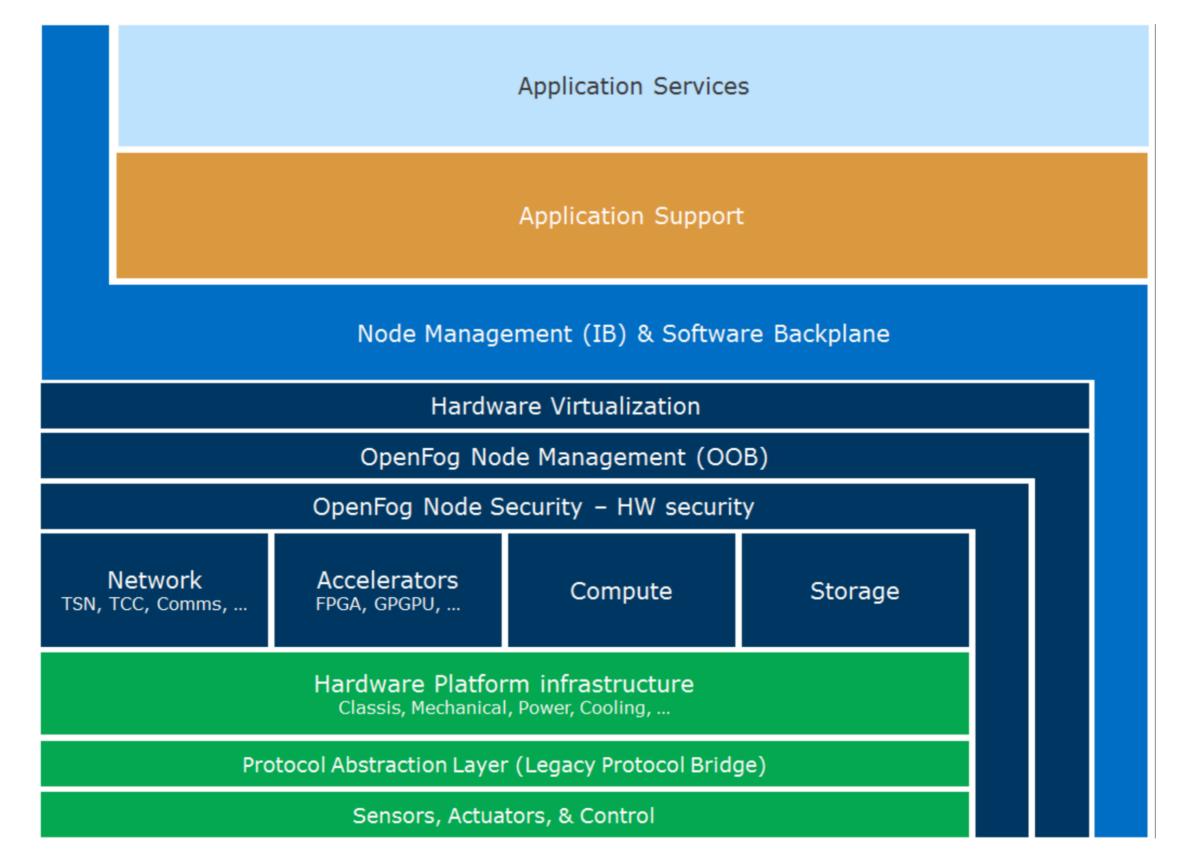
Fog Computing Surveys and Similar Concepts

洪華駿

Department of Computer Science, National Tsing Hua University, Taiwan

Definition of Fog Computing

• Cisco [1]: *a cloud close to the ground* (2012)


 Fog computing is a highly virtualized platform that provides compute, storage, and networking services between end devices and traditional cloud computing data centers, typically, but not exclusively located at the edge of network

• OpenFog [2]: *a link in the cloud-to-things continuum* (2015)

 Fog computing is a system-level horizontal architecture that distributes resources and services of computing, storage, control and networking anywhere along the continuum from cloud to things

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog Computing and Its Role in the Internet of Things. In Proc. of ACM SIGCOMM workshop on Mobile Cloud Computing (MCC). Helsinki, Finland.
[2] OpenFog, <u>https://www.openfogconsortium.org</u>

I] https://standards.ieee.org/findstds/standard/1934-2018.html Architecture of Cloud-to-Things Continuum Platforms[1]

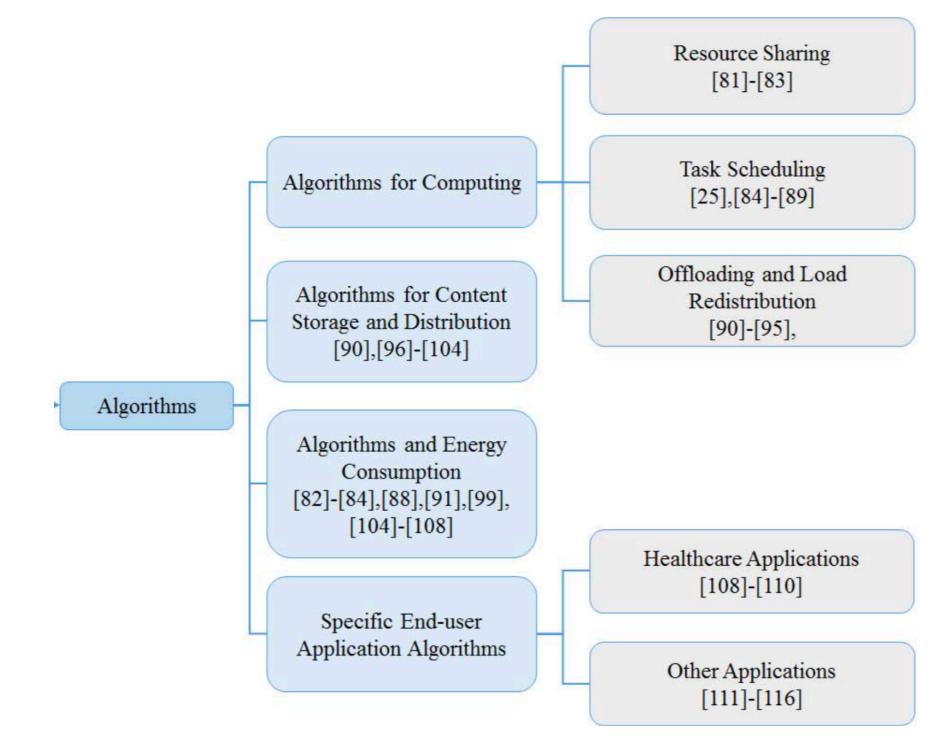
Comparisons of Cloud, Distributed Cloud, CloudLet, and Fog

	High Heterogeneity	Low Latency	Mobility Support	Location Awareness	Virtualiz ation Support
Cloud	×	×	×	×	✓
Distributed Cloud [4]	×	\triangle	\triangle	\triangle	 Image: A start of the start of
Cyber Foraging [5]	\triangle	\checkmark	✓	1	×
CloudLet [3]	\triangle	\checkmark	✓	✓	 Image: A start of the start of
MEC [1]	Δ	\checkmark	✓	1	1
Fog [2]	1	\checkmark	✓	1	 Image: A start of the start of

[1] C. Mouradian, D. Naboulsi, S. Yangui, R. Glitho, M. Morrow, and P. Polakos, "A Comprehensive Survey on Fog Computing: State-of-the-art and Research Challenges," *IEEE Communications Surveys & Tutorials*, *20*(1), 416-464, 2017.

[4] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves, D. Sadok, J. Kelner, B. Melander, and J. Mangs, "Resource Allocation for Distributed Cloud: Concepts and Research Challenges," *IEEE Network*, 25(4), 42-46, 2011.

[5] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang, "The case for cyber foraging," in *Proc. 10th Workshop ACM SIGOPS Eur. Workshop*, Saint-Émilion, France, 2002, pp. 87–92.


^[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog Computing and Its Role in the Internet of Things" *in Proc. of ACM SIGCOMM workshop on Mobile Cloud Computing (MCC)*, Helsinki, Finland, 2012.

^[3] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, "The Case for VM-based Cloudlets in Mobile Computing. *IEEE pervasive Computing*, 8(4), 14-23, 2009.

Year	Authors	Journal/Conferences	Main Focuses
2015	Shanhe et al.	Mobidata	Similar Concepts and Fog Issues
2017	Mouradian et al.	IEEE Communications Surveys & Tutorials	Algorithms
2017	Charith et al.	ACM Computing Surveys	Functionalities of Ideal Fog Platform
2017	Jianbing et al.	IEEE Communications Surveys & Tutorials	Security
2017	Mithun et al.	IEEE Access	Security and Privacy
2018	Mithun et al.	IEEE Communications Surveys & Tutorials	Network
2018	Redowan et al.	Springer	Taxonomy by challenges

	Year	Authors	Journal/Conferences	Main Focuses
	2015	Shanhe et al.	Mobidata	Similar Concepts and Fog Issues
	2017	Mouradian et al.	IEEE Communications Surveys & Tutorials	Algorithms
	2017	Charith et al.	ACM Computing Surveys	Functionalities of Ideal Fog Platform
	2017	Jianbing et al.	IEEE Communications Surveys & Tutorials	Security
-	2017	Mithun et al.	IEEE Access	Security and Privacy
	2018	Mithun et al.	IEEE Communications Surveys & Tutorials	Network
	2018	Redowan et al.	Springer	Taxonomy by challenges

A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges

Year	Authors	Journal/Conferences	Main Focuses
2015	Shanhe et al.	Mobidata	Similar Concepts and Fog Issues
2017	Mouradian et al.	IEEE Communications Surveys & Tutorials	Algorithms
2017	Charith et al.	ACM Computing Surveys	Functionalities of Ideal Fog Platform
2017	Jianbing et al.	IEEE Communications Surveys & Tutorials	Security
2017	Mithun et al.	IEEE Access	Security and Privacy
2018	Mithun et al.	IEEE Communications Surveys & Tutorials	Network
2018	Redowan et al.	Springer	Taxonomy by challenges

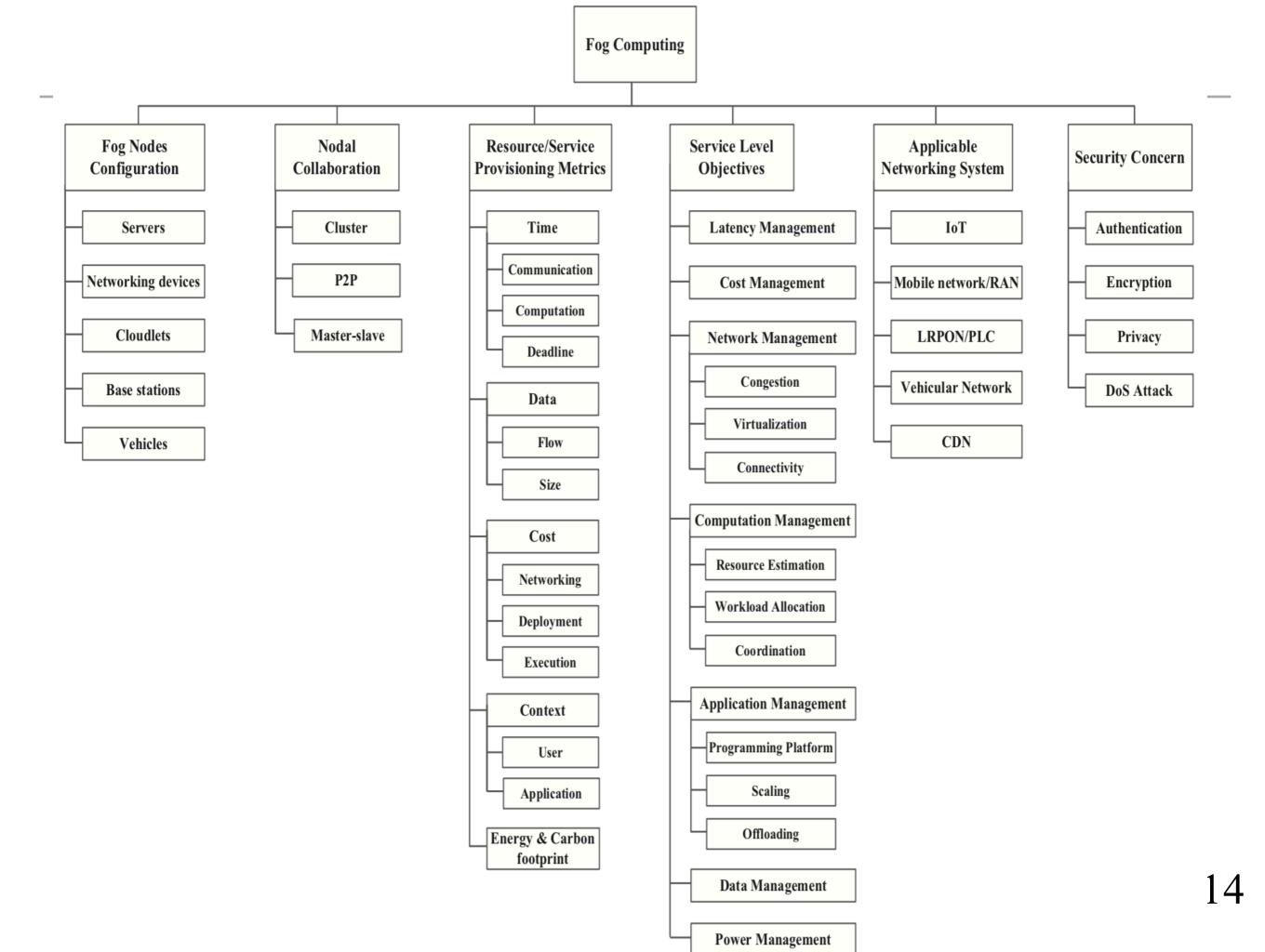
Fog Computing for Sustainable Smart Cities: A Survey

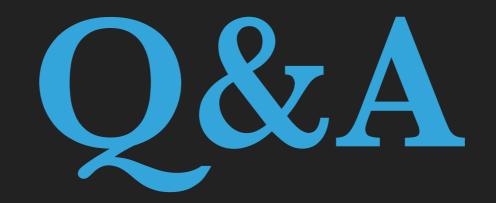
- **DDIO**, Dynamic Discovery of Internet Objects
- **DCDM**, Dynamic Configuration and Device Management
- MPS-C, Multi-Protocol Support: Communication Level
- MPS-A, Multi-Protocol Support: Application Level
- **Mob**, Mobility
- CDA, Context Discovery and Awareness
- DA, Data Analytics
- SA, Semantic Annotation
- SP, Security and Privacy
- CCS, Cloud Companion Support

Year	Authors	Journal/Conferences	Main Focuses
2015	Shanhe et al.	Mobidata	Similar Concepts and Fog Issues
2017	Mouradian et al.	IEEE Communications Surveys & Tutorials	Algorithms
2017	Charith et al.	ACM Computing Surveys	Functionalities of Ideal Fog Platform
2017	Jianbing et al.	IEEE Communications Surveys & Tutorials	Security
2017	Mithun et al.	IEEE Access	Security and Privacy
2018	Mithun et al.	IEEE Communications Surveys & Tutorials	Network
2018	Redowan et al.	Springer	Taxonomy by challenges

Fundamental Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges

- Three tiers: traditional fog network architecture
- Four tiers: for very low latency applications
- SDN-based: manage fog network resources


Cloud	High Access Delay	
Fog Type 2	Medium Access Delay	
Fog Type 1	Low Access Delay	
Terminal Nodes (TNs)		


Architecture	Background	Focus/Contribution
Three-tier architecture [14], [43], [48], [54]	Basic architecture of fog computing.	To extend the computing and storage facilities towards network edge and to reduce burden on the cloud DCs.
Four-tier Combined Fog-Cloud (CFC) architecture [55]	Some service requests require very low end-to-end delay, however, current resource pool in the fog layer cannot support these requests, nevertheless, these requests do not necessarily to be executed in the Cloud.	 The hierarchy of a layer is determined by capacity, vicinity, and reachability to EUs. Two fog layers are suggested. The fog second layer supports the service requests when there is not enough resource in fog first layer.
SDN-based fog computing [94], [94], [97]	 Separation of data and control plane. Integrates controller functionality in edge-element, i.e., edge-switch. Communicates with both fog and cloud management software. 	 Improved controller-switch delay performance [94]. Effectively manages storage, computing, and networking resources of the edge-switch [94], [97]. Handles the Fog-related traffic with an aim to reduce latency and carbon footprint [96].

Year	Authors	Journal/Conferences	Main Focuses
2015	Shanhe et al.	Mobidata	Similar Concepts and Fog Issues
2017	Mouradian et al.	IEEE Communications Surveys & Tutorials	Algorithms
2017	Charith et al.	ACM Computing Surveys	Functionalities of Ideal Fog Platform
2017	Jianbing et al.	IEEE Communications Surveys & Tutorials	Security
2017	Mithun et al.	IEEE Access	Security and Privacy
2018	Mithun et al.	IEEE Communications Surveys & Tutorials	Network
2018	Redowan et al.	Springer	Taxonomy by challenges

Fog Computing: A Taxonomy, Survey and Future Directions

- Fog Nodes Configuration. The computational nodes with heterogeneous architecture and configurations that are capable to provide infrastructure for Fog computing at the edge of the network.
- **Nodal Collaboration**. The techniques for managing nodal collaboration among different Fog nodes within the edge network.
- **Resource/Service Provisioning Metric**. The factors that contribute to provision resources and services efficiently under different constraints
- Service Level Objectives. The SLOs that have been attained by deploying Fog computing as an intermediate layer between Cloud datacenters and end devices/sensors
- Applicable Network System. The different networking systems where Fog computing has been introduced as extension of other computing paradigms
- Security Concern. The security issues that have been considered in Fog computing on different circumstances

hua.j.hong@gmail.com