MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam Google Inc., 2017

Introduction

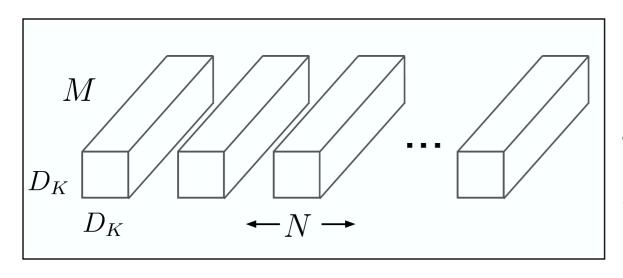
- MobileNets is a class of efficient models for mobile and embedded vision applications
- Use depthwise separable convolutions to build light weight deep neural networks
- Add two simple global hyperparameters: width multiplier and resolution multiplier that efficiently trade off between latency and accuracy

Introduction



Prior Work

- Compressing pretrained networks
 - —Product quantization, Hashing, Pruning, Vector quantization, Huffman coding
 - —Factorization
- Training small networks
 - Distillation

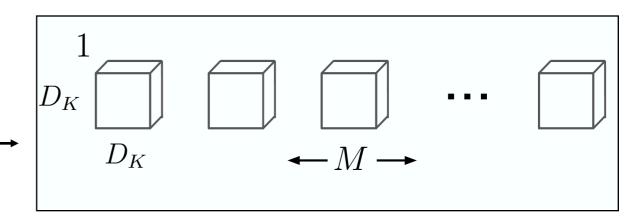


Standard Convolution Filters

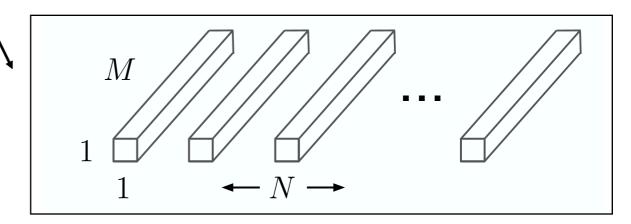
Dκ: the spatial dimension of the kernel

M: the number of input channels (input depth)

N: the number of output channel (output depth)



Depthwise Convolutional Filters



Pointwise Convolution

->Reduce computation and model size

Standard convolutional layer:

- -Input: Df x Df x M feature map F
- -Output: DF x DF x N feature map G
- -Convolution kernel: D_K x D_K x M x N kernel **K**

$$\mathbf{G}_{k,l,n} = \sum_{i,j,m} \mathbf{K}_{i,j,m,n} \cdot \mathbf{F}_{k+i-1,l+j-1,m}$$

Cost: Dk x Dk x M x N x Df x Df

- Depthwise separable convolution:
 - Depthwise convolutions

$$\hat{\mathbf{G}}_{k,l,m} = \sum_{i,j} \hat{\mathbf{K}}_{i,j,m} \cdot \mathbf{F}_{k+i-1,l+j-1,m}$$

Pointwise convolutions

Cost: Dk x Dk x M x Df x Df + M x N x Df x Df

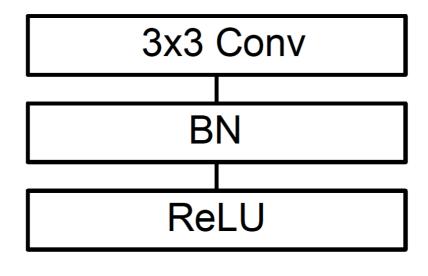
Reduction

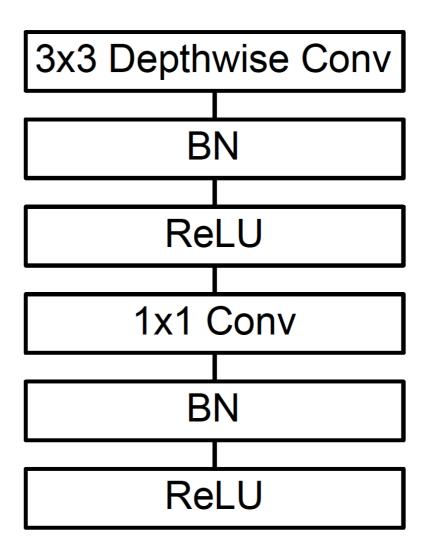
$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$$

$$= \frac{1}{N} + \frac{1}{D_K^2}$$

MobileNet structure

28 layers





Width Multiplier: Thinner Models

With width multiplier a, the cost become:

$$D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F + \alpha M \cdot \alpha N \cdot D_F \cdot D_F$$

• $\alpha = (0,1]$ with typical settings of 1, 0.75, 0.5 and 0.25

Resolution Multiplier: Reduced Representation

With width multiplier ρ, the cost become:

$$D_K \cdot D_K \cdot \alpha M \cdot \rho D_F \cdot \rho D_F + \alpha M \cdot \alpha N \cdot \rho D_F \cdot \rho D_F$$

• $\rho = (0,1]$ with typical settings ρ to make input resolution of the network be 224, 192, 160 or 128

Depthwise Separable Convolutions v.s. Full Convolutions

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

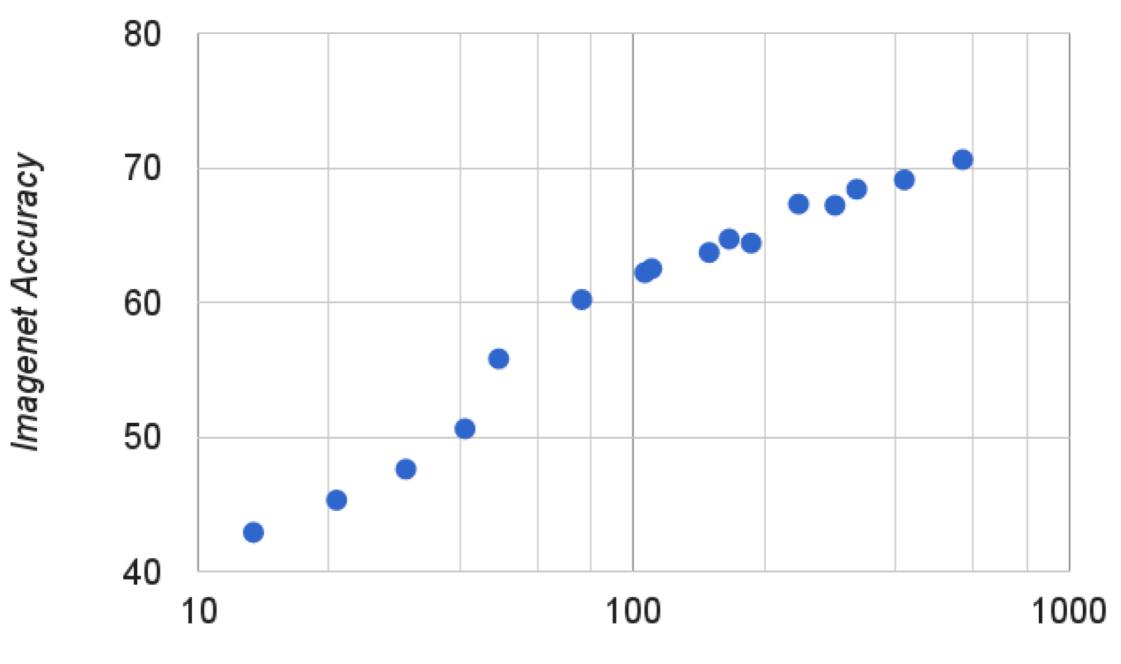
Width Multiplier v.s. Shallow Model

Table 5. Narrow vs Shallow MobileNet

ImageNet	Million	Million		
Accuracy	Mult-Adds	Parameters		
68.4%	325	2.6		
65.3%	307	2.9		
	Accuracy 68.4%	Accuracy Mult-Adds 68.4% 325		

Trade off between computation (Mult-Adds) and

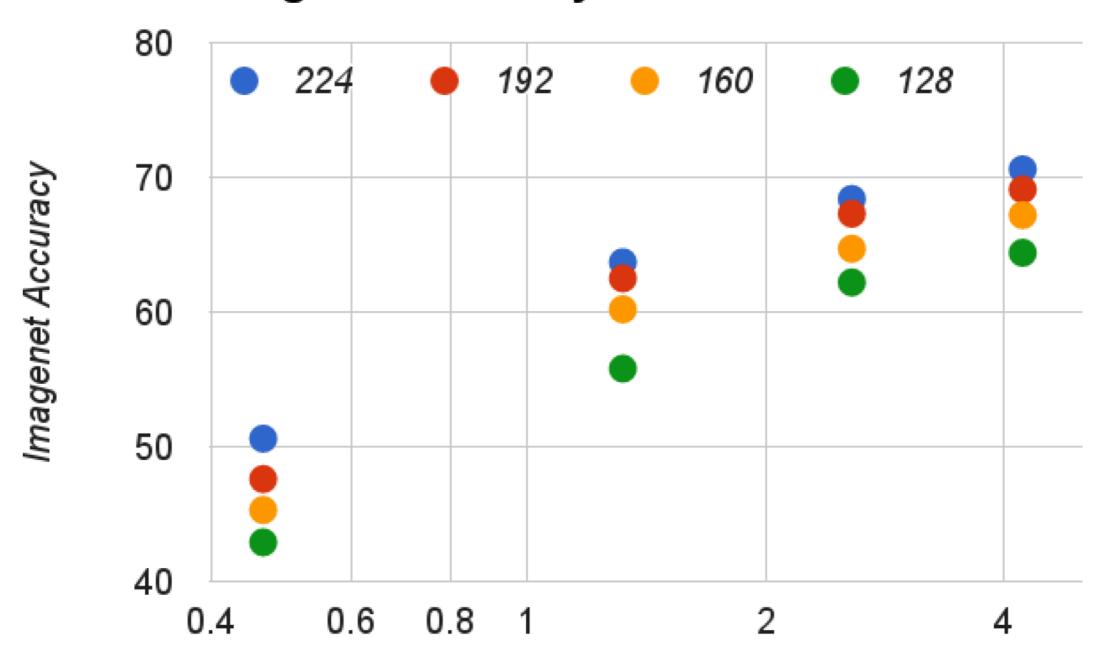
MACHINACIA Imagenet Accuracy vs Mult-Adds



Million Mult-Adds

Trade off between Number of and Accuracy

Imagenet Accuracy vs Million Parameters



Million Parameters

Conclusion

- Propose a new model architecture called MobileNets
- Two Features:
 - Use depthwise separable convolutions
 - —Use width multiplier and resolution multiplier