
Introduction

• As	increasing	multimedia	content	becomes	available,	
the	optimization	of	users’	experiences	on	multimedia	
given	limited	resources	is	more	important
• Challenges
• Unknown	mechanism	for	human	to	judge	the	quality	->	
expensive	process	of	collecting	subjects’	opinions	is	
usually	required	for	satisfactory	QoE estimation
• There	are	many dynamic	QoS factors	that	affect	QoE in	
users’	minds,	e.g.,	bitrate,	resolution,	delay,	…
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QoE Modeling
• Standard	approach

1) random	(grid)	sampling	in	QoS space
2) subjects	are	asked	to	score	on	those	samples
3) modeling	the	relationship	between	QoE and	QoS

• Goal	of	this	article
• actively	select	(informative)	
samples	to	better	model	
the	relationships	 between	
QoS parameters	and	QoE
with	fewer	samples
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Multidimensional	IQX	(MIQX)	
Modeling
• Goal:	predict	the	QoE based	on	QoS

• IQX	model

• Multidimensional	IQX	model	(MIQX)
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Training	Multidimensional	IQX	
(MIQX)	Model
• min	2-norm	errors	between	f(x_i)	and	y_i for	all	i

• Valid	range
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Adaptive	Sampling	for	QoE Modeling

• Design	the	sample	presentation	order	such	that	
they	can	reduce	the	number	of	samples	required	to	
build	an	accurate	model
• Grid	and	Random	Sampling
• Online	Space-filling	Sampling
• Active	Sampling
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Grid	and	Random	Sampling

• Uniform	grid	sampling
• easy	to	implement
• requires	users	to	set	the	number	of	samples	in	advance	
(the	number	cannot	be	arbitrary)

• Random	sampling
• randomly	and	uniformly	acquires	the	next	sample
• some	large	areas	in	the	sampling	space	may	not	covered	
by	any	sample	when	the	budget	is	insufficient
• wastes	the	annotation	in	some	cases,	e.g.,	two	very	
similar	consecutive	samples
• biased	sampling	results	for	a	subject	(e.g.,	many	more	
high-quality	videos	compared	to	low-quality	videos)
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Online	Space-Filling	Sampling

• Maximin sampling
• Select	the	i-th sample	x_i as	farther	from	the	chosen	
samples	x as	possible

• Maximin sampling	tends	to	acquire	samples	near	the	
boundaries	of	valid	range	initially
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Active	Sampling

• Select	the	next	sample	that	is	most	informative	for	
estimating	the	model	parameters
• Information	estimation:	probabilistic	MIQX	model
• Error:	normal	
• α,	γ are	uniform	within	their	range
• w is	Gaussian	with	a	mean	and	covariance	matric	of	0	
and	!λ𝘐
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Active	Sampling

• Uncertainty	sampling
• sample	the	most	uncertain	point	for	the	current	model	
in	the	feature	space
• uncertainty:	the	variance	of	the	prediction	of	the	current	
QoE-QoS model
⇒ select																																										to	minimize	the	overall	
prediction	variance
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Active	Sampling

• Sample	with	the	highest	prediction	variance	is	
usually	the	sample	on	the	edge	of	the	valid	feature	
space	->	suffer	from	outlier	more	easily
• focus	on	minimizing	the	uncertainty	of	the	
prediction	from	highly	probable	x (considering	P(x))
• Minimizing	prediction	variance	->	Q-optimal
• Maximizing	the	information	gain	
->	mean	marginal	information	gain	(MMIG)
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Q-Optimal

• Minimize	the	variance	weighted	by	the	feature	
distribution

• Next	sample
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MMIG

• Minimize	the	uncertainty	of	the	prediction	
probability	distribution
• average	uncertainty	over	all	valid	features	x_uu on	the	
basis	of	entropy

• next	sample
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Performance	Evaluation

1. Collect	QoE scores	from	video	clips	with	
randomly	selected	QoS parameters

2. Change	the	collection	order	offline	to	evaluate	
the	sampling	methods
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Experiment	Design
• Video	characteristics:	bitrate,	frame	rate,	resolution,	
temporal	complexity,	and	spatial	complexity
• Normalized	feature	space	[0,1]
• Use	inverse	of	QoE scores	as	the	prediction	target	of	
the	regression	task:	dissatisfaction	score
• Interaction	between	features	exist:	add	2nd-order	
interaction	terms	to	the	model
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Dataset
• 3318	annotations	from	97	subjects	using	Amazon	
Mechanical	Turk	(MTurk)	and	Bounty	Worker
• 7-level	scale

• 10-second	H264	video	randomly	chosen	from	Big	Buck	
Bunny	and	Tears	of	Steel
• Bitrate:	[100,	2000]	kbps
• Frame	rate:	[5,30]	fps
• Resolution:	{480,	600,	720,	840,	960,	1080}	height

• Severe	subject	bias	→	normalization
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Evaluation	Sampling	Methods

• Conduct	200	trials	and	make	each	method	collect	
different	samples	in	each	trial	by	injecting	some	
randomness	into	the	sampling	process
• 70%	for	training	and	30%	for	testing
1. Randomly	select	10	sample	from	the	training	pool
2. Let	the	method	choose	the	next	query

• Evaluation
• Prediction	accuracy:	similarity	between	the	prediction	and	
the	annotations	in	testing	pool
• relative	squared	error	(RSE),	linear	correlation	coefficient	(LCC),	
and	 Spearman	rank-order	correlation	coefficient	(SROCC)

• Parameter	accuracy:	RMSE	of	w
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Regression	Models
• MIQX	(with	2nd-order	interaction	terms)
• Linear	regression	(with	2nd-order	interaction	terms)
• Nadaraya-Watson	kernel	regression	with	Gaussian	
kernel
• Random	forest
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Maximin vs.	Random	Sampling
• Maximin sampling	leads	to	more	accurate	model
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Active	vs.	Maximin Sampling

• For	MIQX	model
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Field	Experiment	for	Realistic	
Online	Setting
• Experiment	design
• Several	trials	for	each	sampling	method
• Randomly	assign	each	subject	to	a	trial
• In	each	trail,	the	query	for	each	subject	is	determined	
online	based	on	the	previous	queries
• Each	subject	rate	40	samples

• 5	subjects	(200	samples)	collected	for	each	trail
• The	first	10	queries	for	each	subject	are	randomly	selected
• Shift	scores	based	on	the	updated	average	score	for	bias	
removal
• Uniformly	sample	3000	QoS parameters	(2500	kbps)
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Single	Stimulus

• One	stimulus	in	each	round	of	rating
• The	reference	video	clip	is	shown	to	the	subject	at	
the	beginning	of	the	task	(10000	kbps,	1080p,	30	
fps)
• Methods:	random,	maximin,	and	Q-optimal
• 3600	samples,	18	trials	(6	trials	for	each	method)
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Maximin vs.	Random	Sampling

• MIQX	>	others,	maximin >	random	(except	RF)
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Active	vs.	Maximin Sampling
• Maximin >	Q-optimal
• Contradicting	to	the	findings	in	offline	setting

• Repeat	offline	experiment:	Q-optimal	>	Maximin
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Difficulty	I	(Habituation	Effect)

• Subjects	tend	to	give	
higher	scores	than	
usual	if	they	just	saw	
a	clip	with	very	bad	
quality
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Difficulty	I	(Habituation	Effect)
• MIQX	model	estimated	using	data	from	random	
sampling	can	predict	scores	from	maximin sampling	
much	better	than	it	can	predict	scores	from	active	
sampling
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Difficulty	II	(Individual	Differences)

• Each	subject	has	different	standards	for	their	
judgement
• Active	sampling	has	largest	performance	
differences	->	Active	sampling	might	try	to	fit	the	
QoE model	of	the	current	subject instead	of	fitting	
the	average	QoE model	of	the	crowd
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Double	Stimulus
• Reference	video	vs.	compressed	video
• Random,	maximin,	and	hybrid	(maximin+MMIG):	

• 10	trials	(200	samples	labeled	by	5	subjects)
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Limitations

• Active	learning	still	provides	some	bias	in	long-run

• The	considered	bitrate	range
• relative	low	compared	with	popular	online	video	
services,	e.g.,	YouTube
• The	online	workers	might	not	have	the	adequate	skills	or	
hardware	to	identify	the	subtle	difference	among	high-
quality	videos,	e.g.,	1	vs.	2	Mbps
• Need	to	cover	Larger	interval
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Conclusion

• Appropriate	sampling	methods	are	required	to	
cope	with	the	large	parameter	space
• Considering	
• Sampling	strategies:	random,	maximin,	active	
(uncertainty,	q-optimal,	and	MMIG)
• Models:	linear	regression,	kernel	regression,	random	
forest,	and	MIQX
• Testing	methods:	single	stimulus	and	double	stimulus
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Issue

• Active	learning	may	perform	worse	than	passive	
learning	due	to	habitual	effect	and	individual	
differences
• Active	sampling+space-fillingsampling
• Take	previous	QoE scores	into	account
• Model	user	diversity
• Provide	additional	training	for	subjects
• Filter	unreliable	subjects
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