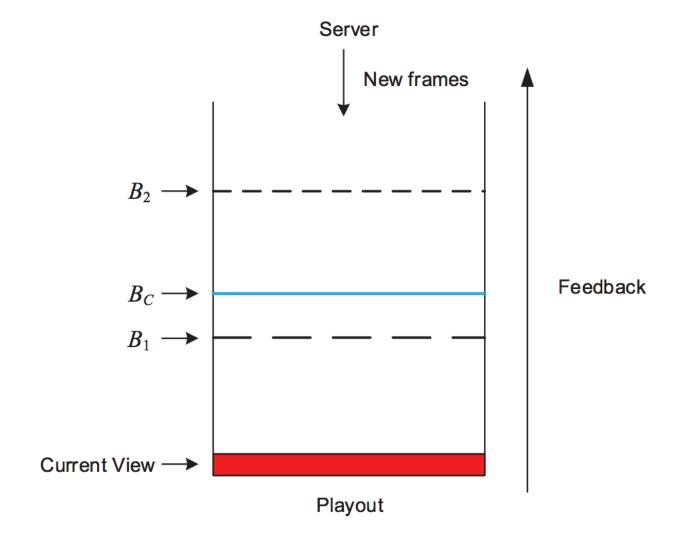
- 1: Convert OPT-1 to OPT-2 with penalty function;
- 2: Solve OPT-2 and get $d_{n,i}^{\text{wifi}}$;
- 3: Find the K users (indexed by k) connected to more than a single AP;
- 4: **for** $k = 1, n \le K, k + +$ **do**
- Use greedy approach only on these users while fixed others and update D^* ;
- 6: end for
- 7: Round D^* to appropriate representation.

Algorithm 3: Decomposition Algorithm

OPT-3:

$$\begin{aligned} \max \sum_{n}^{N} \left(U_{n}(d_{n}) \sum_{y}^{Y_{n}} (\sum_{j \in \text{FoV}_{y}} W_{n,j}) P_{y} \right) \\ \text{s.t. } d_{n} &= d_{n}^{\text{LTE}} + \sum_{i} d_{n,i}^{\text{wifi}}, \\ \sum_{n} \frac{d_{n}^{\text{LTE}}}{r_{n}^{\text{LTE}}} &\leq 1, \\ \sum_{n} \frac{d_{n,i}^{\text{wifi}}}{r_{n,i}^{\text{wifi}}} &\leq 1, \ \forall i, \\ \operatorname{card}(\left[d_{n,1}^{\text{wifi}}, \cdots, d_{n,I}^{\text{wifi}}\right]) &= 1. \end{aligned}$$

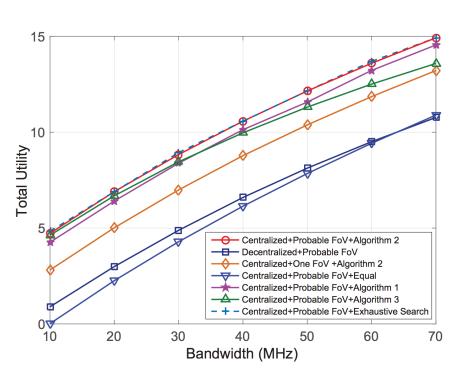
Algorithm 3 Decomposition Algorithm

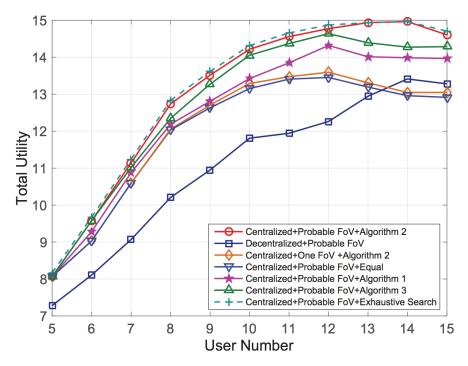

- 1: Solve OPT-3, get d_n and Wi-Fi AP allocation;
- 2: **for** $n = 1, n \le N, n + +$ **do**
- 3: sort the utility over the cost of each tile $\nu_{n,j}^m$ and set $d_{\rm current}=0;$
- 4: while $d_{\text{current}} \leq d_n$ do
- 5: **update** the representation level to each tile according to the utility over the cost continuously;
- 6: **update** $d_{\text{current}} = d_{\text{current}} + d_{\text{consumed}};$
- 7: **end while**
- 8: end for

OPT-4:

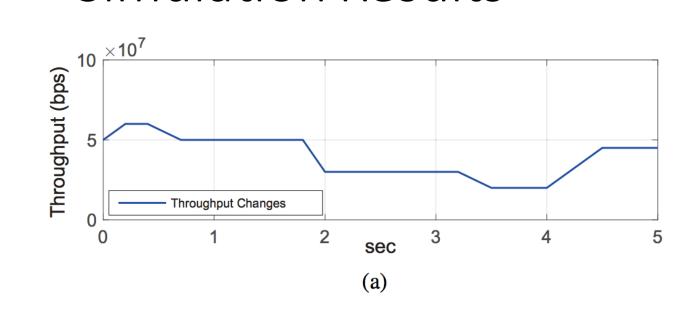
$$\max \left(\sum_{y}^{Y_n} \mu \min_{j \in \text{FoV}_y} U(D_{n,j}) + \sum_{j \in \text{FoV}_y} U(D_{n,j}) W_{n,j} \right)$$
s.t.
$$\sum_{j} D_{n,j} \le d_n,$$

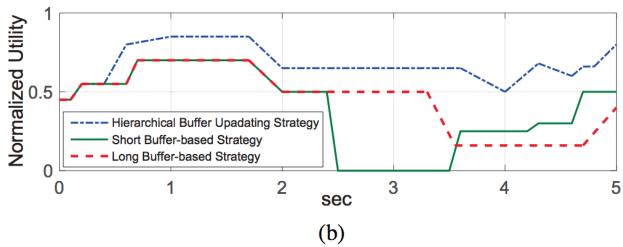
$$D_{n,j} \in \{D_1, \dots, D_M\}.$$
(20)


Buffer Measurement Strategy



Simulation Setup


- 18 distinct 360-degree videos from MPEGJVET (Joint Video Exploring Team) 360-degree VR video datasets and YouTube
- 32 tiles, 10 different-bitrate representations
- NS-3
 - The users are uniformly distributed around 5 Wi-Fi APs within the coverage of LTE BS within 200m
 - When more users are involved into the system, they will be set close to AP 1 to simulate the congestion scenario


Simulation Results

Simulation Results

Conclusion

- tile-based 360-degree VR video transmission scheme and a corresponding buffer strategy on heterogeneous networks with multi-user access
- jointly consider saliency in videos, filed of view and the channel quality states of users