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中中中文文文摘摘摘要要要

由於物聯網、人工智慧、巨量資料以及雲端運算的快速發展，促

使了新興的應用出現，像是自駕車、擴增實境、智慧監控等等。 這

些應用有著嚴格的延遲限制，需要大量的運算資源，以及不同的資源

需求，像是感測、運算、網路、地點等等需求， 因此，開發者開始

試著將各種不同的設備進行整合。這些設備可能來自雲、基地台、

網路設備、以及各種終端設施， 而像這樣從雲到終端設施的整合平

台，我們將他稱之為雲到物之連續性平台（cloud-to-things continuum

platform）。這樣的平台包含了兩個角色，一個是提供者一個是使用

者，提供者負責建立平台並且提供應用給予使用者購買與使用，在這

篇論文裡面，我們根據這兩個角色設計了兩個聰明的部件，分別是全

域優化部件（global optimizer）以及應用優化部件（application-specific

optimizer）。全域優化部件是設計給提供者的，用來優化整個平台，

這個部件考慮了使用者的服務品質需求、平台可用的資源量、應用所

要的感測器等條件進行優化， 進而最大化整個平台能夠服務的使用

者數量。而應用優化部件則是設計給使用者的，來優化正在運行的應

用。為了實現這兩個優化部件，我們解決了三個資源分配的問題，分

別是應用佈建問題（application deployment problem）、對延遲敏感之

應用優化問題（delay-sensitive application optimization problem）、以及

對延遲不敏感之應用優化問題（delay-insensitive application optimization

problem）。對於應用佈建問題，我們設計了一套演算法，他可以在多

項式時間（polynomial time）內解決問題，並且有一數學證明其近似

指標（approximation factor）。對於延遲敏感之應用優化問題，我們的

演算法能在多項式時間解出最佳解並有數學證明佐證其最佳性。對於

延遲不敏感之應用優化問題，我們則有一動態規劃算法解出最佳解，

並有另ㄧ高效率啟發式算法來快速解決問題，雖然啟發式算法沒有數

學佐證，但與現存最新的其他算法比較可以有最少20%的優化。提供

這樣雲到物的連續性、複雜且大規模的平台顯然是未來的趨勢，但實

現這樣的平台是昂貴又困難的，這也正是這篇論文的價值所在。有了

我們的算法， 提供者可以更好地去預測可能需要的花費以及制定價

格，而使用者們也因為有了針對應用優化的演算法們，可以獲得更好

的服務。除此之外我們也利用智慧路燈建立了一真實平台，這樣的一

iii



個真實的平台未來除了對學術研究以及業界測試有幫助，能夠進行更

多更真實的實驗以外，更重要的是能夠加速這樣一個複雜的雲到物的

連續性平台開發。
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Abstract

The rapid growth of Internet-of-Things (IoT), Artificial Intelligence (AI),

big data, and cloud computing allow developments of next-generation ap-

plications, such as self-driving cars, wearable Augmented Reality (AR), and

intelligent surveillance cameras. These applications have strict delay, large

computing power, and diverse resources requirements, which make develop-

ers start to integrate geographically scattered resources. The resources have

diverse types, including computation, networks, storage, and sensing. They

are gathered from the cloud data centers to the end devices, which is referred

to as cloud-to-things continuum. In this thesis, we propose an intelligent

framework for the cloud-to-things continuum platform. The platform con-

sists of two actors: a provider and users. The provider is responsible for

building the platform and preparing applications, which are requested by the

users. According to different actors in the platform, we design two intelligent

components: global optimizer and application specific optimizer. They are

designed for the platform’s provider and users, respectively. The global op-

timizer is used to optimize the platform while considering different factors,

such as users’ QoS requirements, platform’s available resources, and appli-

cations’ sensor requirements. The application specific optimizer is designed

for ongoing applications running on our platform to adapt to system dynam-

ics. In order to realize the optimizers, we solve three resource allocation

problems, including application deployment problem, delay-sensitive appli-

cation optimization problem, and delay-insensitive optimization problem on

top of the cloud-to-things continuum platforms. For the application deploy-

ment problem, our solution runs in polynomial time with a mathematically

proved approximation factor. For the delay-sensitive optimization problem,

our solutions run in polynomial time and result in optimal solutions. For the

delay-insensitive problem, our dynamic programming based solution results

in optimal results under delay-tolerable environment and our efficient solu-

tion outperforms state-of-the-art algorithms by at least 20%. Providing such

complicated and large-scale cloud-to-things continuum platform is a clear

trend, but it is expensive and challenging. With our optimization algorithms,

the provider can readily estimate costs and decide prices with the given ap-

proximation factor, and the users can expect an optimal user experience with

our application specific optimizers. In addition, we are building a real testbed

by installing various resources on novel smart poles. The testbed allows re-

searchers from academia and industries to test, develop, and evaluate latest

technologies and algorithms of cloud-to-things continuum platforms.
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Chapter 1

Introduction

Internet-of-Things (IoT) and multimedia applications are popular all over the world. The

number of IoT devices is expected to reach 50.1 billion by 2020 [24]. The IoT devices

come with several sensors and actuators. The sensor data are collected through the Inter-

net and the actuators perform some actions after receiving commands over the Internet,

which makes our life easier. For example, we can connect our air conditioners to the Inter-

net and ask the air conditioner to cool our rooms on our way home. Recently, researchers

advocate combining IoT and analytics, such as the complicated Artificial Intelligence (AI)

to make the IoT devices more intelligent [3, 9, 19]. For example, if cars become IoT de-

vices with AI analytics, they can communicate among one another to realize self-driving

and avoid traffic congestions. Moreover, nowadays, people use multimedia applications

anytime and anywhere. We use multimedia applications when cooking, driving, working,

and so on. Cisco’s report predicts that video traffic alone will represent more than 80%

of the Internet traffic by 2020 [8]. Currently, these IoT and multimedia applications are

often served by cloud data centers. However, the huge amount of data generated from

the applications congests the network traffics, overloads the data centers, and leads to

very high communication costs. In addition, the cloud data centers are too far to sat-

isfy delay-sensitive applications, such as remote rendering and augmented reality ones.

Hence, we leverage a concept of fog computing to solve these problems. In this thesis,

we adopt the cloud-to-things continuum proposed by OpenFog [39] as the definition of

the fog computing. The details of the fog computing background is given in Chapter 2.

The cloud-to-things continuum integrates devices in the continuum from cloud to

things. The devices, such as data centers, routers, cellular network base stations, WiFi

access points, and personal computers are used to perform tasks in a distributed way. In

this thesis, these devices are referred to as fog devices. The heterogeneous fog devices are

placed at different locations with different capacities, e.g., end devices are closer to end

users without powerful computing power; while data centers are powerful, but far away

1



from end users. The cloud-to-things-continuum platforms allow us to run applications on

suitable fog devices. For example, for delay-sensitive multimedia applications, we can

run the applications closer to end users, such as on cellular base stations. In contrast, for

complicated or delay-insensitive applications, we can run them in powerful data centers

or distributedly run them on multiple nearby fog devices.

The cloud-to-things continuum platform has many benefits, such as delay-sensitive

application support, privacy-sensitive data protection, mobility support, and network cost

reduction. Due to these reasons, the market of fog computing is increasing. It was 20.28

million dollars in 2017 and is expected to have a ten fold increase in 2022 [14]. Many

famous companies, such as Amazon and Microsoft start to produce products based on

the concept of fog computing. For example, Amazon develops a device called AWS

Snowball Edge [5], which is meant to be placed next to its end users. The users store

their data on the device and install another product called AWS Greengrass [4] to analyze

the data before sending them to the Amazon cloud. Microsoft’s fog computing product,

named Azure IoT Edge [33], is a platform used to virtualize IoT applications and move

those virtualized applications from cloud to IoT devices. These products expand their

services by moving the existing cloud services to end devices. Moreover, in a compre-

hensive fog computing survey [139], the authors report that many studies have proved that

fog computing significantly reduces latency, network traffics, and energy consumptions.

Nonetheless, these commercial products and academic studies do not consider designing

a comprehensive framework and optimizing cloud-to-things continuum platforms, which

horizontally and vertically integrate heterogeneous fog devices.

Fog Devices

Fog Users

Fog Service

Provider

Applications

Results

S
en

d

R
eq

u
ests

Deploy

Figure 1.1: The overview of our cloud-to-things continuum platform.

In this thesis, we design an intelligent cloud-to-things continuum framework, which is
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inspired by OpenFog. From this, we solve three key resource allocation problems: (i) the

application deployment problem [105], (ii) the delay-sensitive application optimization

problem [104], and (iii) the delay-insensitive optimization [102] problem. These resource

optimization problems are formulated, solved, and evaluated in this thesis. Our cloud-

to-things continuum platforms contain two actors: providers and users, as illustrated in

Fig. 1.1. The provider manages the heterogeneous fog devices, which offer diverse re-

sources, including computation, networks, storage, and sensing to serve multiple users.

The users send requests to the fog provider to buy some applications with various QoS

targets. However, managing such a complicated platform with heterogeneous devices, di-

verse resources, and different applications used by multiple users is challenging. Hence,

in this thesis, we aim to optimally allocate the resources to serve as many users as possible

while user experiences are maximized.
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Figure 1.2: A sample usage scenario of our cloud-to-things continuum platform.

This cloud-to-things continuum platform can be used in various scenarios support-

ing diverse applications. Fig. 1.2 uses a robber as an illustrated example. The robber

lives in a city with fog devices installed everywhere, such as on street lights. Assum-

ing the robber tends to commit a crime at midnight (time). The police department (a

user) therefore sends a request to the provider to request for a sound detection applica-

tion between 22:00 to 4:00. One day, the robber fires a gun shot on a street. The fog

devices with microphones on street lights detect the unusually large volume. The sound

detection application is then deployed on nearby fog devices, which collaborate with one

another to immediately analyze the sound and notify the police as soon as possible. This

example shows a next-generation city security system, which improve citizens’ safety
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with the cloud-to-things continuum platform. The platform can also allow many novel

applications to be developed, such as wearable augmented reality, self-driving cars, and

intelligent surveillance cameras. These applications require various resources and fast

computations/communications, which can be provided by the heterogeneous fog devices.

1.1 Contributions

The contributions of this thesis are listed below:

• Framework. We extend the framework proposed by OpenFog to achieve optimiza-

tions from two points of view: the provider and users.

• Global Optimization. We design two application deployment algorithms to solve

the deployment problem in the ideal and general cloud-to-things continuum. In the

ideal setup, our algorithm gives an approximation factor; while in the general setup,

our algorithm outperforms the state-of-the-art algorithms.

• Delay-Sensitive Optimization. We design an optimal bitrate adaptation algorithm

to optimize a delay-sensitive application. We mathematically prove the optimality

and evaluate the realtimeness of the algorithm.

• Delay-Insensitive Optimization. We design an efficient and an optimal dynamic

programming based content delivery planning algorithm to optimize a delay-insensitive

application. We prove the optimality and efficiency of our algorithms by comparing

them with existing algorithms and some optimization solvers.

• Outlook. We envision and present a comprehensive ecosystem of the cloud-to-

things continuum platforms.

1.2 Organization

The organization of this thesis is given below. We report background of fog computing,

similar concepts, and a timeline of the concepts in Chapter 2. In Chapter 3, we show

the proposed intelligent framework and differentiate it from the existing framework pro-

posed by OpenFog. After describing the framework, we solve the application deployment

problem in Chapter 4, the delay-sensitive optimization problem in Chapter 5, and the

delay-insensitive optimization problem in Chapter 6. Finally, we discuss future work and

conclusion in Chapters 7 and 8, respectively.
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Chapter 2

Background

In this chapter, we introduce the background of this research area, including cloud com-

puting, wireless sensor networks, IoTs, and fog computing. We also present a timeline at

the end of this chapter to connect these similar concepts.

2.1 Cloud Computing

The concept of cloud computing is proposed by Compaq in 1996 [25] and the first large-

scale commercial cloud computing service is created by Amazon in 2006 [50]. Cloud

computing is used to efficiently utilize large-scale, integrated resources, mostly in a few

data centers [154]. More specifically, cloud computing provides on-demand resources to

multiple users, referred to as tenants. That is, the users can rent and use the resources

from cloud service providers anytime through the Internet, in order to avoid the burden of

maintaining and upgrading the hardware and software. For example, a start-up company

requires some servers to launch their services. Buying the resources from the cloud, the

start-up company does not need to: (i) buy the hardware devices, (ii) rent a space for the

devices, (iii) build a cooling system, and (iv) upgrade the devices when the devices are too

old or the size of the start-up company expands. Another example is that gamers do not

need to worry about their GPU, RAM, CPU, and disk when you want to play the latest,

and resource-intensive games, if the games run in the cloud.

Several services are provided by cloud computing, as illustrated in Fig. 2.1, which

are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) targeting different users, such as students, engineers, and companies. The

IaaS service, such as Amazon’s EC2 [2] sells their hardware resources to their customers.

The customers have to install the operating systems, build their platforms, and implement

their applications themselves. The PaaS service does not directly sell the hardware re-

sources. The cloud provider creates platforms upon the hardware resources and sells the
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platforms, such as Google App Engine [17], to the customers. Doing so, the customers

are free from building the platform, so that the customers can focus on creating their ap-

plications. About the SaaS service , it means that the cloud provider implements some

cloud applications and sell these applications, such as Google drive to the customers.

SaaS

PaaS

IaaS

Figure 2.1: The services provided by cloud computing.

However, sharing the resources among multiple tenants may harm the user experi-

ence. Due to the interference of usage patterns among different users. In order to solve

this problem, the cloud providers have to isolate the users using virtualization technolo-

gies, which is the key technology used in cloud computing. There are many virtualization

technologies, such as VMware [48], KVM [29], Xen [52], and Docker [10]. They virtual-

ize a single hardware resource to multiple virtualized resources for individual users. For

example, when a virtualization technology is used on a server with a 8-core CPU, 16 GB

RAM, and 1TB disk, we can virtualize the server into 8 virtualized devices with a 1-core

CPU, 2 GB RAM, and 128 GB disk. Hence, the server can transparently serve 8 users

while these users feel that they are served by isolated and dedicated devices. We note

that the resources of the virtualized devices are allocated according to the requirements

from users. In summary, the virtualization technologies result in many benefits, including

on-demand resource provisioning, isolation, and multi-tenant supports.

Fig. 2.2 shows different approaches, including traditional servers, virtual machines,

and containers, to share the resources. In Fig. 2.2(a), the traditional server has four com-

ponents, including infrastructure, operating system, binaries/libraries, and applications.

The infrastructure is the hardware components, such as CPU and RAM, which are man-

aged by the operating system for the applications that requires some binaries/libraries

running on the server. This approach is generally used by our personal computers and

laptops. However, it is not suitable to the cloud because of the inflexibility due to lack

of vitualization. In contrast, Fig. 2.2(b) shows the structure of virtual machines. There is

a unique component, called hypervisor, for virtualizing resources and isolating applica-

tions. As shown in this figure, on top of the hypervisor, every application (user) has its

own operating system and binaries/libraries, so that the users are isolated and protected.
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Figure 2.2: Various resource utilizing approaches: (a) traditional servers, (b) virtual ma-

chines, and (c) containers.

Comparing to virtual machines, Fig. 2.2(c) shows the containerization approach, which

replaces the hypervisor with a container engine, which is also used to virtualize resources

and isolate applications. Upon the container engine, every application has its own bina-

ries/libraries, while sharing the same operating system. It trades some isolation abilities

for lower virtualization overhead. As a approximation, every container requires less than

1 GB storage , while a virtual machine requires more than 10 GB storage. Moreover, we

can start a container in a few seconds, while starting a virtual machine needs few minutes.

Thus, we also refer to containerization as light-weight virtualization.

Leveraging the virtualization technologies, the cloud computing is mature now. Nowa-

days, there are quite a few cloud data centers places at different locations, e.g., in 2016,

Amazon has 13 data centers located in 10 countries [18]. The number of Amazon users is

300 million [1]. These worldwide users can rent the cloud services from the nearest data

centers to reduce the network latency and have better user experience. However, the users

may not always stay at the same place. He/she may travel around the world. In order

to keep the user experience, researchers start to study distributed cloud [82, 190]. The

concept of distributed cloud is to collaborate the geographically distributed resources to

improve the cloud services. For example,if a user living in Taiwan travels to America, we

can leverage the power of distributed cloud to migrate the cloud services and correspond-

ing data to the cloud data center located in America. This migration reduces the network

latency and traffic, but the cloud data centers may be owned by different cloud providers,

such as Google and Microsoft. Hence, in order to aggregate the cloud resources among

different providers, the concept of cloud federation [123] is proposed. The goal of cloud

federation is to generalize the distributed cloud to the cloud data centers owned by differ-
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ent cloud providers. Doing so, we can put all the cloud data centers into a single resource

pool to have better cloud service quality.

Comparing our cloud-to-things continuum platforms with cloud computing platforms,

cloud computing is a more centralized concept. The cloud resources are placed at the same

place, which makes the cloud providers’ life easier to manage the resources. However,

it fails to active location awareness and mobility support. Although the distributed cloud

and federate cloud partially cope with such limitations, they are still not close enough to

the users for some applications, such as game streaming and connected cars. Moreover,

cloud computing platforms do not have sensors and actuators, and thus are less suitable

for some types of applications. We note that the detailed comparisons among other similar

concepts will be summarized at the end of this chapter.

2.2 Wireless Sensor Networks and Internet of Things

Sensor Nodes with Ad-hoc Networks

Users
Gateway

Figure 2.3: A basic WSN scenario.

Leveraging sensors to build services is not a new thing. During Cold War, militaries

use acoustic sensors to build a sound surveillance system to detect underwater and surface

enemies. After Cold War, the system is used to detect some events in oceans. However,

the sensors used in the system are expensive and huge, so it is difficult to build a large-

scale system with many sensors. In order to bridge the real world and the digital world to

enrich our daily life, the Wireless Sensor Networks (WSN) is proposed [13,59] in 1980’s.

In WSN, we install multiple sensors on each node, which are small, inexpensive, and

battery equipped. Because of that, WSN nodes can be readily, randomly, and massively

distributedly anywhere to serve various applications.

These sensor nodes are usually deployed at difficult-to-access places, say in a desert,

to monitor the environments. In order to make it sustainable at a lower maintenance cost,

some sensor nodes harvest natural energy, such as solar power to charge the batteries.

In addition, the sensor nodes have wireless communication abilities to send the collected
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data back to users. Fig. 2.3 shows a basic usage scenario of WSN, which consists of

sensor nodes, a gateway, and users [184]. The data measured by the sensor nodes are

aggregated by the gateway, which then sends the data to the users. In order to aggregate

the data, the sensor nodes form an ad-hoc network to forward the measured data among

the sensor nodes and towards the gateway. Moreover, in order to reduce the transmission

data size, the sensor nodes also have data processing power to clean up useless data or

extract useful data. After aggregating the data at the gateway, the data is further interpreted

into meaningful information. This is because gateways usually have more computing

power than sensor nodes. Additionally, the gateway has stable connections to the Internet,

so the users can access the data from the gateway.

WSN realizes high scalability, high adaptability, and low cost ad-hoc networks [117].

We can easily add new or remove outdated sensor nodes. Ideally, we want to distribute

many small and cheap sensor nodes anywhere around the world to achieve high scala-

bility. The WSNs may adapt to network topologies changes , e.g., when we add new or

remove outdated sensor nodes. For example, we can densely distribute enough sensor

nodes installed air pollution sensors in our city to plot a detailed pollution map. This map

allows us to figure out the sources of pollution and clean them up. When some of the

sensor nodes are broken or new sensor nodes are added for a more detailed pollution map,

the sensors nodes can automatically adapt to the new network topology and form a new

ad-hoc networks to aggregate data. However, integrating different WSNs with different

proprietary and non-proprietary approaches turns out to be challenging [134]. For exam-

ple, in a city with three different WSNs using different protocols, including Zigbee [54],

Bluetooth, and Z-Wave [53] will need to communicate over diverse wireless protocols.

This process is tedious to integrate the sensor nodes for efficient collaboration.

To cope with the limitations, the concept of IoT [60, 156] appears. In IoT environ-

ments, the nodes are communicated through homogeneous IP networks to the Internet.

We refer these nodes as IoT devices. Because these IoT devices are connected to the

Internet, we can readily access the data collected by the IoT devices and cross reference

them among one another. The IoT devices consist of various objects, such as sensors, ac-

tuators, and embedded devices. Generally speaking, any object connected to the Internet,

such as a refrigerator is an IoT device. In addition to the networking side of difference,

another important difference between IoT and WSN is the interaction between the users

and sensor nodes/IoT devices. While the sensor nodes are responsible to collect sensor

data, the IoT devices collect the sensor data and receive commands from users or service

providers to perform some actions. For example, we can remotely ask our air conditioner

that is connected to the Internet to cool off our house before we arrive home. These IoT

devices influence our daily life. The IoT devices can collect our daily profiles and interact
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with us to improve our living quality. There are many IoT applications, such as smart

grid, smart healthcare, and smart connected cars. The data collected from the IoT devices

can be leveraged to create new applications or improve traditional applications. For ex-

ample, if cars are all connected to the Internet, drivers can share the road conditions, so

that drivers can be informed when an emergency event occurs.

The number of IoT devices is increasing and expected to be at 50.1 billion by 2020.

Such magnanimous number of IoT devices means that it generates a huge amount of data.

The data are critical and helpful to the most popular topic: Artificial Intelligence (AI). The

AI market is 7345 million dollars in 2018 and expected to be 12.5 times by 2025 [41].

Therefore, more and more researchers and companies start to bind IoT and AI together to

make the IoT applications more intelligent. Take connected cars as an example, we not

only share the road condition data, but also analyze the car trajectories in a city. These data

are sent to a remote powerful cloud data center for analysis. Based on the data, some AI

algorithms can help the government to mitigate the traffic congestion in the city. However,

the existing IoT applications collaborating with cloud data centers also suffer from some

limitations. Because the cloud data center is far away from IoT devices, it limits us to

provide delay-sensitive IoT applications. For example, we cannot send sensor data from

cars to cloud data centers to provide a collision avoidance application. Otherwise, the

drivers are bound to car accidents due to the excessive delay. This is the reason for Cisco

to propose the concept of fog computing, which will be introduced in next section.

2.3 Fog Computing

Fog computing is a new concept with a set of diverse definitions. At first, Cisco proposes

to leverage resources in between cloud and end devices. More specifically, Cisco [61]

says: ”fog computing is a highly virtualized platform that provides compute, storage, and

networking services between end devices and traditional cloud computing data centers,

typically, but not exclusively located at the edge of network.” After the term got coined,

some academic studies [101,107] generalize fog computing to include the resources from

end devices, such as personal computers and Raspberry Pis. In 2018, OpenFog [39]

consortium proposes the first fog computing standard [23] and defines fog computing as

”system-level horizontal architecture that distributes resources and services of comput-

ing, storage, control and networking anywhere along the continuum from cloud to things”.

In brief, Cisco defines the fog as a cloud close to the ground, which uses resources be-

tween end devices and cloud. After that, some studies integrate end devices into fog.

Eventually, OpenFog defines fog as a link in the cloud-to-things continuum, which verti-

cally and horizontally collaborates all devices in the cloud-to-things continuum.
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Figure 2.4: Benefits of fog computing.

Fog computing results in several benefits, such as reducing network latency, saving

network traffic cost, protecting privacy, alleviating load of data centers, and efficiently

leveraging heterogeneous devices. Taking an intelligent surveillance camera as an exam-

ple, the camera captures images and analyzes it to detect emergent events. As show in

Fig. 2.4, there are two approaches to realize it: (i) traditional cloud and (ii) fog comput-

ing approaches. In the traditional way, the captured images are sent to data centers for

analysis. However, the image size is large, which consumes nontrivial network resources.

The analysis is complicated, so sending cameras images to the data center may overload

the data center. The data center is far away from end users, and is not suitable for delay-

sensitive analysis to report emergent events. Moreover, your private images will be sent

to the public cloud. These drawbacks can be solved by fog computing. Fog computing

capitalizes nearby heterogeneous devices owned by the end users to pre-process the cap-

tured images. It first extracts features from of the images and sends the features to other

devices for further analysis. The final reports and then sent to the end users. Because the

image is pre-processed by the device owned by the end user, the original images are never

sent to the data center. Therefore, fog computing reduces the network traffics, alleviates

the load of data centers, and protects privacy. Besides, the final report is produced by

some nearby devices, so the network latency is also shortened.

Fog computing has been studied for a few years, the benefits attract many researchers

with thousands of published papers. There are six representative survey papers on fog

computing listed in Table 2.1. These surveys are classified into three categories: (i) over-

all survey, (ii) specific target surveys, and (iii) challenge and future work surveys. For

the overall survey, Perera et al. [148] introduce fog computing, ten usage scenarios, and

required functionalities of an ideal fog computing scenario. Based on the functionalities,
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Table 2.1: Fog Computing Survey

Year Authors Publications Main Focus

2017 Perera et al. [148] ACM Computing Surveys Overall Survey

2017 Ni et al. [143] IEEE Communications Surveys & Tutorials

Specific

Target

Security & Privacy
2017 Mukherjee et al. [140] IEEE Access

2018 Mouradian et al. [139] IEEE Communications Surveys & Tutorials Algorithm

2018 Mukherjee et al. [141] IEEE Communications Surveys & Tutorials Network

2018 Mahmud et al. [133] Internet of Everything (Book Chapter) Challenges and Future Work

the authors create a table to show the functionalities offered by individual papers. The

specific target surveys can be further classified into: security & privacy [140, 143], algo-

rithm [139], and network [141]. For the security & privacy [140,143], the authors list the

security & privacy issues that threat the fog computing platforms. The authors survey ex-

isting solutions to solve these issues. However, these solutions are still in early-stage, so

that the authors list open challenges of the fog computing security & privacy protection.

About the algorithms, Mouradian et al. [139] survey optimization algorithms designed

for fog computing. The authors classify the algorithms based on different considered re-

source types and applications. Moreover, the authors propose six criteria to evaluate the

fog-computing literatures. To design the fog networks, Mukherjee et al. [141] classify the

literatures into three kinds of fog networking architectures. Moreover, the authors also

survey mathematical models, such as latency models designed for fog computing. For the

challenges of fog computing, Mahmud et al. [133] propose six representative challenges

to classify the literatures. Their survey highlight the major challenges, and they also point

out multiple future research directions.

Table 2.2 compares many concepts similar to fog computing, including cloud [25],

distributed cloud [82], Cyber Foraging [157,161], Cloudlet [170], and Mobile Edge Com-

puting (MEC) [34]. We use four features: low latency, location awareness & mobility sup-

port, virtualization support, and high heterogeneity to differentiate them. Starting from

the cloud computing, the cloud is composed by many centralized servers for virtualized

resources. These servers however are far away from users, which lead to long network

latency. Moreover, because the cloud places servers together, it is not location and mo-

bility friendly. Besides, the devices located at different places may not be readily added

to a cloud data center. Therefore, the heterogeneity of cloud is low. The cloud does not

offer many types of resources. In summary, cloud only supports virtualization while other

features are missing. Some researchers start to decentralize cloud to create distributed

cloud. The distributed cloud data centers are placed at different locations, which collab-

orate with one another to reduce the latency, increase location awareness, and support

mobility. However, it is still not close enough to the users to perfectly achieve low la-
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Table 2.2: Fog Computing and Similar Concepts

Low Latency
Location Awareness

and Mobility Support
Virtualization Support High Heterogeneity

Cloud [154] X X
√

X

Distributed Cloud [82] △ △ √
X

Cyber Foraging [161]
√ △ X △

Cloudlet [170] and MEC [34]
√ √ √ △

Fog [61]
√ √ √ √

tency and provide location and mobility support. In order to solve the problems, Cyber

Foraging is proposed to offload resource-limited mobile devices’ applications to nearby

servers. However, Cyber Foraging does not consider virtualization, which increase diffi-

culty to realize location awareness and mobility support. On the other hand, Cloudlet and

Mobile Edge Computing (MEC) generalize the concept of Cyber Foraging and support

virtualization. The difference between Cloudlet and MEC are the target devices running

the mobile applications. Cloudlet runs the mobile applications on servers nearby end

users over WiFi, while MEC runs the mobile applications on the servers at cellular base

stations over cellular networks. For fog computing, it integrates all the devices in cloud-

to-things continuum over diverse communication technologies. It is feasible and allows

heterogeneous devices to join the cloud-to-things continuum platforms. This leads to

higher flexibility and scalability to improve many existing applications and develop new

applications. Moreover, some researchers, such as Mahmud et al. [133] classify Cloudlet

and MEC to be subsets of fog computing.
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Figure 2.5: Timeline of the concepts relevant to cloud-to-things continuum.
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2.4 Timeline

Fig. 2.5 shows a timeline of the aforementioned concepts. The WSN is proposed in

1980, which deploys many sensor nodes communicating via ad-hoc wireless networks

to monitor our environments. In 1985, the IoT is proposed to connect various kinds of

objects to the Internet to enable novel applications for enriching our daily life. In 1996, the

cloud computing is proposed to aggregate resources from many servers to provide services

through the Internet, e.g., offloading sensor data from IoT devices to the cloud for further

analysis. In 2001, in order to solve the high network latency caused by far away cloud data

centers, the Cyber Foraging is proposed to offload mobile applications to nearby servers.

In 2008, cloud researchers propose the concept of distributed cloud for lower network

latency. In 2009, the Cloudlet is proposed to generalize Cyber Foraging and serve mobile

users as multiple tenants using virtualization technologies. The mobile users offload their

applications to one-hop away Cloudlet servers through WiFi. In 2012, the fog computing

is proposed to reduce the network latency of IoT applications by leveraging the edge

devices. In 2014, MEC is proposed to utilize the servers placed at cellular base stations

to run the mobile applications and improve mobile user experience. In 2017, the cloud-

to-things continuum is proposed to bridge all the devices from cloud to things to make a

more generalized platform supporting vertically and horizontally collaborations. In this

thesis, we adopt, optimize, and realize the concept of cloud-to-things continuum.
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Chapter 3

Cloud-to-Things Continuum

Framework

In this chapter, we introduce an existing framework designed for cloud-to-things contin-

uum platforms, analyze its limitations, propose a more intelligent framework and describe

the optimization problems that need to be solved in it.

3.1 Potential and Limitations of Existing Framework

Virtualization

Computing Networks Storage Sensors

Hardware Platform Infrastructure

Sensors and Actuators

Node Management (OOB)

Node Management (IB)

Hardware Security

Protocol Abstraction

Application Support

Application Service

Figure 3.1: A cloud-to-things continuum framework proposed by OpenFog.

Fig. 3.1 shows a cloud-to-things continuum framework [40] proposed by OpenFog.

This framework is the first fog computing standard accepted by IEEE Standards Associ-

ation [23]. There are ten layers in the framework. To introduce the framework, let us

imagine that we would like to add a fog device to a cloud-to-things continuum platform.

From the bottom layer to the top layer, the fog device is installed with some sensors, such

as PM 2.5 sensors and actuators. These sensors and actuators need protocols to facilitate
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communications. The device and the installed sensors/actuators are put in a hardware

platform infrastructure, such as a chassis to protect them. Moreover, the device provides

diverse resources, such as computing, networking, and storage. Before adding the devices

to the platform, we need a hardware security module to authorize the device. After adding

the device to our platform, we virtualize the resources, keep track of the device health, and

monitor the resource usages through the management layers, including the In-Band (IB)

node management and the Out-of-Band (OOB) node management layers. We then lever-

age the application support layer, which provides some libraries, such as OpenCV [38]

and TensorFlow [45] to implement applications. The applications are then virtualized for

being deployed to the fog device. Although OpenFog is the first fog standard, it does not

contain intelligent components for optimization.

3.2 Proposed Intelligent Framework

Global Optimizer

Application Specific 

Optimizer

Virtualization/

Containerization

Application

Fog Controller

Virtualization/Containerization Management

Computing Networks Storage Sensors

Hardware Security Module

Fog Device

V/C V/C

Management

VM/Container

Figure 3.2: An intelligent cloud-to-thing continuum framework.

We enhance the Openfog’s framework shown in Fig. 3.1 into the one shown in Fig. 3.2.

There are two enhancements in the new framework: (i) a client-server architecture and

(ii) intelligent optimization components (the yellow components). In the client-server ar-

chitecture, we add a fog controller to manage fog devices that are identified by hardware

security modules and responsible for running applications. We note that the fog controller

is selected from fog devices when the scale of our platform goes larger, we can select mul-

tiple fog controllers to manage our platform with a hierarchical architecture. At the fog

controller side, the fog providers prepare various applications that can be requested by the

users. These applications are virtualized by the virtualization/containerization technolo-
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gies, such as Docker [10], KVM [29], and VMware [48]. The virtualization/containerization

technologies help us reserve resources and isolate different running applications, in order

to achieve multi-tenancy support. When users request for applications, the fog controller

deploys the applications through the management components installed on the fog devices

and controllers. The virtualization/containerization component virtualizes the hardware

resources, including computing, networking, storage, and sensing to serve the applica-

tions. The applications virtualized by the fog controller are launched as VMs or containers

at the fog devices.

So far, we know how to request for an application, store the applications, deploy

the applications, support multi-tenancy, and protect the security. In order to optimize

the cloud-to-things continuum platforms, we add two components: global optimizer and

application specific optimizer. The global optimizer is triggered before deploying the

received requests to make deployment decisions based on required resources of the re-

quests and available resources of the clients. The deployment decisions help the provider

to serve as many users as possible for higher profits. After deploying the applications, in

order to adapt to system dynamics and meet Quality-of-Service (QoS) requirements, the

application specific optimizer optimizes the running applications by the perspectives of

individual users.

3.3 Key Resource Allocation Problems

Application 

Deployment

Problem

Application Specific Optimizer

Delay-Insensitive

Application

Optimization 

Problem 

Delay-Sensitive

Application

Optimization 

Problem

Global Optimizer

Goal: Serve as many users as possible

Provider

Application: Remote Rendering

Goal: Reduce latency

Application: Content Delivery

Goal: Maximize delivered information

Users

Various Requested 

Applications

Ongoing Deployed 

Applications

Figure 3.3: Three critical research problems solved in this thesis for optimizing resource

allocation in cloud-to-things continuum platforms.

Fig. 3.3, In this thesis, we solve three resource allocation problems to realize the global

optimizer (designed for providers) and application specific optimizer (designed for users)

17



to complete our intelligent cloud-to-things continuum framework. Fig. 3.3 illustrates the

three resource allocation problems. In particular, we design an application deployment

algorithm in Chapter 4, which solves the application deployment problem to help the ser-

vice provide serve as many users as possible. The algorithm takes available resources

of fog devices, QoS requirements of fog users, resource requirements of requested appli-

cations, and location requirements into considerations to carefully make the deployment

decisions. After deploying the applications requested by the users, to adapt to system

dynamics, we design an application specific optimizer to optimize the running applica-

tions and maximize the user experience. We classify the applications into two categories:

(i) delay-sensitive and (ii) delay-insensitive applications. In this thesis, we select game

streaming and multimedia content delivery as the representative applications for delay-

sensitive and delay-insensitive ones, respectively, and optimize them. The details usage

scenarios of these applications running on our cloud-to-things continuum platform and

the solutions of the optimization problems are given in Chapters 5 and 6.
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Chapter 4

Global Optimization

Our cloud-to-things continuum platform integrates heterogeneous fog devices located at

different places to serve various applications, such as complicated wearable augmented

reality, delay-sensitive game streaming, and delay-insensitive content delivery applica-

tions. However, such complicated platform also increases the difficulty to globally op-

timize our platform. Especially for the provider, it is challenging to make application

deployment decisions while considering so many factors, such as different application re-

source requirements, user-specified QoS targets, heterogeneous resources, and so on. In

this chapter, our goal is to help the provider serve as many users as possible by optimizing

application deployment decisions. We note that in this chapter, we take IoT analytics as

our representative applications because deploying IoT analytics is more difficult compar-

ing to other applications. Deploying IoT analytics needs to consider many requirements,

such as locations, sensors, and large amount of resources while serving other applications,

we only need to take few factors into considerations. Hence, in this chapter we refer to

application deployments as analytics deployments. Moreover, in order to deploy the com-

plicated analytics on some resource-limited fog devices, we split the analytics into smaller

operators and distributedly deploy the analytics on multiple fog devices.

Fig. 4.1 illustrates an usage scenario of deploying various applications. In the fig-

ure, the fog devices are distributed everywhere in cloud data centers, cars, home, and

street light poles. The provider use four resource types, including computing, network-

ing, storage, and sensing to serve three applications: (i) congestion prevention, (ii) game

streaming, and (iii) home security. The congestion prevention is split into three operators

and deployed in cars and poles to collaborate with one another to prevent traffic jams. The

game streaming application is deployed on a cellular base station to allow gamer to play

complicated games using low-end devices with very low delay. The home security appli-

cation analyzes images captured by the surveillance camera installed on street lights to

protect homes. This application is split into two operators. One recursively updates home

19



Provider

Congestion

Prevention

(operator II)

i

Congestion

Prevention

(operator I)

Congestion

Prevention

(operator III)

Applications
Home Security

(operator I)

Home Security

(operator II)
Game 

Streaming

Figure 4.1: A usage scenario of deploying various applications.

security analytics models (on the cloud) and another uses the models to detect emergency

events.

The organization of this chapter is given below: we survey existing application (ana-

lytics) deployment and other similar deployment algorithms in Sec. 4.1, describe critical

components that are required to solve the application deployment problem in Sec. 4.2,

write problem statements of the application deployment problem and design our solutions

in Sec. 4.3, evaluate our proposed algorithms in Secs. 4.4 and 4.5, and report discussions

in Sec. 4.6.

4.1 Related Work

In this section, we introduce similar distributed deployment problems at different areas,

including Cloud, Fog, Virtual Network Functions (VNF), and network embedding.

4.1.1 Distributed Deployment Problems

Our application (analytics) deployment problem is similar to several distributed deploy-

ment problems, such as virtual machine placement problems [151], network embedding

problems [84], and Virtual Network Function (VNF) placement problems [96,127], which

have been considered in different research areas. Based on how stringent the constraints

are on nodes (devices) and links (networks), we place the four problem categories on

the same axis in Fig. 4.2. The virtual machine placement problem in the cloud focuses
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Figure 4.2: Different distributed deployment problems.

on the node constraints, such as CPU power, while assuming links are oversubscribed.

The network embedding problem focuses on link constraints, because network embed-

ding virtualizes network resources for different customers. Between nodes and links, the

VNF placement problem considers some node constraints, but pays more attention on link

constraints. This is because the network functions have strict network requirements. Dif-

ferent from theses three problems [84, 96, 127, 151], our analytics deployment problem

considers some link constraints, but emphasizes more on node constraints. This is be-

cause processing power of resource-limited fog devices close to data sources allows us to

process the data sooner and reduce the network traffic more. Because of such difference,

in the next section, we only survey the literature related to analytics deployment problems.

4.1.2 Application (Analytics) Deployment Problems

Sensor Constraints. When solving the analytics deployment problem, the sensor avail-

ability of fog devices has to be considered. There are Wireless Sensor Networks (WSNs)

studies [58, 71, 130, 131, 147, 155, 185] that focus on sensor availability without link and

node constraints. More specifically, most authors deploy operators on tree-structured

graphs with different objectives. Tziritas et al. [168] start to consider node constraints

in WSNs. The authors write the problem as an Integer Linear Programing (ILP) prob-

lem, in order to minimize network overhead. The problem is solved by a migration-based

heuristic algorithm.

Node Constraints. There are several studies [68,72,114,142,158,159,165,166,186]

that only take node constraints into considerations, when solving the analytics deploy-

ment problem. Huang et al. [114] and Chatzistergiou et al. [72] only consider CPU

constraints. Huang et al. [114] propose a heuristic algorithm, which keeps finding local

optimal solutions to make deployment decisions with minimum network usage. Chatzis-

tergiou et al. [72] formulate an ILP problem, and solve it using a heuristic algorithm.

Their algorithm sorts the devices by the communication overhead divided by processing
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power to minimize the network communication cost. Schilling et al. [159], Cardellini et

al. [68], Skarlat et al. [166], Saurez et al. [158], and Skarlat et al. [165] consider CPU and

RAM constraints. Schilling et al. [159] propose a migration-based heuristic algorithm to

minimize the network usages. Cardellini et al. [68] propose a 4-step heuristic algorithm

to minimize cost. Their 4-dimensional model considers network latencies, physical dis-

tances, device utilizations, and device availability. Skarlat et al. [166] propose a heuristic

algorithm, which sorts the devices by latency and deploys each request to minimize net-

work latency. Saurez et al. [158] propose a heuristic algorithm, which first checks the

RAM and CPU constraints for feasible solutions and then sorts the devices by distance

to make deployment decisions for short network latency. Skarlat et al. [165] also write

the analytics deployment problem as an ILP problem. The authors use CPLEX [21] to

optimally solve the problem for maximal total utilization. Zeng et al. [186] and Naas et

al. [142] consider storage constraints of the problem. Zeng et al. [186] write the problem

as a Mixed Integer Non-Linear Programming (MINLP) problem. The authors propose a

three-stage algorithm, which optimizes I/O and computation time separately using linear

relaxation in the first two stages. The third stage integrates the results from the first two

stages for the final solutions to minimize I/O transmission and computation time. Naas et

al. [142] write the problem as an ILP problem. The authors use CPLEX [21] to optimally

solve the problem for minimal network latency.

Node and Link Constraints. There are a few papers [67,69,167] considering analyt-

ics deployment problems with node and link constraints at the same time. These studies

consider CPU, RAM, and bandwidth constraints when formulating the problem. Taneja

et al. [167] try to minimize network latency. The authors propose a heuristic algorithm,

which sorts the devices by the device constraints and checks the device constraints to cre-

ate feasible deployment decisions. Cardellini et al. [67, 69] write the problem as an ILP

problem, which has a weighted sum objective function to capture multiple objectives at

the same time. The authors use CPLEX [21] with 500 second limited running time to

solve the problem.

Summary. In summary, the work in the literature usually formulates similar deploy-

ments problems as an ILP problem and designs heuristic algorithms or use commercial

solvers, such as CPLEX [21] to solve it. In this thesis, we propose an algorithm to solve

the problem in the ideal cloud-to-things continuum, with a performance guarantee in the

format of an approximation factor. Moreover, our formulation and solution for the gen-

eralized cloud-to-things continuum carefully considers both node and link constraints.

Compared to our work, only a couple of previous studies [67, 69, 167] simultaneously

take node and link constraints into considerations and split complicated analytics into

smaller operators for deployment. Hence, we chose these studies as baseline algorithms
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Figure 4.3: The global optimizer implementation in our proposed cloud-to-things contin-

uum platform.

when evaluating our proposed algorithms in Sec. 4.5. Last, these studies make a strong as-

sumption that the required resources of operators are known without conducting detailed

measurements nor modeling resource consumptions. In contrast, we model the required

resources of operators and the overhead caused by virtualization.

4.2 System Overview

In this section, we describe the implementation of our global optimizer in the cloud-to-

things continuum platform, as illustrated in Fig. 4.3, and report details of major compo-

nents bellow.

• Device manager. We implement a device manager to collect crucial device status,

including: (i) the resource utilizations, e.g., CPU, RAM, and storage usages, (ii)

the device locations, e.g., GPS readings, (iii) sensor availability and capability, e.g.,

existence of depth cameras at VGA resolution, and (iv) running analytics. While

monitoring the running analytics, the device manager also collects the consumed

resources, such as CPU and RAM of the analytics.

• System models. The system models are derived through real experiments, which

use the device manager to collect required resources of analytics under different

QoS levels (e.g., sampling rate and recognition accuracy). According to different
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analytics and required QoS levels as inputs, the derived models can predict the

expected resources. The details of our system models are reported in Sec. 4.4.

• Analytics deployment algorithms. The algorithms solves the core research prob-

lem of this chapter. They consider the required resources from the system models

and fog device status, such as resource capacities from the device manager to make

decisions to deploy which analytics on which fog devices for all requests. The de-

tails of the analytics deployment problem, our proposed algorithms, and proofs are

reported in Sec. 4.3.

• TensorFlow-enabled container. Because of the deployment decisions, the ana-

lytics will be dynamically deployed to fog devices. Hence, we containerize the

analytics and store them as images in image pools. These images are initially cre-

ated and stored in fog controller side’s image pool. The images can be dynamically

pushed to any fog devices and launched as running containerized analytics. We then

store the images in the corresponding fog devices’ image pool.

Containers are light-weight virtual machines suitable to run on heterogeneous plat-

form because the required resources to launch a container is much smaller com-

pared to traditional virtual machines, such as KVM [29]. Moreover, in such hetero-

geneous cloud-to-things platform, some of fog devices are resource limited. The

light-weight containers have very low overhead compared to traditional virtual ma-

chine and it can quickly (in few seconds) launch a container even on a low-end

embedded device, such as Raspberry Pi. There are different kinds of container

technologies, such as Docker [10] and LXC [32]. In this thesis, we adopt Docker

as our container technology.

We include TensorFlow [45] and its analytics libraries in Docker containers [10].

The TensorFlow provides many analytic libraries, which makes our life easier to im-

plement some complicated analytics. Besides, TensorFlow has a graph-based pro-

gramming style, which helps us easily split the complicated analytics into smaller

operators.

• Deployment manager We build a deployment manager reading the deployment

decisions to remotely launch specific images on chosen fog devices. If the fog

devices’ image pool have specific images, our deployment manager only sends

launching command without pushing images from server to fog devices and sup-

ports other management tasks, such as killing, restarting, and migrating containers.

There are many existing tools to help us manage Dockers, such as Kubernetes [28],

SaltStack [42], and Docker Swarm [11]. In this thesis, we extend Kubernetes to
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Figure 4.4: A sample analytics deployment in the cloud-to-things continuum platform.

implement our deployment manager.

4.3 Application (Analytics) Deployment Problem

In this section, we introduce our analytics deployment problem. We formulate the prob-

lem into two problem formulations, design two algorithms to solve them, and analyze

their complexity and optimality. We note that in this chapter, we focus on complicated

intelligent IoT analytics as target applications as mentioned in Chapter 4.

4.3.1 Problem-1: Comprehensive Formulation

Fig. 4.4 illustrates a sample analytics deployment in the cloud-to-things continuum plat-

form. As shown in this figure, we split each IoT analytics into a few operators and create a

Directed Acyclic Graph (DAG) of operators. When deploying operators, we consider the

required edge resources in operator graphs and the link capacities between devices. Fur-

thermore, we allow users to request for any sensors at any locations, and the fog service

provider deploys the analytics across all devices that meet such requirements. In partic-

ular, the goal is to maximize the number of the admitted requests that satisfy the three

requirements: (i) target QoS levels, (ii) required sensors and locations, and (iii) available

resources.

Notations. Table 6.2 summarizes the symbols used in this chapter. Let Q be the set

of requests. We write the target QoS levels of request q as sq, for any q ∈ Q. We let V

be the set of fog devices and U be the set of resource types. The resource capacity of

resource type u is represented as Rk,u for any device k ∈ V and resource type u ∈ U.

We let G =<V,E> be the device graph, where E is a set of the links. Each physical

25



Table 4.1: Symbols Used Throughout this Chapter

Sym. Description

Q Set of all requests

sq Target QoS of request q

U Set of considered resource types, such {CPU, RAM, . . . }
V Set of fog devices

Vq Set of fog devices that can host request q

Rk,u Capacity of resource u of device k

G Device graph <V,E>

Vq,i Set of fog devices that can host operator i of request q

E Set of links

Ĝq Operator graph <V̂q, Êq> of IoT analytics of request q

V̂q Set of operators

Êq Set of edges

Bl Capacity of link l

T(k,k′),l Indicator of link l in on path from devices k to k′

Jq,i,i′ Indicator of operator i is parent of operator i′

F (·) Required resources of operators

F̄ (·) Required resources of edges among operators

link l has its capacity Bl. We use T(k,k′),l to describe whether link l is on the path from

devices k to k′. To capture the sensor and location requirements for each operator, we

write the available devices set as Vq,i for deploying operator i of request q. The path

between two fog devices can be computed by any existing routing algorithms. We adopt

the shortest paths if not otherwise specified.

We let Ĝq =<V̂q, Êq> be the operator graph of the IoT analytics requested by q, for

all q ∈ Q. V̂q is the operator set and Êq is the edge set. F (·) and F̄ (·) denote system

models for predicting the required resources of the operators and edges among operators,

respectively. We concertize the system models using our testbed in Sec. 4.4. We note

that values of F (·), F̄ (·) and Rk,u are normalized to total resources of our fog computing

platform and thus are between 0% and 100%. For example, if a fog device has 8 GB RAM

and the total amount of RAM of our fog computing platform is 80 GB, the RAM resource

of the fog device is 10%. In order to represent the parent-child relationship between any

two operators i, i′, we use Jq,i,i′ . More specifically, Jq,i,i′ = 1 iff operator i is the parent

operator of i′.

Lemma 1 (Hardness). The Analytics Deployment Problem-1 is NP-hard.

Proof. The Analytics Deployment Problem-1 can be reduced from the NP-hard Multiple

Knapsack Problem (MKP). The MKP problem puts as many objects as possible into mul-

tiple knapsacks with diverse capacities. If we let |V̂q| = 1, |U| = 1, and Bl = ∞, we can

map knapsacks to fog devices and objects to requests without any network constraints.
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Moreover, the value of each request is 1 and the weight is Rk. In this way, we reduce the

MKP problem to our analytics deployment Problem-1 in polynomial time. The rest of the

proof is straightforward.

Formulation. We formulate Problem-1 into an ILP problem as follows:

max
∑

q∈Q

pq (4.1a)

st :zq =
∑

i∈V̂q

∑

k∈Vq,i

xq,i,k/|V̂q| ∀q ∈ Q; (4.1b)

zq − 1 < pq ≤ zq ∀q ∈ Q; (4.1c)
∑

k∈Vq,i

xq,i,k ≤ 1 ∀q ∈ Q, i ∈ V̂q; (4.1d)

∑

q∈Q

∑

i∈V̂q

Ḟ (·)xq,i,k ≤ Rk,u

∀k ∈ Vi, u ∈ U;

(4.1e)

∑

q∈Q

∑

i∈V̂q

∑

i′∈V̂q

∑

k∈Vq,i

∑

k′∈Vq,i′

yq,(i,i′),(k,k′)

Jq,i,i′T(k,k′),lF̄ (·) ≤ Bl ∀l ∈ E;

(4.1f)

xq,i,k =
∑

k′∈Vq,i′

yq,(i,i′),(k,k′)

∀q ∈ Q, i ∈ V̂q, i
′ ∈ V̂q, k ∈ Vq,i;

(4.1g)

xq,i′,k′ =
∑

k∈Vq,i

yq,(i,i′),(k,k′)

∀q ∈ Q, i ∈ V̂q, i
′ ∈ V̂qk

′ ∈ Vq,i;

(4.1h)

pq, xq,i,k ∈ {0, 1} ∀q ∈ Q, i ∈ V̂q, k ∈ Vq,i. (4.1i)

In this formulation, xq,i,k is the decision variable, where xq,i,k = 1 iff operator i of

request q is deployed on device k. The objective function in Eq. (4.1a) counts the number

of satisfied requests, where an intermediate variable pq = 1 iff request q is satisfied.

Eqs. (4.1b) and (4.1c) make sure that when request q is satisfied, all the operators of

request q are deployed. Eq. (4.1d) makes sure that each operator is only deployed once.

Eq. (4.1e) ensures that the required resources of the deployed operators do not exceed

the resource capacities of individual devices. Eq. (4.1f) makes sure that the required

bandwidth of the deployed operators does not exceed the link capacity. Eqs. (4.1g) and

(4.1h) define an intermediate variable yq,(i,i′),(k,k′), which is 1 iff edge (i, i′) of request q is

mapped to physical path (k, k′).

Eq. (4.1f) is the most critical part in this formulation. Different from state-of-the-

art articles [67, 69, 167], which also formulate the analytics deployment problem with
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splitable analytics, our formulation carefully considers network constraints of every link.

More specifically, Taneja et al. [167] considers network constraints of each network inter-

faces installed on fog devices and Cardellini et al. [67, 69] considers network constraints

of each paths. These approaches may waste network resources or overload some network

links.

Inputs: Request info, such as target QoS sq, analytics info, such as operator graphs Ĝa,

device info, such as device resource capacity Rk,u, and link capacity Bl.

Output: The deployment decision xq,i,k.

1: let Ĉq be the scarcest resource u′ required by q

2: sort Q by Ĉq in asc. order

3: for q ∈ Q do

4: let M to store pairs of devices, including source device k̂ and destination device ǩ, which

are feasible to launch source î and destination operators ǐ of request q, respectively

5: sort M on number of hops from k̂ to ǩ in asc. order

6: sort Pairs in M with the same number of hops on network latency in asc. order

7: for (k̂, ǩ) ∈ M do

8: let xq,̂i,k̂ = 1

9: let xq,̌i,ǩ = 1

10: let W be all the deployed operators

11: add î and ǐ to W

12: while W is not empty do

13: pop an operator i′ from W

14: let N′
i be the child operators of i′

15: let H be hop limit

16: let Dh be devices that are h hops to the device running operator i′

17: sort Dh on the number of hops to ǩ

18: for h = 0, 1, 2, . . . , H do

19: for i ∈ Ni′ do

20: for k ∈ Dh do

21: if Eqs. (4.1d) to (4.1f) are satisfied then

22: let xq,i,k = 1

23: add i to W

24: if operators of request q are not all deployed then

25: clear all deployed operator of request q

Figure 4.5: The pseudocode of our proposed SSE algorithm.

Our Proposed Algorithm and Analysis. Since Problem-1 is NP-hard, we propose

an efficient greedy algorithm based on three intuitions (steps):
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• Scarcest resource first. Because requests demand for different resource types at

the same time, the scarcest resource becomes the limiting factor. To satisfy as

many requests as possible, we identify the scarcest resource (after normalization),

sort requests in the ascending order on the scarcest resource, and then consider the

requests consuming less scarcest resource earlier. The result of this step is a sorted

set of undeployed requests.

• Shortest path first. For each request, we consider all pairs of feasible fog de-

vices for the source and destination operators. Because shorter paths generally

lead to lower overall network loads, shorter end-to-end latencies, and less process-

ing/forwarding overhead, we select the pair of fog devices with the least number of

hops between the source and destination operators. To break ties, we select the pair

with shortest network latency. The result of this step is the deployment decisions of

the source and destination operators.

• Early feature extraction. Upon the source and destination operators being de-

ployed, we start to deploy the remaining operators. Since the operators in typi-

cal IoT analytics extract increasingly higher-level features that are generally more

compact, deploying the operators closer to the parent operator reduces the network

workload and the transfer time. We employ a system parameterH and only consider

deploying a child operator on fog devices within H hops from its parent operator.

H is typically a small constant, which allows us to reduce our time complexity. The

results of this step are the deployment decisions of operators other than the source

and destination ones.

We refer to our proposed algorithm as SSE algorithm, after the initials of the three

intuitions. Fig. 6.5 gives its pseudocode. Lines 1–2 implement the first intuition, i.e.,

sorting the requests in Q by the scarcest resource type. Lines 4–14 realize the second

intuition, where we sort the pairs of source and destination devices by their path lengths.

Lines 15–20 implement the third intuition to consider the fog devices that are closer to

source device first. Lines 21–22 check the constraints and make the final decisions.

Lemma 2 (Correctness and Time Complexity). SSE algorithm gives a feasible solution

in polynomial time.

Proof. The correctness is ensured by lines 20–21. For complexity, we first sort the re-

quests Q by the scarcest resource type in lines 1–2, which has a complexity ofO(|Q| log |Q|).
The for-loop starting from lines 3 to 19 goes through all the requests. For each request

q, we go through all possible pairs of devices sorted by the number of hops for deploy-

ing the source and destination operators in lines 4–6. We then create W to store and
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go through all the operators i′ ∈ W until W is empty in lines 9–11. In lines 13–22,

We create Dh to store fog devices and N′
i to store child operators of i′. We then sort

Dh by the number of hops to their destination devices and go through the sorted de-

vices and child operators to deploy the operators without violating Eqs. (4.1d) to (4.1f).

We let K = |V|, I = maxa∈A(|V̂a|), and P = |Q|. The complexity of lines 3–19 is

O(P (K2 logK2 +K2I(K logK +HIK))), which dominates the complexity of our al-

gorithm and is polynomial. We notice that I (the maximal number of operators in each

request) and H (the hop limit) are typically bounded integers. Under this assumption, the

time complexity can be written as O(PK3 logK + PK2 logK2).

4.3.2 Problem-2: Tractable Formulation

In Sec. 4.3.1, we propose an efficient SSE algorithm to solve the Analytics Deployment

Problem-1. However, Problem-1 is too detailed for any performance guarantee. In this

section, we consider a more tractable problem, which is referred to as Analytics Deploy-

ment Problem-2. This problem employs the following four approaches: (i) grid maps,

(ii) link constraint transformation, (iii) proportional resource levels, and (iv) fine-grained

operators to gain more tractability. The grid maps ask each fog user to select a grid that

contains his/her requested locations and sensors when submitting every request. By doing

so, the location/sensor constraints are replaced by the grid map. The link constraint trans-

formation associates the link constraints with the node constraints; in particular, each node

gets an actual network constraint from the adjacent link with the least network resource.

The proportional resource levels refer to fog devices scale proportionally in all resource

types. For example, a lower-end fog device may have a 2-core CPU with 2 GB RAM, and

a higher-end one may have a 4-core CPU with 4 GB RAM. Last, the fine-grained opera-

tors means that each IoT analytics can be split into many operators, and thus can be split

into arbitrary small subsets of operators. We note that there exist several technologies en-

abling fine-grained decomposition, including distributed TensorFlow [55], method-level

offloading [90, 122], and stream processing [97].

Lemma 3 (Hardness). The Analytics Deployment Problem-2 is NP-hard.

Proof. We reduce the NP-hard Multi-Dimensional Knapsack Problem (MDKP) to our

Analytics Deployment Problem-2. The MDKP problem puts as many objects as possible

into a single knapsack with multiple types of constraints, such as weights and capacities.

If we put a single fog device in each grid, the MDKP problem can be readily reduced to

our Analytics Deployment Problem-2 in polynomial time.
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Inputs: Request info, such as target QoS sq, and device info, such as resource capacity

Rk,u.

Output: The deployment decision xq,k.

1: let Mq is the total required resources of request q

2: sort Q by Mq in asc. order

3: for q ∈ Q do

4: let cu as total required resources u of deployed operators of q

5: for k ∈ Vq do

6: let Remaining u resource of device k is R′
k,u

7: for u ∈ U do

8: if Ḟ (q, u, · · · )− cu is more than R′
k,u then

9: let xq,k = R′
k,u/(Ḟ (q, u, · · · ))

10: let cu = cu + Ḟ (q, u, · · · )
11: go to Line 5

12: else

13: let xq,k = (Ḟ (q, u, · · · )− cu)/Ḟ (q, u, · · · )
14: for u ∈ U do

15: if cu 6= Ḟ (q, u, · · · ) then

16: remove all the deployed operator of q

Figure 4.6: The pseudocode of our APX algorithm.

Formulation. We formulate our Problem-2 as the following Integer Linear Program-

ming (ILP) problem:

max
∑

q∈Q

pq (4.2a)

st :zq =
∑

k∈Vq

xq,k ∀q ∈ Q; (4.2b)

zq − 1 < pq ≤ zq ∀q ∈ Q; (4.2c)

0 ≤ zq ≤ 1 ∀q ∈ Q; (4.2d)
∑

q∈Q

F (q, u, · · · )xq,k ≤ Rk,u ∀k ∈ Vq, u ∈ U; (4.2e)

0 ≤ xq,k ≤ 1 ∀q ∈ Q, k ∈ Vq; (4.2f)

pq ∈ Z ∀q ∈ Q. (4.2g)

In this formulation, xq,k is our decision variable between 0 and 1. Say, if xq,1 = 0.4 and

xq,2 = 0.6, it means that we split request q into two operators, which contain 40% and 60%

of its analytics, respectively. Moreover, we run them on devices 1 and 2. The objective

function in Eq. (6.1a) counts the number of satisfied requests, where the intermediate

variable pq = 1 iff request q is satisfied. A request is satisfied iff: (i) the decomposed
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request are fully deployed, which is checked by Eqs. (4.2b)–(4.2d) and (ii) the required

resources of the request is reserved and the required resources of the deployed requests

do not exceed the available resources of the fog devices, which is ensured by Eq. (4.2e).

Approximation Algorithm. We propose an APproXimation (APX) algorithm with

a 1
|U|

approximation factor in the following. Its pseudocode and complexity analysis

are given in Fig. 4.6 and Lemma 4, respectively. Our APX algorithm iteratively per-

forms 3 steps: (i) request selection, (ii) fog device selection, and (iii) request decompo-

sition. In the first step, we select a request q consuming the least total resources, i.e.,

minq∈Q

∑

u∈U F (q, u, · · · ). We then select a fog device by round robin at the location

of the request, to run this IoT analytics. Finally, when the IoT analytics is not satisfied

by a single fog device, we decompose the IoT analytics into two operators, where one of

them is the largest possible operator. That operator is then run on the selected device. The

remaining portion of the IoT analytics is regarded as a new request. We repeat these three

steps until all the requests are deployed or the remaining resources of fog devices cannot

satisfy any additional request.

Lemma 4 (Time Complexity). Our APX algorithm runs in polynomial time.

Proof. We first sort the requests by line 2, which has complexity O(|Q| log |Q|). The for-

loop starting from lines 3, 5, and 7 go through all requests, devices, and types of resources,

and have a total complexity O(|Q||V||U|). The complexity is therefore O(|Q|(|V||U|+
log |Q|)). Hence, the APX algorithm runs in polynomial time.

Approximation Factor. To set up the stage, we first design another algorithm that

results in no fewer deployed requests than the optimal results, but may violate some con-

straints (and thus are infeasible). We refer to this algorithm as OPT’. This algorithm shares

the same intuitions with our APX algorithm, but has two major differences. First OPT’

sums up each resource type of all the fog devices in the same grid. Second, OPT’ further

sums up all the resource types of a grid into a single number. For example, a request

requires 30% CPU and 10% RAM, which results in 40% resources in total. Therefore

with OPT’, the request will be served by the merged device of a grid with 40% total re-

source. Our goal is to show that OPT’ gives an upper bound on the number of satisfied

requests. Concretely, the OPT’ algorithm deploys the requests to the merged device of

each grid in the ascending order of requests’ total resource needs. In the following, we

formally prove that the OPT’ algorithm gives an upper bound in Lemma 5. We then give

the approximation factor of our APX algorithm in Lemma 6.

Lemma 5 (Upper Bound). The OPT’ algorithm results in an upper bound on the number

of satisfied requests, which may be infeasible in the original problem.
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Proof. Let OPT be the optimal algorithm, which results in Ḣ satisfied requests (ṙ1, ṙ2, · · · ṙḢ).

In contrast, OPT’ deploy H ′ requests (r′1, r
′
2, · · · r′H′). Without loss of generality, the re-

sulting solutions are enumerated by the total required resources. We have the following

inequalities:
Ḣ
∑

h=1

∑

u∈U

F (ṙh, u, · · · ) ≤
∑

k∈V

∑

u∈U

Rk,u; (4.3)

H′+1
∑

h=1

∑

u∈U

F (r′h, u, · · · ) >
∑

k∈V

∑

u∈U

Rk,u; (4.4)

∑

u∈U

F (r′h, u, · · · ) ≤
∑

u∈U

F (ṙh, u, · · · ) ∀1 ≤ h ≤ Ḣ. (4.5)

Eq. (4.3) holds because the total resources used by OPT are not greater than the total

resources of the fog devices. Eq. (4.4) is true because if OPT’ deploys one more requests,

it will certainly overload the devices. Eq. (4.5) shows that when the deployed requests are

sorted in the ascending order on the total resources, the pre-request resources consumed

by OPT’ does not exceed that of that by OPT in the same position. Assuming Ḣ > H ′,

adding Eqs. (4.4) and (4.5), we have:

Ḣ
∑

h=1

∑

u∈U

F (ṙh, u, · · · ) >
∑

k∈V

∑

u∈U

Rk,u, (4.6)

which contradicts to Eq. (4.3). Hence, we have Ḣ ≤ H ′.

Lemma 6 (Approximation Factor). Our APX algorithm results in a 1
|U|

approximation

factor.

Proof. Our APX algorithm satisfies H requests (r1, r2, · · · rH). Since the resource capac-

ities of devices are proportional, we have Rk,u = Rk,u′ ∀u, u′ ∈ U. Moreover, each

device stops serving operators only when at least one of resource types is used up, and

hence we have:
H
∑

h=1

∑

u∈U

F (rh, u, · · · ) ≥
∑

k∈V

∑

u∈U

Rk,u/|U|. (4.7)

Besides, the total resources consumed by the OPT’ algorithm do not exceed the total

resources of fog devices. That is:

H′

∑

h=1

∑

u∈U

F (r′h, u, · · · ) ≤
∑

k∈V

∑

u∈U

Rk,u. (4.8)

Based on Eq. (4.7), we have:

H

∑H
h=1

∑

u∈U F (rh, u, · · · )
H

≥
∑

k∈V

∑

u∈U

Rk,u/|U|. (4.9)
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Figure 4.7: The system models of (a) CPU load, (b) RAM usage, and (c) network through-

put. Sample results from an operator and an edge of the object recognizer.

Based on Eq. (4.8), we have:

H ′

∑H′

h=1

∑

u∈U F (r
′
h, u, · · · )

H ′
≤

∑

k∈V

∑

u∈U

Rk,u. (4.10)

In addition, because both APX and OPT’ algorithms enumerate requests by the total re-

quired resources and H ′ ≥ H , we have:

∑H′

h=1

∑

u∈U F (r
′
h, u, · · · )

H ′
≥

∑H
h=1

∑

u∈U F (rh, u, · · · )
H

, (4.11)

This means that the average total required resources of requests deployed by OPT ′ is

larger then APX . Based on Eqs. (4.9–4.11), we have:

H

H ′
≥ 1

|U| . (4.12)

Because H ′ ≥ Ḣ , the approximation factor is 1
|U|

. This yields the proof.

We notice that |U| is typically a small integer (say 2 for CPU and RAM, for instance),

and in the extreme case, where there is a single resource type (|U| = 1), the APX algo-

rithm gives optimal solutions.
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Figure 4.8: Testbed of our cloud-to-things continuum platform.

4.4 Testbed and Experiments

In this section, we realize a testbed of our cloud-to-things continuum platform for: (i) con-

ducting a measurement study to derive our system models and (ii) evaluating the derived

models and the performance of our cloud-to-things continuum platform.

4.4.1 Testbed Implementations

Fig. 4.8 illustrates our testbed which consists of: (i) an Intel i5 workstation running

Ubuntu, Docker [10], and Kubernetes [28] as the server and (ii) 5 Intel PCs (1.8 GHz

8-core i7 CPUs) and 5 Raspberry Pi 3 (1.2 GHz 4-core ARM CPUs) as the fog devices

running Ubuntu and HypriotOS, respectively. We implement the software components

presented in Fig. 4.3 on the server and fog devices. The server and devices are connected

with an Ethernet switch in a private network. To emulate WiFi-based networks, we adopt

a traffic shaper [51] to throttle the bandwidth at 8 Mbps [85]. To avoid overloading the

fog devices, we reserve 20% of resources for operations other than IoT analytics, e.g., OS

scheduling and resource monitoring.

We implement the multi-operator IoT analytics using TensorFlow [45], in which every

IoT analytics is represented as a graph consisting of tensors and flows. The tensors can be

simple tasks, such as additions and subtractions, or very complex machine learning tasks.
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Figure 4.9: A sample TensorFlow graph (partial) of our sound classifier.

The flows transmit data among tensors. We use TensorFlow tags to split every graph into

multiple smaller subgraphs, where each subgraph contains one or multiple tensors and

associated flows. These subgraphs are essentially the operators in our cloud-to-things

continuum platform, which are the units of deployments.

However, IoT analytics may require some features that are not available in Tensor-

Flow. For example, OpenCV [38] is needed for processing images and librosa [31] is

needed for analyzing audios. These additional libraries are quite large and take hours to

compile. Therefore, installing these libraries on-the-fly is infeasible. On the other hand,

reimplementing the features in TensorFlow incurs high engineering overhead, which may

not be worth. Fortunately, our cloud-to-things continuum platform achieves short de-

ployment time using Docker images. TensorFlow does not natively support stream pro-

cessing, and we add a queue between any two adjacent operators to increase the overall

performance.

To show the practicality of our platform, we develop three sample multi-operator IoT

analytics : (i) air pollution monitor, (ii) sound classifier, and (iii) object recognizer. Each

of them contains a large number of tensors, e.g., the object recognizer has 348 tensors.

We split each TensorFlow graph into a few operators (subgraphs) as follows.

• The air quality monitor receives four gas sensor readings in JSON format through

the MQTT protocol [35]. It then parses the JSON objects and calculates the moving

averages (potentially, other statistics too) of individual gas sensors. The results can

be used to detect emergency events, such as explosive gas leaking. We split this

IoT analytics into 5 operators. The first operator subscribes to all gas sensor data
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Figure 4.10: A sample re-

sult of our object recog-

nizer.

Figure 4.11: A sample web interface of our air quality mon-

itor.
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Figure 4.12: Our proposed system models.

via MQTT. The other four operators are responsible for calculating the moving

averages of the four gas sensors, respectively.

• The sound classifier detects different types of sound for community safety. For

example, this IoT analytics may detect a gun shot and automatically notify the

police. It adopts a pre-trained four-layer neural network for analyzing the audio

inputs. This IoT analytics is split into 5 linear operators. The first operator gathers

the audio data, while the other four operators execute the four layers of the neural

network, respectively.

• The object recognizer collects and analyzes camera images for recognizing objects

in them. It employs a pre-trained neural network with more than 10 layers. We split

this IoT analytics into 3 operators for input, hidden, and output layers, respectively.

The first operator also captures and resizes the camera images using OpenCV [38].

Figs. 4.9, 4.10, and 4.11 show a sample TensorFlow graph of our sound classifier,

recognized result of our object recognizer, and web interface of our air quality monitor.
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4.4.2 System Model Derivation

The system models map the target QoS levels of different IoT analytics to the required

resources on heterogeneous hardware specifications, as illustrated in Fig. 4.12. The pa-

rameters of operator model Ḟ (q, sq, i, u, k) and edge model F̄ (q, sq, (i, i
′)) are derived

as follows. First, we conduct an offline measurement study to derive the system models

of Raspberry Pis (the lowest-end devices). For Intel PCs (more powerful devices with-

out existing models), we use the models of less powerful devices for bootstrapping. We

then update the system models online to iteratively derive the customized system models.

Using system models of less powerful devices for bootstrapping prevents us from over-

loading the fog devices. Although we only have two types of fog devices in the testbed,

the same procedure is applicable to more heterogeneous devices.

We model the following three resources:

• CPU load: the physical CPU load in percentage reported by Docker stats API.

• RAM usage: the total physical memory usage reported by Docker stats API.

• Network throughput: total traffic amount (in both directions) reported by Tcp-

dump.

We adopt different invocation frequencies as the QoS parameters; other QoS parame-

ters may also be adopted if needed. Particularly, in our experiments, we choose the

following sample parameters: (i) {0.25, 0.5, 1, 2, 4} Hz in the air quality monitor, (ii)

{5/60, 6/60, 7/60, 8/60, 9/60} Hz in the sound classifier, and (iii) {6/60, 7/60, 8/60, 9/60, 10/60}
Hz in the object recognizer. Each QoS level of every IoT analytics is executed 5 times

with 60-sec durations. We report the average results, after filtering out the results that

deviate from the average for more than 1.7 times of the standard deviation.

Table 4.2: The Mean (Standard Deviation) R-square Values and P-values Among All

Operators and Edges.

IoT Analytics
CPU Load Network Throughput

R-Square P-Value R-Square P-Value

Air Quality Monitor 0.99 (0.000023) <0.001 0.99 (0.000001) <0.001

Sound Classifier 0.85 (0.023263) <0.010 0.84 (0.069494) <0.010

Object Recognizer 0.99 (0.012540) <0.010 0.97 (0.004982) <0.010

Fig. 4.7 shows the measured results and system models of a sample operator (CPU

and RAM) and a sample edge (network) from the object recognizer. The sample operator

subscribes the data from all four sensors and the edge carries the flow of a gas sensor.

We make a few observations on the sample results and adopt the following regression
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models. First, we find that the RAM usage (Fig. 4.7(b)) remains the same under different

QoS parameters. Therefore, we model it as a constant value, which gives us an average

error of 0.4% and a maximum error of 1%. For the CPU load (Fig. 4.7(a)) and network

throughput (Fig. 4.7(c)), we adopt power models (after considering several common func-

tions), which give 0.99 R-square scores in both cases. The operator and edge models are

summarized as:

Ḟ (Aq, sq, i, u, k) =











dAq ,sq ,i,k u = RAM;

ȧAq ,i,ks
ḃAq,i,k

q + ċAq ,i,k u = CPU;
(4.13)

F̄ (Aq, sq, (i, i
′)) = āAq ,(i,i′)s

b̄
Aq,(i,i′)

q + c̄Aq ,(i,i′), (4.14)

where ȧ, ḃ, ċ, d, ā, b̄, c̄ are model parameters.

Similar observations can be made on other operators and edges, and model parameters

can be derived by regression. We report the mean R-square scores of the CPU and network

models with their standard deviations in Table 4.2. This table shows that our system

models are fairly accurate. Moreover, the same table also reports p-values, which are

< 0.01, showing the regression is statistically significant.

4.4.3 Validation
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Figure 4.13: The average deployment time of operators in each iteration.

We run the following experiments for 15 iterations, where the offline system models

are initially used for both Raspberry Pis and Intel PCs to drive our operator deployment

algorithm. Based on the actual resource consumptions, we update our system models

after each iteration that lasts for about 3 minutes. In each iteration, we randomly generate

requests of three sample IoT analytics with random QoS levels chosen from the sample

parameters of each IoT analytics. We up-sample the QoS levels by 10% as a small buffer

for workload surges. Specifically, we generate a large number of requests, and execute
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Figure 4.14: (a) Most operators deployed on Intel PCs take less time than on Raspberry

Pis and (b) the number of containers created on Intel PCs are far more than on Raspberry

Pis.
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Figure 4.15: Online updates of our system models are effective. Iterations 7–14 are omit-

ted due to the space limitations.

our operator deployment algorithm to deploy as many requests as possible. Although

network conditions affect the download time of Docker images, disseminating Docker

images efficiently is out of the scope of this chapter. Therefore, we assume all the Docker

images are already cached in the image pools on fog devices. Sample experiment results

with 95% confidence intervals are given below.

Operators are deployed almost instantly in our platform. Fig. 7.4(a) reports the av-

erage deployment time of operators in each iteration. The figure reveals that the operators

take less than 20 seconds on average to be deployed, which is sufficient for most IoT an-

alytics that need to have even shorter response time can be pre-deployed. As Fig. 4.14(a)

shows, over 50% of operators deployed on Intel PCs take less time than on Raspberry Pis

because Intel PCs have higher computational power. The rest of deployments take more

time on Intel PCs than on Raspberry Pis because there are considerably more operators

running on PC than Raspberry Pis, as reported in Fig. 4.14(b). When a large number of

containers are simultaneously created on the same device, the I/O overhead is significantly
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increased.

Our system models are reasonably accurate and support heterogeneous fog de-

vices. We report the system model errors of two sample models: (i) power models of

CPU loads and (ii) constant models of RAM usage in Fig. 4.15. This figure shows that

our system models become increasingly more accurate over iterations. More specifically,

the CPU load errors are no worse than 5% and the RAM usage errors are no worse than

25% on average after 5 iterations.

Our operator deployment algorithm satisfies most of the requested QoS levels.

Table 4.3 shows the QoS satisfaction rate and the number of rejected requests under dif-

ferent numbers of requests received from fog users. The QoS satisfaction rate is the

fraction of deployed requests that meet the QoS targets, and the rejected requests are not

deployed by our algorithm due to lack of resources. The table leads to three observations:

(i) the QoS satisfaction rate is getting higher over iterations. At the fifth iteration, the

QoS satisfaction rate reaches to 100%, (ii) more received requests require more iterations

to satisfy all the requests, and (iii) once our platform is fully loaded, some requests are

rejected to maintain the QoS levels of deployed requests.

Our experiments demonstrate the practicality and efficiency of our models, algorithm,

and platform. For larger scale evaluations, we perform detailed simulations in the next

section.

Table 4.3: QoS Satisfaction Rate and Number of Rejected Requests

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Recv.

Req.

Rej.

Req.

Satis.

Rate

Rej.

Req.

Satis.

Rate

Rej.

Req.

Satis.

Rate

Rej.

Req.

Satis.

Rate

Rej.

Req.

Satis.

Rate

4 0 100% 0 100% 0 100% 0 100% 0 100%

8 0 100% 0 100% 0 100% 0 100% 0 100%

16 0 79% 0 100% 0 100% 0 100% 0 100%

32 0 89% 10 95% 10 100% 10 100% 10 100%

64 22 71% 42 95% 42 95% 42 100% 42 100%

4.5 Simulations

In this section, we consider a wider spectrum and compare our analytics deployment

algorithms against the state-of-the-art ones in a simulator.

4.5.1 Setup

We build a detailed simulator in Python. In this simulator, we implement our APX and

SSE algorithms. We also realize four baseline algorithms: Random, Linear, Fog and
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Cloud Placement (FCP) [167] and Optimal Data Stream Processing Placement (ODP) [67,

69]. The Random algorithm mimics a fog computing platform without a central controller,

and deploys operators on random devices. The Linear algorithm greedily deploys oper-

ators from the source fog devices to adjacent devices, while taking the resource, sensor,

and location constraints into considerations. The FCP and ODP algorithms are state-of-

the-art analytics deployment algorithms, which consider both node and link constraints

as we discussed in Sec. 4.1. The FCP algorithm aims to support latency sensitive IoT

analytics with high resource efficiency. It is a heuristic algorithm, which finds the best-fit

device for every request. The ODP algorithm has a flexible objective function. We adapt

the objective function to maximize the number of satisfied requests for fair comparisons.

The ODP algorithm employs a commercial ILP solver: CPLEX [21], which may take pro-

hibitively long time to terminate. Therefore, it is recommend to set a 500-sec cap on the

execution time [67, 69]. We run simulations of each test scenario with all the algorithms

for comparisons.

Block

Block
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Block
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Block Block

BlockBlock
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Figure 4.16: The considered network topology.

In order to simulate a large-scale and realistic network topology, we extend the net-

work topology of the smart pole block shown in Sec. 7.4 with a mesh network as the

network backbone. As illustrated in Fig. 4.16, the topology has twelve blocks and each

block has eight fog devices installed in the device boxes. Half of the fog devices are con-

nected to local Ethernet (1 Gbps) and others are connected to WiFi mesh (32 Mbps) [63].

These fog devices access the Internet through the access switch of each block. The access

switches are connected to a backbone network generated by BRITE’s [7] mesh topology.

The link capacities from the access switches to the backbone network are randomly cho-

sen from 3G (9.61 Mbps) [63], WiFi (32 Mbps) [63], and 4G (22.67 Mbps) [63]. The link
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capacities of the backbone network are randomly chosen from VDSL (60 Mbps) [63] and

Fiber (1 Gbps) [63]. The actual bandwidth constraints are draw from a gaussian distri-

bution with a mean value shown in the parentheses above, where the standard deviation

is 10% of the mean value. We configure the fog device’s geolocation coordinates using

actual GPS coordinates of real street lamps next to 12 main buildings at NTHU campus.

We also place the backbone routers among these buildings, in terms of geographical loca-

tions, following the Euclidean distances and link latencies generated by BRITE. Each fog

device has a random CPU capacity between 100% and 400% (corresponding to number

of cores) and a random RAM capacity between 1 and 8 GB.

Poisson processes with 1-min average arrival time and 10-min average departure time

are used for generating requests. In this way, the number of active requests steadily in-

creases over time. Each request randomly picks one of the three IoT analytics (detailed

in Sec. 7.4) with random target QoS levels between 0.1 and 4 Hz. The system models

(of PCs and Raspberry Pis) derived in our experiments are used in the simulations. Each

requested source and destination operator randomly occurs in one of the 12 blocks. We

consider random sensors, including cameras, microphones, and (4 types of) gas sensors.

The IoT analytics are associated with their requested sensors.

We consider the following performance metrics:

• Number of deployed requests that are deployed with deployment decisions made

by the algorithms.

• Number of satisfied requests that comply with the constraints in Eqs. (4.1d) and

(4.1f).

• Number of overloaded links that fail some deployed requests

• Resource efficiency that is a ratio of total satisfied requests and total resource con-

sumptions.

• Running time of the analytics deployment algorithms.

We run 16-hour simulations on an AMD 64-core workstation. Our analytics deploy-

ment algorithm is invoked once every 30 mins. We consider the number of blocks ∈
{3, 6, 9, 12}, which means that the considered number of fog devices |V| ∈ {24, 48, 72, 96}.

Moreover, for our SSE algorithm, we consider maximal number of hopH ∈ {2, 4, 6, 8, 10}.

We let 12 as default value of number of blocks (|V| = 96) and the maximal number of

hop H = 10 if not otherwise specified. We repeat each simulation 5 times and report

means with 95% confidence intervals if applicable.

43



500 1000 1500 2000 2500
0

500

1000

1500

(a)

1 2 3 4 5
0

500

1000

1500

2000

2500

(b)

Figure 4.17: Satisfied number of requests of our APX algorithm under different number

of: (a) requests and (b) resource types.

Table 4.4: Empirical Based Approximation Factors
❍

❍
❍

❍
❍
❍

❍
❍

U

Req. 500 1000 1500 2000 2500

Mean Std Mean Std Mean Std Mean Std Mean Std

1 1.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000

2 1.000 0.000 1.00 0.000 0.957 0.006 0.938 0.028 0.952 0.003

3 0.921 0.057 0.706 0.035 0.658 0.039 0.430 0.024 0.658 0.037

4 0.603 0.061 0.499 0.033 0.544 0.017 0.502 0.026 0.504 0.024

5 0.536 0.045 0.438 0.031 0.442 0.028 0.441 0.025 0.441 0.038

4.5.2 Results

Performance of our APX algorithm. We implement an optimal solution (OPT) us-

ing CPLEX [21] as a benchmark to evaluate our APX algorithm. Because the running

time of OPT is high, we run a set of simulations with smaller topology as follows. We

generate |Q| requests, which require |U| kinds of resources allocated from 100 fog de-

vices to conduct the evaluations. We vary |Q| = {500, 1000, 1500, 2000,2500} and

|U| = {1, 2,3, 4, 5}, where the bold font indicates the default values. The required re-

sources of the first two resource types are from our derived CPU and RAM system models.

Other kinds of resources are randomly assigned in a range between 0 to 100. The fog de-

vices’ resource capacity of CPU are random values between 100% to 800% and RAM

are random values between 1 to 16 GB. Other kinds of resource capacities are random

values between 100 to 1000. We run the evaluations 10 times and report means with 95%

Table 4.5: Maximal Running Time (s) of APX and OPT Algorithms
❍
❍

❍
❍

❍
❍

❍
❍

U

Req. 500 1000 1500 2000 2500

APX OPT APX OPT APX OPT APX OPT APX OPT

1 0.25 1.76 0.71 3.35 1.32 5.25 1.92 7.27 3.46 12.67

2 0.42 2.14 1.06 4.87 2.49 9.79 3.69 16.43 5.41 >500

3 1.01 2.64 2.73 7.86 4.44 203.65 6.81 >500 8.74 >500

4 1.94 3.27 4.61 >500 7.57 >500 10.16 >500 12.52 >500

5 2.63 5.33 5.76 >500 8.88 >500 11.88 >500 15.21 >500
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confidence intervals. Fig. 4.17 shows that when the number of requests is small or the

numbers of resources types is 1, our APX algorithm indeed achieves the optimal results.

Moreover, the resulting numbers of satisfied requests of our APX algorithm are always

above the theoretical 1/|U| approximation factor curve. We summarize all the empiri-

cal approximation factors, including average and standard deviation values in Table 4.4.

This table shows that in the experiments, our APX algorithm achieves at least 2 times of

theoretical approximation factor. Moreover, we report running time of APX and OPT

algorithms in Table 4.5, which shows that our APX algorithm runs in real-time while the

OPT algorithm has an exponentially growing running time. APX is not considered in the

rest of evaluations, because it’s designed for fine-grained operators. The IoT analytics

models used to evaluate SSE is not fine-grained enough.
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Figure 4.18: QoS improvement of our SSE algorithm in: (a) the number of deployed

requests, (b) the number of satisfied requests, and (c) the number of overloaded links.

Our proposed SSE algorithm results in QoS improvements. Fig. 6.7 reports the

overall QoS achieved by different algorithms. Fig. 4.18(a) shows that the gap of number

of deployed requests among SSE, ODP, and FCP is smaller than 10%. Random deploys

up to 148% more requests compared to our SSE algorithm while our SSE algorithm de-

ploys 699% more requests compared to Linear. However, the larger numbers of deployed

requests do not directly result in better performance, because many deployed requests fail

to satisfy the constraints. Fig. 4.18(b) plots the number of satisfied requests. Indeed, we
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observe that our SSE algorithm satisfies by up to 134%, 1200%, and 1233% more requests

than ODP, FCP, and Linear, respectively. On the other hand, Random satisfies zero re-

quest after running for 15 hours. The inferior performance of ODP, FCP, and Random due

to too aggressive leading to an overloaded fog computing platform. To show this, we plot

the number of overloaded links in Fig. 4.18(c), where ODP, FCP, and Random result in as

many as 3.2, 9.8, and 24.8 overloaded links, while our SSE algorithm leads to none. Last,

we note that the Linear algorithm limits its analytics deployment decisions to adjacent

devices, and thus is too conservative to satisfy more requests. That explains why our SSE

algorithm satisfies 1233% more requests that the Linear algorithm. Since Random and

Linear suffer from significantly fewer number of satisfied requests, we no longer consider

them in the rest of this paper.
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Figure 4.19: Shorter network latency of our SSE algorithm: (a) end-to-end network la-

tencies and (b) number of hops distribution of satisfied requests.

Our proposed SSE algorithm reduces network latencies. Fig. 4.19(a) reports the

end-to-end latency distribution of satisfied requests. It clearly shows that our SSE algo-

rithm achieves lower latencies. More specifically, our SSE algorithm results in 46.5 ms

for 80% of requests; while ODP results in 55.3 ms and FCP results in 55.5 ms. This can

be attributed to the second intuition of our SSE algorithm, which considers shortest paths

first. To validate this, Fig. 4.19(b) reports the distribution of number of hops of satisfied

requests. It clearly shows that our the distance (number of hops) between source operator

and destination operator of a request deployed by our SSE algorithm is shorter than oth-

ers, which contributes to the low latency. Because of its low latency, our SSE algorithm

is more suitable for real-time IoT analytics.

Our proposed SSE algorithm is resource efficient. Fig. 6.8 shows distributions of

resource consumptions and resource efficiency under peak resource consumptions. Actu-

ally, the CPU, RAM, and network resource consumptions shown in Figs. 4.20(a)–4.20(c)

are similar among different algorithms. However, our SSE algorithm results in higher

resource efficiency, as illustrated in Fig. 4.20(d). In particular, Fig. 4.20(d) shows that
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Figure 4.20: Better resource efficiency of our SSE algorithm: (a) peak resource con-

sumption, (b) CPU load, (c) RAM usage, and (d) network throughput distributions of fog

devices.

our SSE algorithm outperforms 167%, 161%, and 124% resources efficiency in terms of

CPU, RAM, and network, compared to the ODP algorithm. Moreover, our SSE algorithm

outperforms 1649%, 1774%, and 1951% resources efficiency in terms of CPU, RAM, and

network, compared to the FCP algorithm.

Impacts of different number of blocks. We vary number of blocks from 3 to 12

(number of fog devices from 24 to 96), and repeat the same simulations. We plot the

key performance metric results in Fig. 4.21. Fig. 4.21(a) reports that our SSE algorithm

outperforms ODP and FCP by 65.3% and 204.1%, on average, in terms of number of

satisfied requests on average. This is because our SSE algorithm does not overload any

links as confirmed by Fig. 4.21(b). Fig. 4.21(c) reports that our SSE algorithm, on av-

erage, improves CPU resource efficiency by 75.4% and 442.7% compared to the ODP

and FCP algorithms, respectively Fig. 4.21 demonstrates that our SSE algorithm scales

well. In fact, our SSE algorithm outperforms other algorithms by larger margins when the

network is larger.

Our proposed SSE algorithm is scalable. Table 4.6 reports the maximal running

time of the analytics deployment algorithms throughout 16-hour simulations under dif-

ferent number of fog devices. This table shows that the running time of ODP exceeds
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Figure 4.21: Impacts of number of blocks on: (a) number of satisfied requests, (b) number

of overloaded links, and (c) CPU utilizations.

its 500-sec threshold with merely 9 blocks (72 fog devices). ODP’s running time grows

exponentially. While, our SSE algorithm only takes 34 sec to make the deployment de-

cisions with 9 blocks, and its running grows linearly. In addition, the running time of

FCP algorithm also grows linearly and is shorter than our SSE algorithm. However, the

FCP algorithm suffers from fewer satisfied requests, inefficient resource usage, and longer

end-to-end latency, as shown above.

Table 4.6: Maximal Running Time (s) of Analytics Deployment Algorithms

No. Blocks 3 6 9 12

SSE 3 12 34 132

ODP 165 336 >500 >500

FCP 1 2 3.5 6

4.6 Discussion

In this chapter, we focus on solving application deployment problem, where we take IoT

analytics as representative applications. We formulate this problem into two problem for-

mulations under different cloud-to-things continuum conditions. We design an approxi-
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mation algorithm (APX) and an efficient algorithm (SSE) to maximize number of satisfied

requests with diverse QoS requirements. The QoS requirements are carefully modeled by

conducting measurement studies. We derive system models to predict required resources

of IoT analytics with diverse QoS values. To conduct the measurement studies, evaluate

our algorithms, and realize our cloud-to-things continuum, we implement our platform

with : (i) Kubernetes, (ii) Docker, and (iii) TensorFlow. Our platform provides: (i) novel

deployment algorithms for the provider to make deployment decisions and (ii) lightweight

virtualization for users to dynamically request for on-demand applications with resource

guarantees. To evaluate our algorithms, we conduct extensive trace-driven simulations

with two baseline (Random and Linear) and two state-of-the-art analytics deployment

algorithms: FCP and ODP. The baseline algorithms suffer inferior number of requests,

and our algorithms outperform the state-of-the-art algorithms by at least 134%, 167%,

161%, and 124% in terms of number of satisfied requests, CPU resource efficiency RAM

resource efficiency, and network resource efficiency, respectively. Moreover, our algo-

rithms run in polynomial time while optimal solutions need exponential time to make

deployment decisions.

Although our analytics deployment algorithms have outperformed state-of-art algo-

rithms, there are some limitations that are not considered in this chapter: (i) priority of

the requests, (ii) time sequence of the requests, and (iii) dynamicity of the requests. About

the first limitation, in this chapter, we assume that requests have the same priority. There-

fore, our algorithms will not tend to deploy emergency request first, e.g., the requests from

police office about a gun shot will not be considered in advance. To solve this limitation,

we can classify the requests into multiple categories based on various priorities. We then

make deployment decisions from the most critical category to the least one. Doing so,

we can support the prioritized requests without modifying our algorithms. For the second

limitation, in this chapter, we batch the requests and solve the deployment problem for

every batch. Therefore, we do not immediately make deployment decisions once every

request is received. One possible approach is to propose a request prediction algorithm to

predict coming requests in the future to take time sequence into our consideration. Hence,

we can use our deployment algorithms to make decisions for the requests in advance and

deploy the requests once we receive them. For the third limitation, in this chapter, we

optimize the deployment for every batch. However, requests come and go, so that the

deployments do not always keep optimized state. In order to solve this limitation, one

possible approach is to model migration costs into our formulation. The migration cost

will be affected by cache of container images. Hence, we also need to propose a caching

algorithm to efficiently use the storage spaces. With the migration cost and caching al-

gorithm, we can dynamically migrate the requests to keep our platform in the optimized
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state.
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Chapter 5

Application Specific Optimization:

Delay-Sensitive Applications

After deploying the applications with the algorithms proposed in Chapter 4, we start to op-

timize the delay-sensitive applications which are already running on our cloud-to-things

continuum platform in this chapter. We select one representative delay-sensitive appli-

cation, which will be introduced in Sec. 5.1. Moreover, we survey the related studies in

Sec. 5.2, extend and measure existing open source application in Sec. 5.3 write problem

statements for optimizing the applications and design our solutions in Sec. 5.4, evaluate

them in Sec. 5.5, and report a summary in Sec. 5.6.

5.1 Game Streaming Applications

Our selected delay-sensitive application is game streaming applications, which require

strict low delay and high computation power. There are two existing gaming models

requiring remote servers: (i) file streaming and (ii) video streaming. The first, more

conservative, model leverages the remote servers to distribute computer games, because

modern computer games often take more than one DVD to distribute. File streaming

allows gamers to start playing games after a small subset of files has been downloaded,

while the remaining files are streamed in the background. File streaming allows the game

developers, such as Blizzard, to reduce their costs on manufacturing the physical media,

and delivering patches through the Internet. However, all these computer games still run

on gamers’ computers, and thus gamers: (i) need high-end computers for good graphics

effects and (ii) can only play games on the installed computers.

The second, more aggressive, model offloads intensive computations, such as render-

ing, physics, and artificial intelligence, to the remote servers (fog devices), in order to

deliver more visually-appealing effects on less powerful computers anywhere, anytime
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over the Internet. Using video streaming, game service providers, such as OnLive [37],

GaiKai [15], and Ubitus [47], deliver instantaneous gaming experience to gamers using

different client computers (including mobile devices). This is done by implementing and

installing a thin client on PCs, laptops, tablets, smartphones, and set-top boxes. In this

chapter, We only consider the more challenging video streaming model to achieve the

game streaming applications.

5.1.1 Usage Scenarios

Fog 

Controller

Fog Devices

Gamers

G
am

e

In
teractio

n
s

g Devices

Figure 5.1: An usage scenario of the game streaming application running on our cloud-

to-things continuum platform.

Figure 5.1 gives a scenario of running game streaming applications on our cloud-to-

things continuum platform. We first present the life cycle of a game session. A gamer first

selects a game and sends a request to the fog controller to play a game. After the gamer

selects a game to play, the global optimizer (Chpater 4) installed on the fog controller

selects a fog device to serve this gamer. After that, the application specific optimizer also

installed on the fog controller sends game configurations, e.g., the encoding bitrate and

frame rate, and 3D effect level, to the game streaming application running on the selected

fog device. The application runs a piece of software to capture, compresses, and sends

the audio and video, rendered by the game, over the Internet to the gamer’s device. The

audio and video are decompressed and played by the gamer’s device to the gamer, who

uses keyboard, mouse, or other input devices to interact with the game. Because the game
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is running on a remote fog device, the inputs from gamers are sent to the game streaming

application running on the fog device for the interactions. The game session is between a

fog device and gamer’s device, and ends when the gamer quits the game.

5.1.2 Challenges

Delivering high-quality gaming experience is challenging, mainly because: (i) modern

computer games are mostly resource hungry, (ii) the real-time nature of games imposes

stringent deadline, and (iii) gamers have high expectations on different aspects of gam-

ing experience [124]. More specifically, gamers ask for both low response delay and

high-quality game scenes, where the: (i) the response delay refers to the time difference

between the time when a gamer triggers an input and the time when the client renders

the corresponding effect, and (ii) quality of game scenes is measured by metrics like res-

olutions, frame rates, fidelities, and 3D effect levels. Concurrently achieving both fast

responses and high-quality scenes consumes a huge amount of computation and network

resources. In Chapter 4, we cope with the problem by the global optimizer to select the

most suitable fog devices to run the game streaming applications for incoming gamers

to maximize the number of served gamers while satisfying QoS requirements in large

time scales (in the order of tenths of minutes). However, the network resources change in

small time scales (in the order of seconds), which cannot be compensated by the global

optimizer alone, and thus a finer-grained adaptation mechanism is required for each game

session.

In this chapter, we study the problem of adapting ongoing streaming game sessions

to maximize the gamer experience in dynamic networks. Without adaptations, the cloud-

to-things continuum platforms continuously deliver the streaming games to gamers at the

highest possible quality even when the resources are insufficient. This may overload the

network because a large part of the network resources is consumed by the downstream

traffic (game videos) [77]. Thus, the video bitrate of an ongoing streaming game ses-

sion should be reduced if the end-to-end bandwidth is insufficient. Moreover, when the

bandwidth is significantly reduced, the video frame rate may have to be reduced to main-

tain a satisfying graphics quality. Otherwise, gamers would suffer from degraded gaming

experience due to late and lost frames, and may quit the games prematurely.

Achieving optimal adaptations is no easy task because gamers are picky, and love

to have both high graphic quality and short interaction delay. However, concurrently

optimizing both gamers’ demands is impossible. Therefore, in order to solve the bitrate

adaptation problem, three main challenges are carefully studied in the following:

• Quantifying gamer experience. The metrics of higher-level gamer experience and
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Figure 5.2: The interactions between the streaming game applications and the delay-

sensitive application optimizer.

lower-level system performance are quite different, and the mapping between them

is affected by many factors. Hence, deriving empirical gamer experience, or Mean

Opinion Score (MOS) model is important and challenging.

• Reconfiguring video codecs. Compared to audio streams, encoding and trans-

mitting video streams consume much more computation/network resources, and

thus video codec is the main control knob for adapting an ongoing streaming game

session to the available resources. Changing the codec configuration on-the-fly is

critical to help us achieve optimal bitrate adaptations.

• Adapting videos in dynamic networks. With the gamer experience model and

real-time codec reconfiguration mechanism, We develop a suite of techniques to

quickly adapt the video codec configurations to dynamic networks. The techniques

range from optimal resource allocation algorithms to real-time heuristics to maxi-

mize the gamer experience without excessive resource consumption. These tech-

niques are presented in Sec. 5.4.

We note that this thesis focuses on solving resource allocation problems. We will only

briefly describe the solutions of first and second challenges in this chapter and focus on

solving the adaptation problem in Sec. 5.4. Please find the details of the first and second

solutions from Hong et al. [104].

5.1.3 Software Components

The game streaming applications is built upon GamingAnywhere (GA) [16, 110], which

is an open-source game streaming application designed for researchers, engineers, and

gamers. The design philosophy of GA includes extensibility, portability, configurability,
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and openness, and thus very suitable to game streaming research. Basically, the GA

application consists of a GA server and a GA client. The GA client is installed on gamer’s

device, such as a mobile phone to send requests to our cloud-to-things continuum platform

to play a game. The global optimizer introduced in Chapter 4 then selects a fog device to

run a GA server to serve the gamer. The GA server and GA client communicate through

the game & streaming engine to allow gamers send control messages (e.g., key strokes and

mouse clicks) to the GA server and receives rendered game scenes from the GA server.

More details of the original GA are given in [110].

As illustrated in Figure 5.2, we add four software components, including bandwidth

estimator, MOS model, codec reconfigurator, and bitrate adaptation algorithm into the

GA application, to solve the challenges and optimize the game streaming applications.

The bandwidth estimator monitors the sending/receiving timestamps of video packets

at GA client, so as to estimate the effective bandwidth1. GA clients send the estimated

effective bandwidth to the bitrate adaptation algorithm to determine the optimal encoding

bitrate and frame rate to maximize the gaming experience. Such decisions are made

based on a MOS model, which converts each pair of bitrate and frame rate into a game-

dependent MOS score. The optimal encoding bitrate and frame rate are sent into codec

reconfigurator for on-the-fly video adaptation. Finally, the game & streaming engine at

GA server side renders and streams the game scenes based on the decisions to the game

& stream engine at GA client side, which receives the stream and send control messages

to the GA server. In summary, these four components are core of this chapter, that will be

introduced in Secs. 5.3 and 5.4.

5.2 Related Work

5.2.1 Game Streaming Platforms

In game streaming applications, there are several approaches to divide the tasks between

the remote servers and clients. With graphics streaming [81,118], the remote servers send

all graphics commands to the clients, which then render the graphics commands using the

clients’ GPUs. This approach dictates more powerful GPUs to render high-quality game

scenes in real time, which is less applicable for resource-limited mobile devices and set-

top boxes. With post-rendering operations [88, 164], the 3D rendering is done at the

remote servers, and part of the post-rendering operations are done on clients. Such post-

rendering operations on the clients include augmenting motions, lights, and texture [74].

This approach complicates the game development and increases the development cost,

1Packet losses and delays are considered when estimating the effective bandwidth.
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which may drive the game developers away from the game streaming applications. With

video streaming [98, 179], the remote servers render the game scenes and stream videos

to the clients. The clients decode and display videos, which is a much lighter weight

operation compared to the other two approaches. Comparatively, the video streaming

approach: (i) demands the least resources at the clients, (ii) is easier to implement, (iii) is

easier to port to heterogeneous clients, and (iv) requires the minimum augmentations on

game code.

Hence, the mainstream commercial game streaming applications, such as OnLive [37],

GaiKai [15], and Ubitus [47], all adopt the video streaming approach. Similar approaches

are taken by several studies [98, 112, 179] in the literature. Among these applications,

GA [112] is open, modularized, and efficient. It is the first complete open-source game

streaming application of its kind. GA has been leveraged by several research projects on

game streaming, such as mobile cloud gaming [111, 113], e-learning applications [87],

GPU consolidation [103], and cloud resource allocation [99, 100].

5.2.2 Resource Allocation for Game Streaming Applications

The resource allocation problem for the game streaming applications has been studied

for some game genres. For example, Lee and Chen [125] study the resource allocation

problem for Massively Multiplayer Online Role-Playing Game (MMORPG), and propose

a zone-base algorithm to reduce the hardware requirements of the remote servers. How-

ever, these game servers handle short state update messages, and thus are different from

servers that stream high-quality real-time videos to the clients. Duong et al. [80] and

Wu et al. [180] focus on the admission control problem, to minimize the queueing de-

lay for game streaming applications. In particular, Duong et al. [80] develop algorithms

to selectively admit incoming users for the highest profit, and Wu et al. [180] propose

a similar algorithm to quickly serve users in the waiting queue. Wang and Dey [173]

propose an adaptive algorithm to dynamically adjust the rendering parameters, such as

lighting modes and texture details, to adaptively allocate resources. Cai et al. [66] study

the resource allocation problem between a remote server and a client computer. They di-

vide a game into several software components and intelligently dispatch the components

among multiple remote servers and client computers. Our earlier works [99, 100] con-

sider a different problem of maximizing the gaming Quality of Experience (QoE) of all

admitted users, by placing virtual machines in the best data centers under diverse CPU,

RAM, and storage capacities. This chapter, in contrast, addresses the problem of dynamic

adaptations in ongoing game sessions.
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5.3 Reconfiguring Video Codecs in Run Time

Hong et al. [104] enhance GA to support dynamic video codec reconfigurations. In this

chapter, we implement a bandwidth estimator to estimate effective bandwidth of GA

client. The estimated bandwidth is sent to the dynamic video codec reconfigurator to

change the streaming configurations. We then conduct experiments to validate the real-

timeness of the dynamic video codec reconfigurator.

The major modification by Hong et al. [104] is to migrate ffmpeg to live 555 because

three major reasons: (i) ffmpeg is too complicated to add a customized codec, (ii) ffmpeg

does not support dynamic reconfigurations (we cannot use it to perform bitrate adaptation

for ongoing game sessions in this chapter), and (iii) The RTP feature provided by ffmpeg

is tightly coupled with its codec implementation, which prevents us to make a customized

codec to work with the RTP stack. Therefore, Hong et al. [104] revise the module design

used in GA to work with live555. Please find more details of the implementation from

Hong et al. [104].

5.3.1 Effective Bandwidth Estimation

We implement a bandwidth estimator inspired by WBest [126] to estimate the effective

bandwidth. Different from other proposals [120, 126, 153], We leverage existing video

packets for effective bandwidth estimation, without incurring network overhead. We can

do this for two reasons: (i) the workload of sending video packets is high (for 30-fps

videos, we send a frame every 33 ms) and (ii) the size of a video frame is typically higher

than MSS (Maximum Segment Size), so each video frame is split into multiple back-to-

back packets. Our bandwidth estimator keeps track of the dispersion time of the video

packets. To cope with fluctuations, we select the median value as the estimated capacity

from every W packets. We then send video packets at the estimated capacity to measure

the effective bandwidth with W video packets. The value of W is empirically selected by

experiments, and we consider W ∈ {100, 200, 300, 400, 500}. The estimation accuracy

with W = 100 is 50% in the worst case. In other cases (200 ≤ W ≤ 500), the accuracy

is as high as 80+% and the differences among different W values are smaller than 5%.

Hence, we let W = 200 for shorter reaction time.

5.3.2 Experiments on a Real Testbed

We conducts real experiments to show the effectiveness of the reconfiguration feature.

We set up a testbed with a GA server and a GA client, and connect them via a Dum-

mynet box. We find that the dynamic reconfiguration of video bitrate and frame rate are
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Figure 5.3: The measured: (a) effective bandwidth and (b) frame rate.

widely supported by most off-the-shelf video codecs. This allows us to leverage these two

parameters in the adaptation algorithm presented in Sec. 5.4.

Next, we evaluate the adaptive GA platform as follows. We write a script on the

Dummynet box to repeatedly switch the bandwidth among 2048, 1024, and 512 kbps once

every 60 secs. We then adaptively reconfigure the video bitrate and frame rate using the

codec parameter selector (Eq. (5.4) in Sec. 5.4), based on feedback from the bandwidth

estimator (Sec. 5.3.1). Figure 5.3(a) reveals that our bandwidth estimator successfully

detects the bandwidth changes. Figure 5.3(b) shows that the codec parameter selector

quickly recovers from sudden frame rate drops due to throttled bandwidth, by adjusting

the video coding parameters. The experiments demonstrate how to adapt to network

dynamics for a single gamer. We consider the adaptation problem across multiple gamers

sharing a bottleneck link in Sec. 5.4.

5.4 Adapting Videos of Multiple Gamers in Dynamic Net-

works

In this section, we solve the resource allocation problem among multiple gamers. Our

proposed algorithm runs on the fog controller in cloud-to-things continuum.

5.4.1 Notations and Model

Table 5.1 summarizes the symbols used in this chapter. We consider a data center serving

U gamers as illustrated in Fig. 5.4, where each gamer is connected to a GA server. All

U GA servers share an outgoing link through a cellular base station, and we let R be the

current available link bandwidth of this link. The value of R is fluctuating due to the

background traffic. We let f (1 ≤ f ≤ F ) and b (1 ≤ b ≤ B) be frame rate and bitrate,
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Figure 5.4: Adapting videos of GA servers deployed in cloud-to-things continuum plat-

forms.

Table 5.1: Symbols Used Throughout this Chapter

Sym. Description

U Number of gamers

R Available bandwidth over a shared link

F Maximal frame rate

B Maximal bitrate

G Number of game types

pu A game played by gamer u

mg,f,b MOS score of playing game g at frame rate f and bitrate b

respectively. The frame rates and bitrates are specified by the system administrators. We

let g (1 ≤ g ≤ G) be the game types supported by the our platform, and pu be the game

played by gamer u, where 1 ≤ u ≤ U and 1 ≤ pu ≤ G. We let mg,f,b be the MOS score

of playing game g at frame rate f and bitrate b, which can be derived via off-line user

studies or online regression.

For concrete discussions, we adopt the user study reported in the study from Hong et

al. [104]. Hong et al. [104] implement a crowdsourcing online platform, which recruit

101 subjects to conduct a user study and create MOS models of gaming experience. In

the user study, Hong et al. [104] vary bitrate, frame rate, and game in different config-

urations. We note that the MOS model is designed to drive the codec reconfiguration

decisions. The MOS model implicitly considers the available bandwidth (bitrate), and
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ignores the network latency. This is because the network latency is not controllable by

our cloud-to-things continuum platforms during ongoing gaming sessions. When a game

session is affected by higher packet loss rate or longer end-to-end delay, our bandwidth

estimator (Sec. 5.3.1) reports lower effective bandwidth. Then, the bitrate adaptation al-

gorithm picks a new target bitrate (as a function of effective bandwidth), using the MOS

model that converts the bitrate and frame rate into the expected MOS score. Different

from the MOS model, there are full-fledged QoE models in the literature for precise user

experience. For example, Game Mean Opinion Score (GMOS) [172, 174, 183] is an ob-

jective quality metric, which is a function of codec, frame rate, resolution, PSNR (Peak

Signal-to-Noise Ratio), network latency, and packet loss rate. Compared to my selected

relatively simple MOS model, GMOS is too complicated for video codec reconfiguration

purpose. More importantly, the additional complexity comes from factors that are not

directly controllable by our cloud-to-things continuum platforms. The quadratic MOS

model is given below:

m(g, f, b) = αg,1f + αg,2b+ αg,3f
2 + αg,4b

2 + αg,5fb+ αg,6, (5.1)

where αg,1–αg,6 are game-specific model parameters. The details of the model are sum-

marized in Table 5.2.

Table 5.2: The MOS Models for Individual Games

Batman FGPX CoD

(1) (2) (3)

fps, αg,1 0.010 (0.036) 0.038 (0.041) −0.011 (0.037)

rate (in Mbps), αg,2 2.940∗∗∗ (0.484) 2.297∗∗ (0.553) 2.529∗∗ (0.491)

I(fpŝ 2), αg,3 −0.001 (0.001) −0.002 (0.001) −0.001 (0.001)

I(ratê 2), αg,4 −1.150∗∗∗ (0.176) −0.868∗∗ (0.201) −0.939∗∗ (0.178)

fps:rate, αg,5 0.043∗∗ (0.008) 0.036∗∗ (0.009) 0.037∗∗ (0.008)

Constant, αg,6 2.248∗∗ (0.428) 2.369∗∗ (0.490) 2.621∗∗∗ (0.434)

R2 0.988 0.981 0.987

Adjusted R2 0.968 0.949 0.966

F Statistic (df = 5; 3) 49.518∗∗∗ 31.040∗∗∗ 46.130∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, we let k̂u and ǩu be the maximal and minimal bitrates of gamer u, respectively.

The minimal ǩu is assigned by the system administrator based on some practical concerns.

For example, a rule-of-thumb may indicate any bitrates less than 50 kbps do not produce

meaningful reconstructed videos, leading to ǩu = 50 kbps. k̂u, on the other hand, comes

from a common property of hybrid video coders: the video quality saturates when the

bitrate is increased [178]. Hence, it yields less significant improvements while the bitrate

is increased beyond, e.g., k̂u = 5 Mbps. Moreover, the gamer’s access link may be narrow
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and shared by multiple users/applications, leading to a bandwidth limitation on u’s access

link. k̂u is also used to accommodate this bandwidth limit: the administrator can set k̂u to

be the minimum between the link bandwidth limitation and the quality-saturating bitrate,

so that the allocated bitrate to u will not be wasted.

5.4.2 Problem Statement
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Figure 5.5: The best MOS scores under different bitrates.

Our adaptation problem is to select the best frame rate and bitrate for each gamer,

in order to maximize the overall gaming quality under the bandwidth constraints. We

consider two optimization criteria: (i) maximizing the average MOS score and (ii) max-

imizing the minimum MOS score across all gamers. We refer to these two optimiza-

tion problems as: (i) quality-maximization and (ii) quality-fairness problems, respectively

throughout this chapter. We let xu and yu (∀ 1 ≤ u ≤ U ) be the decision variables, where

1 ≤ xu ≤ F (frame rate) and 1 ≤ yu ≤ B (bitrate). With the defined notations, we write

our problem with the quality-maximization objective as:

maximize

U
∑

u=1

mpu,xu,yu (5.2a)

s .t . :
U
∑

u=1

yu ≤ R; (5.2b)

ǩu′ ≤ yu′ ≤ k̂u′ , ∀ 1 ≤ u′ ≤ U ; (5.2c)

1 ≤ xu ≤ F, 1 ≤ yu ≤ B, ∀ 1 ≤ u ≤ U. (5.2d)

For the quality-fairness objective, we replace Eq. (5.2a) with:

maximize

U

min
u=1

mpu,xu,yu . (5.3)
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Figure 5.6: Benefits of choosing optimal frame rate of different games: (a) Batman, (b)

FGPX, and (c) CoD.

The optimization problems are solved periodically, say once every T seconds in order to

accommodate to the system and network dynamics. In the next two sections, we present

optimal and efficient algorithms to solve the problems.

5.4.3 Optimal Algorithms

Solving the quality-maximization and quality-fairness problems is challenging due to the

complex relations among the frame rates, bitrates, games, and MOS scores. The problems

can be solved using commercial problem solvers. We use CPLEX [21] to solve our prob-

lems in Eqs. (5.2a)–(5.2d) and (5.3). The CPLEX comes with two solvers: CPLEX and

CP solvers. In our problems, because of the min(imum) operation in Eq. (5.3), we have to

use the CP solver. We refer to the CPLEX based algorithms for the quality-maximization

and quality-fairness problems as OPTavg and OPTmm, respectively.
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5.4.4 Efficient Algorithms

While the OPTavg and OPTmm algorithms give the optimal bitrate allocation, they suffer

from exponential running time, and are not suitable to delay-sensitive applications like

game streaming applications. Next, we develop two efficient algorithms. The intuition

behind the efficient algorithms is iteratively allocating some bandwidth to the gamer that

can boost the objective function value the most. Given that we iteratively add more bitrate

to each gamer, the bitrate of any gamer is known at each step. With the MOS model in

Eq. (5.1), we can derive the optimal frame rate f ∗(b, g) for a gamer playing game g at the

accumulated bitrate b. More specifically, by taking the partial derivative of Eq. (5.1) with

respect to f , we have the optimal frame rate as:

f ∗(b, g) =
−(αg,1 + αg,5b)

2αg,3

, (5.4)

which selects the optimal coding parameter for a single gamer. Next, we write the MOS

scores under f ∗(b, g) as mos∗(g, b), where:

mos∗(g, b) =αg,1f
∗(g, b) + αg,2b+ αg,3(f

∗(g, b))2

+αg,4b
2 + αg,5f

∗(g, b)b+ αg,6. (5.5)

We plot the best MOS scores mos∗(g, b) derived from the model parameters (given in Ta-

ble 5.2) in Fig. 5.5. This figure shows thatmos∗(g, b) curves are monotonically increasing

and saturate at ∼ 2 Mbps. We also plot the optimal, mean, and worst MOS scores of dif-

ferent games in Fig. 5.6. This figure reports how much benefit we can get when choosing

the bitrates using Eq. (5.4). The gaps between the optimal and the worst MOS scores in

Batman, FGPX, and CoD are up to 1.885, 1.410, and 1.122, respectively. Such gaps are

nontrivial, and thus show the effectiveness of our approach.

Using Eqs. (5.4) and (5.5), we essentially transform the problem of choosing the best

xu (frame rate) and yu (bitrate) into selecting the best yu. For the efficient algorithms, we

start from setting ŷu = ǩu for all 1 ≤ u ≤ U , and iteratively add bitrate to the gamer

that needs additional bitrate the most. We let w be the unit of allocating additional bitrate,

and set w = 1 kbps if not otherwise specified. At each step, we define an MOS score

improvement function cu as:

cu = mos∗(pu, ŷu + w)−mos∗(pu, ŷu), (5.6)

which quantifies the benefits of investigating bandwidth w to gamer u. We also use R̂ to

denote the residue bandwidth on the bottleneck link.

For the quality-maximization problem, we iteratively allocate w to the gamer with the

highest MOS improvement cu that has not exceeded the bandwidth limitation and quality-

saturating bitrate (Eq. (5.2c)). More specifically, we first put all U gamers in a heap sorted

63



on their cu in the descending order. We then follow this order to allocate the residue band-

width until we reach the limitation of the constraint
∑U

u=1 ŷu ≤ R. The pseudocode of

our proposed EFFavg is given in Fig. 5.7. For the quality-fairness problem, we iteratively

allocate w to the gamer playing with the lowest MOS score. More specifically, we first

put all the gamers in a heap sorted on their current MOS scores mos∗(pu, ŷu) in the as-

cending order. We then follow the order to allocate w to gamer u, as long as the allocation

does not violate the limitation of the constraint
∑U

u=1 ŷu ≤ R. The pseudocode of our

proposed EFFmm is given in Fig. 5.8.

1: let R̂ = R

2: store gamers in a heap on quality improvement cu(·) in the dsc. order

3: while R̂ > 0 do

4: pop and remove the gamer u with the maximal cu(·) from the heap

5: if allocating ŷu + w on u satisfies (5.2c) then

6: let ŷu = ŷu + w

7: let R̂ = R̂− w

8: insert the gamer u to the heap

9: else

10: remove gamer u from the heap

11: let y∗u = ŷu ∀ 1 ≤ u ≤ U

12: return all y∗u

Figure 5.7: The pseudocode of the EFFavg algorithm.

1: let R̂ = R

2: store gamers in heap on MOS scores mos∗(·) in the asc. order

3: while R̂ > 0 do

4: pop and remove the gamer u with the minimal mos∗(pu, ŷu) from the heap

5: if allocating ŷu + w on u satisfies (5.2c) then

6: let ŷu = ŷu + w

7: let R̂ = R̂− w

8: insert the gamer u to the heap

9: else

10: remove gamer u from the heap

11: let y∗u = ŷu ∀ 1 ≤ u ≤ U

12: return all y∗u

Figure 5.8: The pseudocode of the EFFmm algorithm.
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Lemma 7 (Optimality of EFFmm). The EFFmm algorithm produces optimal bitrate allo-

cation.

Proof. The EFFmm algorithm always allocates residue bandwidth w to gamer u with the

lowest MOS score at each step. Consider any alternative allocation of w to a gamer

u′ 6= u. We note that adding w to yu′ does not improve the objective function value in

Eq. (5.3). Compared to allocating w to u, this alternative allocation must be followed by

allocating another w bandwidth to u to reach the same objective function value, as gamer

u is the gamer with the lowest MOS score. Hence, no alternative allocation can lead to

better solution when R̂ = 0. This yields the lemma.

Lemma 8 (Optimality of EFFavg). The EFFavg algorithm produces optimal bitrate allo-

cation if the slope of mos∗(g, b) monotonically decreases when the bitrate is increased.

Proof. The MOS score improvement cu defined in Eq. (5.6) is proportional to the slope.

Since EFFavg allocates residue bandwidth to the gamer with the highest cu, the algorithm

always finds the steepest slope at the current step (locally) and across all future steps

(globally). This yields the lemma.

Next, we check whether the slope of mos∗(g, b) is monotonically decreasing under

the empirically-derived model parameters. First, we take double derivative of mos∗(g, b)

in Eq. (5.5), which leads to:

mos∗(g, b)′′ =2αg,4 − α2
g,5/2αg,3. (5.7)

mos∗(g, b) is monotonically decreasing if the value of this equation is negative. The

model parameters in Table 5.2 satisfy the condition. Hence EFFavg is optimal.

Lemma 9 (Time Complexity). The EFFavg and EFFmm algorithms terminate in polyno-

mial time.

Proof. We first create the max heap and min heap for EFFavg and EFFmm, respectively.

For the outer loop, we go through all residue bandwidth R̂. We also make sure that in each

iteration, the value of R̂ is decreased at least w kbps, which is a small integer. Hence, the

complexity of the outer loop is O(R). Inside the loop, we first pop and remove the first

gamer. In this step, the time complexity is O(log(U)). Next, we check the condition and

try to modify the bitrate of the gamer u. If the bitrate is changed, we insert u to the heap

and decrease the value of R̂, which also costs O(log(U)). Hence, the complexity of the

two efficient algorithms is O(Rlog(U)).
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Figure 5.9: Performance of different algorithms: (a) mean MOS scores, (b) worst MOS

scores, (c) overall efficiency, and (d) allocated average bitrate per gamer.

5.5 Evaluations

5.5.1 Setup

We build our simulator using Java and implement the proposed efficient algorithms in

the simulator. For comparisons, we also implement two baseline adaptation algorithms

called Baseeq and Basenorm. The Baseeq algorithm equally allocates the available network

resources to the gamers. Basenorm algorithm allocates the available network resources

to gamers proportional to the average MOS scores of the games played by individual

gamers. For example, the overall MOS score of Batman is higher, and Basenorm allocates

more network resources to Batman for better overall MOS scores. For brevity, Baseeq and

Basenorm set the frame rate to be 30 fps if not otherwise specified.

For realistic simulations, we drive the simulator using real traces. Each new gamer u

is randomly assigned a bandwidth k̂u based on the worldwide bandwidth dataset collected

between January and October 2014 [36]. Each gamer also randomly selects a game from

Batman, FGPX, and CoD. We use Amazon EC2 and PlanetLab nodes to collect traces of

data center bandwidthR. We create a virtual machine in Amazon’s data center in Virginia,

and select four PlanetLab nodes at the US East Coast. We use iperf to measure the
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bandwidth from the EC2 to each PlanetLab node once every 15 minutes for a whole day

on October 12, 2014. Then, for each sample, we pick the maximal bandwidth across all

four nodes, and use it as the data center bandwidth R. The average R over the 96 samples

is 760 Mbps.

Table 5.3: MOS Scores of the Efficient and Optimal Algorithms

# of Gamers
OPTavg EFFavg

# of Gamers
OPTmm EFFmm

Mean Mean Worst Worst

100 5.16 5.16 1 5.53 5.53

200 5.15 5.15 2 5.01 5.01

400 5.15 5.15 4 4.91 4.91

800 4.49 4.49 8 4.91 4.91

Table 5.4: Running Time of the Efficient and Optimal Algorithms (s)

# of Gamers
OPTavg EFFavg

# of Gamers
OPTmm EFFmm

Mean Max Mean Max Mean Max Mean Max

100 0.02 0.03 0.090 0.097 1 0.02 0.01 0.009 0.009

200 0.15 0.16 0.102 0.103 2 0.36 0.37 0.015 0.016

400 0.95 0.96 0.153 0.157 4 4.47 4.48 0.022 0.023

800 5.01 5.02 0.237 0.248 8 125.8 127.1 0.029 0.029

Using the traces, we run multiple 1-day simulations. We configure the simulator to

solve the adaptation problem once every T = 60 seconds if not otherwise specified. We

vary the number of gamers U ∈ {250, 500, 1000, 2000, 4000}. We run the simulations on

a PC with a 2.8 GHz i7 processor and 16 GB memory. The considered metrics are:

• MOS: the overall MOS score. We report both average MOS scores across all

gamers, and the worst MOS scores among them. They align with objective func-

tions of the quality-maximization and quality-fairness problems.

• Bitrate: the bitrate consumed by each gaming session.

• Efficiency: the ratio between the MOS score over the consumed bandwidth in Mbps.

• Running time: the execution time of each run of the adaptation algorithms.

In the next section, we report average results with 95% confidence intervals whenever

applicable.

5.5.2 Results

Comparisons between the optimal and efficient algorithms. We first compare the effi-

cient algorithms against the optimal ones. Invoking OPTavg and OPTmm potentially takes

prohibitively long time, and thus we set U ∈ {100, 200, 400, 800} and U ∈ {1, 2, 4, 8} for
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OPTavg and OPTmm, respectively. We run each setting for a day and report the average

MOS scores and running time in Tables 5.3 and 5.4. Table 5.3 shows that our proposed ef-

ficient algorithms indeed produce the optimal adaptations, as proved in Lemmas 10 and 8.

Table 5.4 reveals that the efficient algorithms run much faster than the optimal ones: more

than 21 and 4337 times of running time reductions are observed for quality-maximization

and quality-fairness problems. The running time gap is going to be even bigger with more

gamers, as EFFavg and EFFmm run in polynomial time, but OPTavg and OPTmm do not.

Given that the efficient algorithms achieve the optimal adaptations in polynomial time,

we no longer consider the optimal algorithms in the rest of this section.

Comparisons between the efficient and baseline algorithms. We first report the

performance results of the efficient and baseline algorithms in Fig. 5.9. Fig. 5.9(a) and

5.9(b) show that the proposed EFFavg and EFFmm achieve the design goals: (i) EFFavg

leads to the highest average MOS scores and (ii) EFFmm results in the highest worst MOS

scores. Moreover, they outperform the two baseline algorithms by up to 30% and 46%.

Fig. 5.9(c) reveals that EFFavg leads to higher efficiency than EFFmm, but both of them

outperform the baseline algorithms. Last, Fig. 5.9(d) shows that when U ≥ 500, all

four algorithms allocate roughly equal bitrate to gamers. This indicates that the superior

performance of our efficient algorithms is not built upon excessive resource consumption.

We take a closer look by reporting the link utilization in Fig. 5.10. Fig. 5.10(a) reveals that

our efficient algorithms lead to gamer link utilization no larger than those of the baseline

algorithms. Furthermore, more gamers result in lower gamer link utilization, indicating

that the bottleneck is at the data center. This is confirmed by Fig. 5.10(b): the data center

link utilization reaches 100% when there are more than 500 gamers. Another observation

on Fig. 5.10 is that no algorithm overloads the links, which illustrates the correctness of

our algorithm design and simulator implementation.
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Figure 5.10: Link utilization: (a) across all gamers and (b) of the data center under differ-

ent adaptation algorithms.
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Figure 5.11: Mean MOS scores under different numbers of gamers using two adaptation

algorithms: (a) EFFavg and (b) EFFmm.

Difference between EFFavg and EFFmm. The two efficient algorithms target dif-

ferent optimization criteria, and are optimal in terms of mean MOS scores and mini-

mum MOS scores, respectively. We plot the average MOS scores of individual games in

Fig. 5.11. Fig. 5.11(a) shows that with EFFavg, the gamers playing Batman achieve higher

MOS scores, which can be attributed to the optimization criterion: investing bandwidth

on Batman leads to higher improvement on the MOS scores. In contrast, Fig. 5.11(b)

demonstrates that EFFmm indeed achieves fairness on the MOS scores: gamers playing

all three games achieve the same MOS score except when U = 250. A closer look (cf.

Fig. 5.10(b)) indicates that when there are fewer gamers, there are actually more than

enough bandwidth for all gamers to achieve the highest MOS scores. This demonstrates

that our EFFmm algorithm is designed in a way that it does not only maintain fairness, but

also capitalize all the available resources.

Implication of different data center available bandwidth. We report the MOS

scores under different values of R ∈ {0.5R, 1R, 2R, 4R} in Fig. 5.12. It shows that

when the available bandwidth becomes higher, the gap between our efficient algorithms

and the baseline algorithms becomes smaller. This can be explained by Fig. 5.12(b),

which shows that higher available bandwidth results in low data center link utilization.

More specifically, when the data center bandwidth increases, gamers’ links become the

bottlenecks. This in turn reduces the optimization room of our efficient algorithms, and

results in smaller gaps.

Our efficient algorithms scale to large problems. To verify the scalability of our

efficient algorithms, we measure the running time of the EFFavg and EFFmm algorithms

under various number of gamers. We report the average running time in Table 5.5, which

shows that it takes at most ∼ 1.7 seconds to solve an adaptation problem with more than

8000 gamers, showing that the efficient algorithms scale to large scale cloud-to-things
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Figure 5.12: Impacts of different available bandwidth R: (a) average MOS scores and (b)

data center link utilization.

continuum platforms running with game streaming applications.

Table 5.5: Running Time in Seconds

# of Gamers
EFFavg EFFmm

Mean Max Mean Max

500 0.181 0.183 0.179 0.184

1000 0.296 0.299 0.287 0.290

2000 0.523 0.531 0.520 0.533

4000 1.000 1.104 1.060 1.066

8000 1.677 1.681 1.654 1.661

5.6 Discussion

In this chapter, we studied the problem of adapting game streaming sessions to maximize

the gamer experience in dynamic environments in three steps. We extend and modify

gamer experience model and implement adaptation mechanism from Hong et al. [104].

With the gamer experience model and adaptation mechanism, we presented two formu-

lations with different optimization criteria of: (i) maximizing the average MOS scores

across all gamers and (ii) maximizing the minimum MOS scores among all gamers. We

then proposed two optimal and two efficient algorithms to solve these two adaptation

problems. We analytically showed that the proposed efficient algorithms run in polyno-

mial time, yet achieve optimal adaptations. We carried out extensive trace-driven simu-

lations, and the simulation results comply with our analysis. In addition, the proposed

efficient algorithms: (i) outperform the baseline algorithms by up to 46% and 30%, (ii)

run fast and scale to large (≥ 8000 gamers) problems, and (iii) indeed achieve the user-

specified optimization criteria.
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Chapter 6

Application Specific Optimization:

Delay-Insensitive Application

After deploying the applications with the algorithms proposed in Chapter 4, we start to

optimize the running delay-insensitive applications in this chapter. We select one rep-

resentative delay-insensitive application, which will be introduced in Sec. 6.1. We will

survey the related studies in Sec. 6.2, conduct a user study to know user experience in

Sec. 6.3, write problem statements for optimizing the applications and design my solu-

tions in Sec. 6.4, evaluate them in Sec. 6.5, show a real deployed testbed in Sec. 6.6, and

report a summary in Sec. 6.7.

6.1 Multimedia Content Delivery Applications

Our selected delay-insensitive application is multimedia content delivery applications

over challenged networks. Multimedia content has dominated the global Internet traf-

fic and shows no trend of slowing down, e.g., Cisco’s report predicts that video traffic

alone will take more than 80% of the Internet traffic by 2020 [8]. While such reports

demonstrate the importance of disseminating multimedia content, not all world citizens

have the luxury of high-speed Internet access. In fact, International Telecommunications

Union (ITU) reports that only 7% of households in the least developed countries have

the Internet access compared with the world average of 46% [27]. In addition, although

global mobile subscriptions are excepted to grow to more than 7.2 billion by the end of

2016, a large fraction of these subscriptions do not have access to the Internet, especially

in developing countries and rural areas. For example, even including major cities like

Cairo, Mumbai, and Shanghai, only about 15%, 21%, and 30% of mobile users in Africa,

India, and China have cellular data plans [20, 26, 43]. The above statistics reveal the so-

called digital divide, which refers to the inequality among world citizens in accessing and
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using information and communication technologies. Furthermore, given the increasing

trend of disseminating information over the Internet in recent years, instead of traditional

media outlets (e.g., radio, TV, and newspapers), the digital divide may have detrimental

social and economic impacts in developing countries and rural areas.
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Figure 6.1: High-level operations of the proposed content delivery application running on

our cloud-to-things continuum platform for distributing multi-layer multimedia content

over challenged networks.

In this chapter, we implement a multimedia content delivery application running on

our cloud-to-things continuum platform to reduce the digital divide gap by disseminating

multimedia content to users with limited or no Internet access. Specifically, we consider

mobile users that may not have cellular data plans, but they are interested in receiving

various types of multimedia content such as news reports, notification messages, targeted

advertisements, movie trailers, and TV shows. We assume that content providers, such

as news agencies, advertisers, and government authorities, are interested in reaching such

users for gaining more revenues (through for example ads) or impacting/informing them

(through disseminating important messages and news). To do so, content providers push

their content to fog devices in various places, such as coffee shops, city halls, public

markets, and schools. These fog devices have Internet access through which they can

receive multimedia objects from content providers. The fog devices are also connected to

local WiFi access points, which can be used by mobile users to connect to the fog devices

when they are within the communication ranges.

6.1.1 Usage Scenarios

In Fig. 6.1, we illustrate the high-level operations of the application by considering one

day of a user, who owns a mobile device but without a data plan. The user is interested in
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specific types of multimedia content, such as news and cooking TV shows. The user takes

his/her kids to the school, works at the city hall, and buys food at the market, where WiFi

access is available and fog devices are installed. When the user is in the range of a WiFi

access point, the associated fog device will transmit various multimedia objects to the

user’s smartphone. These multimedia objects mostly contain what the user is interested

in, but they may also contain other objects to be relayed to other mobile users that the user

will likely come across during the day. As the user moves throughout the day and runs

into other mobile users, the user will exchange different multimedia content with others

over an ad-hoc network. By the time the user gets back home, his/her mobile device

would have collected (from proxies and other mobiles) most of the multimedia content

the user is interested in watching, as well as helped other users in getting the content they

are interested in. In addition, based on the routes the user takes, and thus the distributed

fog devices and the mobile user comes across and their capacities, the user may obtain

the desired multimedia objects at different levels of quality.

We notice that the user in the above example has, in fact, an intermittent network ac-

cess via a non-traditional network called a challenged network [138], which suffers from

frequent link downs, long queueing delays, high dynamics, and scarce resources [83].

Disseminating multimedia content over the conventional Internet has been studied in the

literature [73, 89, 93, 109]. In particular, Chen et al. [73] propose to save bandwidth of

streaming services by predicting the viewers’ departure patterns. Hu et al. [109] build a

relay network with multiple servers to reduce the streaming end-to-end latency, and solve

a server selection problem. The studies in [89, 93] solve the energy-efficient video deliv-

ery problems by rate adaptation mechanism and multiple network interfaces, respectively.

Because these studies [73, 89, 93, 109] assume always-on Internet access, their solutions

do not work in challenged networks. A few other studies consider data communications

in challenged networks, e.g., Mota et al. [138] and Ntareme et al. [145] distribute short

messages, such as emails and hazard/criminal alarms, whereas Gao et al. [86] propose a

solution not designed for multimedia content and heterogeneous user interests. In fact, to

our best knowledge, the serving the multimedia content delivery application in a cloud-

to-things continuum platform is one of the first of its kind: it intelligently disseminates

multimedia content among users with limited or no Internet access.

6.1.2 Challenges

The crux of optimizing the application is to create a personalized distribution plan for

each user, in order to intelligently distribute multimedia content: (i) at the best time, (ii)

to the right mobile users, and (iii) at the highest possible quality. The best time refers to

the contact with the best channel condition, which in turn results in faster data transfer
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and lower energy consumption. The right mobile users are the ones who are likely to be

interested in the given multimedia content; otherwise, the transfer energy would simply

be wasted. The highest possible quality is measured as the average user experience across

all watched multimedia content among all mobile users. Achieving all these complex

conditions related to multimedia content, mobile users, and intermittent networks makes

computing the best personalized distribution plan complicated and challenging. There are

three main challenges are listed below:

• Quantifying user experience In this chapter, we aim to optimize the multimedia

content delivery application to maximize user experience. However, the application

is used to solve digital divide. Hence, we cannot use some classic metrics, such as

PSNR and number of received contents to model the user experience. We have to

design and conduct a user study to model the user experience. Modeling such user

experience is challenging because it requires many participants to derive the model.

Moreover, conducting the user study and recruiting such large number of partici-

pants in a lab is tedious and expensive. In this chapter, we leverage a crowdsourcing

platform to conduct the user study (Sec. 6.3).

• Estimating user behaviors To deliver the multimedia content to our users, we need

to know the behaviors, such as trajectories and interests of the users. However, it

is challenging to know these information because users have their own daily life

with different trajectories and different users are interested in different multimedia

content.

• Planning content distributions After solving the first and second challenges, we

have user experience and behaviors as inputs to make distribution plans. However,

the distribution planning problem is a complicated (actually a NP-hard problem)

because it is difficult to optimally make a detailed personalized plans while consid-

ering various factors, such as network resources, disk resources, energy resources,

user experiences, user interests, and user trajectories.

6.1.3 Software Components

Fig. 6.2 shows three main components for solving the challenges and optimizing the ap-

plication : (i) Content Matcher, (ii) Contact Predictor, and (iii) Distribution Planning Al-

gorithm. The first two components leverage multiple off-the-shelf machine learning tools

and we briefly describe them in the following. The third component contains our novel

algorithm for managing the distribution of multi-layer multimedia content to mobile users

over challenged networks; it is described in details in Sec. 6.4.
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Figure 6.2: The interactions between the multimedia content delivery applications and the

delay-insensitive optimizer.

The Content Matcher collects user interests, which may be manually specified by

mobile users, or derived from collecting recently watched multimedia content. It then

determines a ranked-list of multimedia content that matches users interests. This is done

by extracting keywords that represent each multimedia object.

The Contact Predictor estimates the future contact locations of each user using, e.g.,

trajectory patterns [137], social networks [76], or a frequency-based approach. Upon

the contact locations are determined, the contact durations can be predicted using the

techniques proposed in [128]. We note that human mobility is highly predictable, and

85% of the time a mobile user stays at his/her top 5 favorite locations [91].

The Distribution Planning Algorithm computes the distribution plans for all known

users. The plans are then pushed to each mobile user along with the user’s profile to the

fog devices that are on the user’s contacts. The mobile user fetches the distribution plan

when being within proximity of any of these fog devices. Some mobile users may fail

to find their own distribution plans, because they are new to the system or dramatically

change their daily trajectories. In this case, the nearest or the current fog device to which

the user is attached to will assign that user the plan of the closest mobile user profile.

Therefore, even if the exact distribution plan is not available at a fog device, the most

suitable one can be sent to the mobile user.

We consider different types of multimedia content, including news reports, video

clips, notification messages, targeted advertisements, movie trailers, and TV shows. Each

multimedia content has different representations that are suitable under different circum-

stances. For example, for mobile users with a few short contacts, distributing videos to
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them may not always be possible. In contrast, a well-connected tablet computer user may

allocate more energy and disk budgets for high-resolution videos. In fact, each multime-

dia content can be rendered in the following representations: text (if applicable, e.g., for

news), images, left-channel audio, stereo audio, and low-, medium-, and high-resolution

videos. Advanced codecs may be used to exploit the redundancy across adjacent repre-

sentations, e.g., Scalable Video Coding (SVC) [62,160] allows us to incrementally encode

videos in different resolutions (and other scalability modes), in order to reduce the band-

width consumption. With these scalable codecs, higher layers are not decodable without

lower layers; for example, the high-resolution video representation contains medium-

and low-resolution video layers. Hence, there exists a linear dependency among the lay-

ers. This is because lower layers typically have much smaller sizes, e.g., if we already

request for the image layer, the bandwidth consumed by the text layer is relatively neg-

ligible. Last, different user experience is observed when watching multimedia content in

different representations. In Sec. 6.3, our user study indicates that the user experience

improvement follows a saturated function, when the received data amount increases. For

example, moving from nothing to the text of a news report is a huge jump, while moving

from medium- to high-resolution videos is less dramatic. Such observation also motivates

our multiple representation approach.

6.2 Related Work

We deliver multimedia content over opportunistic networks and we deploy fog devices

to cache and disseminate multimedia content. The most important and unique design of

our content delivery application is the personalized distribution plan which has not been

considered by prior studies that only consider: (i) delivering short messages over oppor-

tunistic networks, (ii) disseminating multimedia content over wired/wireless networks,

and (iii) caching Web content among mobile devices. In the following, we survey the

related work in these three categories.

6.2.1 Opportunistic Networks

Opportunistic networks include delay-tolerant networks and challenged networks [138].

Delay-tolerant networks have been studied in the literature [12, 22, 83]. For example,

Fall [83] proposes a network architecture composed of resource-constrained mobile de-

vices, which is essentially an overlay network above the transport layer. Challenged

networks have also been studied, such as flooding [169], message ferrying [192], and

social-based forwarding [115]. Prior studies on forwarding messages in opportunistic
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networks can be categorized based on assumptions, such as controlled devices, unlimited

resources, and predictable contacts. The naive flooding [169] and controlled flooding [95]

are less efficient forwarding protocols in practical settings. Message ferrying [192] im-

proves the efficiency based on the knowledge of ferry routes and contact predictability.

Device mobility [75], controlled mobility of some nodes [65], and contact history [64]

are also used for more efficient opportunistic networks. Capturing intrinsic behavior on

social networks, researchers are able to design social-aware forwarding algorithms [115]

that consider ranking or centrality information of mobile devices. However, the afore-

mentioned studies focus on short messages instead of multimedia content.

Vahdat and Becker propose Epidemic [169] routing to deliver messages over ad-hoc

networks. Epidemic routing transmits all cached content at a node to any other node

that gets in contact with it. Epidemic routing results in optimal performance in terms of

delivery delay and delivery ratio, but it imposes the highest delivery overhead. Hence,

researchers, such as [57], in opportunistic networks area often use Epidemic as a baseline

for the performance bound under the assumption of unlimited resources. CSI [108] dis-

seminates messages among mobile devices, and leverages the user behavior to improve

the dissemination efficiency. In particular, CSI collects mobility data of mobile users

to compute their similarity and disseminates the requested messages accordingly. CSI

and its variants [146] are probably the closest work to ours, although they only consider

short messages. Since Epidemic [169] and CSI [108] are representative schemes in the

literature, we adopt them as the baseline algorithms in the evaluations (Secs. 6.5 and 6.6).

6.2.2 Multimedia Dissemination

Changuel et al. [70] focus on streaming videos to a large number of users. Kang and

Mutka [119] use P2P networks to reduce the cost of disseminating multimedia content

using cellular networks. Xiang et al. [182] design a P2P topology overlay based on clus-

tering mechanisms to improve the availability and Quality of Service (QoS). Mokhtarian

and Hefeeda [136] study the resource allocation problem in P2P streaming system with

multi-layer scalable videos. In Device-to-Device (D2D) networks, Zhou [194] and Zhang

et al. [187] optimize for delivery delay and user experience when disseminating multime-

dia content, respectively. Zhang et al. [188] adopt smartphones in cellular networks as

helpers to disseminate multimedia content. Unlike our work, D2D studies [187,188,194]

assume that cellular infrastructure is available, and smartphone users run into one another

very often. Zhang et al. [189] propose a hybrid approach of CDN and P2P networks

to disseminate multimedia content. MicroCast [121] proposes to group multiple mobile

users, to share their cellular connectivities over short-range auxiliary networks for better

video streaming quality. Hanano et al. [94] utilize both WiFi and cellular networks to
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disseminate video advertisements. Do et al. [79] and HybCast [78] concurrently leverage

cellular and ad-hoc networks for (video) file dissemination. Other multimedia dissemina-

tion studies [135, 144, 177, 181] focus on multiple representations of multimedia content

for dissemination to clients with heterogeneous resources, such as network, energy, and

computing power. Different from us, these multimedia studies are not customized for

challenged networks, where clients are often without the Internet access.

6.2.3 Caching

Qian et al. [152] show that caching can eliminate redundant network traffic while dissem-

inating Web content. Users’ browsing behaviors and machine learning algorithms [132,

191] are adopted by proactive Web content caching. Cooperative caching improves per-

formance of Web applications in opportunistic networks. The technique proposed in [86]

caches data in a set of easily accessible mobile devices and exercises the tradeoff between

data accessibility and caching overhead. Wang et al. [176] leverage the popularity ranks

to support cooperative caching under opportunistic networks via BlueTooth or WiFi. Be-

sides, a cooperative caching system [116] is proposed for interactive Web applications

over challenged networks. Unlike our distribution planning algorithm that jointly consid-

ers multimedia content, mobile users, and intermittent networks, prior studies on caching

only consider limited aspects, e.g., Isaacman and Martonosi [116] do not consider the

detailed distribution plans.

6.3 Crowdsourced User Experience of Different Repre-

sentations

We carefully design a user study by using a crowdsourcing platform [6] to quantify the

user experience of different representations of multimedia content. The user experience

of different media types may be quantified in different metrics, such as latency (ms), en-

ergy (J), and resolution (pixels). For example, latency is the most important user experi-

ence metric for interactive multimedia applications, like teleconferencing calls and online

games. In this chapter, we focus on disseminating news reports to eliminate digital divide

in challenged networks, and thus we adopt understanding level as the user experience

metric. The understanding level is quantified through questionnaires in Mean Opinion

Score (MOS) between 1 and 5. We note that the understanding levels may be affected

by not only media types and audio/video quality, but also news structure and complexity.

To avoid biased results, we retrieve news reports from a reputable news agency (Apple

Daily in Taiwan, as an example), and thus the news reports have comparable structure
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Figure 6.3: A sample questionnaire used in our user study.

and complexity. We present the detailed user study design below. We emphasize that

understanding level is just a sample user experience metric; other user experience metrics

should be adopted for other multimedia applications, while our user study procedure is

also applicable.

In the user study, each participant watches several random news reports from Apple

Daily using a mobile device. After watching each news report, participants fill out their

ages and genders. They then answer 5 questions related to the news report. The first

question asks the participant to input their understanding level in MOS scores. The scores

are normalized to between 0 and 100% in our analysis. The next 4 challenging questions

are multiple-choice questions on the news report for checking if a participant really com-

prehends the news report. We keep track of the viewing time of each news report and the

number of correctly-answered challenging questions for filtering purpose detailed below.

We also allow each participant to skip a news report anytime. A sample questionnaire and

our Web interface opened with a smartphone are shown in Fig. 6.3.

We recruit 182 participants throughout our user study. There are 24 news reports cho-

sen from the following news categories: sports, society, health, finance, politics, history,
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nature, and life. We generate 5 representations: text, audio, 240p, 360p, and 480p videos,

for each news report. For each participant, we play a random news report at a random rep-

resentation, and a participant may opt to watch more news reports. In total, we gather 2108

user experience scores, and we filter out the scores: (i) with zero correctly-answered chal-

lenging questions, (ii) with inconsistent answers in (intentionally) duplicated challenging

questions, and (iii) with viewing time shorter than the audio/video length. Eventually, we

get 587 valid user experience scores from 120 participants. The average, minimum, and

maximum ages of these participants are 29, 16, and 63 years old, respectively. Addition-

ally, 45% of the participants are male. We report the average user experience scores in

Table 6.1, and through it we make two observations. First, more layers lead to better user

experience. Second, the improvement on user experience is diminishing, e.g., articles

give 55% improvement, while 480p videos give 77%-74% = 3% improvement.

The user study results inspire our solution presented in Sec. 6.4, and are used in our

evaluations. We note that some studies [162, 163, 171] optimize multimedia disseminat-

ing system in different QoS metrics, including delivery delay and energy consumption.

Compared to these studies, in this chapter, we aim to eliminate digital divide. Although

delivery delay and energy consumption are not our user experience metrics, we carefully

design our algorithms and systems to achieve reasonable delivery delay and energy con-

sumption.

Table 6.1: Crowdsourced User Experience Scores

Article Audio 240p Video 360p 480p

Average 55% 68% 71% 74% 77%

No. Samples 112 112 134 104 125

6.4 Distribution Planning Problem and Solution

6.4.1 Notations

Table 6.2 lists all symbols used in this article. We consider a distributed system that

delivers multimedia content to U mobile users. Mobile users communicate with S fog

devices. LetN be the total number of multimedia objects and L be the number of layers of

each multimedia content. Layer l (1 ≤ l ≤ L) is only decodable/meaningful if all layers

l′ ≤ l have also been received. We define the delivery unit as a layer of a multimedia

content, and unit i = nL + l is a unique identifier pointing to layer l of multimedia

content n. We let ρi (1 ≤ i ≤ NL) be the user experience improvement when receiving

unit i in addition to all layers beneath it. We let bi be the size of unit i, and ψu,n be the
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Table 6.2: Symbols Used Throughout this Chapter

Sym. Description

S Number of fog devices

U Number of mobile users

N Number of multimedia content

L Number of layers of each multimedia content

Cu Number of contacts of user u

bi Size of unit i

ψu,n Viewing probability on multimedia content n of a mobile user u

ρi User experience improvement of unit i

ψ̄ Minimal viewing probability

pu,c Contacted party of user u in contact c

κu,c Contact duration of user u in contact c

ru,c Throughput of user u in contact c

êu,c Per-byte transmitting energy consumption of user u in contact c

ěu,c Per-byte receiving energy consumption of user u in contact c

qu Energy budget of user u

du Disk budget of user u

ru,cκu,c Network budget of user u in contact c

q̂′u,c Upload energy budget of user u in contact c

q̌′u,c Download energy budget of user u in contact c

d′u,c Disk budget of user u in contact c

a Number of days of historical data for training

τu Contribution potential of user u

ιu Number of unit be selected of user u in each round with our algorithm

Zu A list to store possible units can be downloaded by user u

F Maximal segment size

probability of mobile user u to watch multimedia content n. We let ψ̄ be the minimal

viewing probability: a mobile user would not request a multimedia content from another

mobile user who is unlikely to watch it.

We let T be the number of time slots that are considered in our formulation, and

t = 0 be the starting time slot. We assume that mobile users’ trajectories are given, i.e.,

each user’s location at every time slot is provided by some localization and prediction

techniques. With mobile users’ trajectories and fog devices’ locations, the sequence of

contacts during time [0, T ] is determined. Each contact happens between two parties,

which can be either mobile users or fog devices. We let Cu be the number of contacts for

user u, and C = maxUu=1Cu. A mobile user can have multiple concurrent contacts. In this

case, it equally divides the contacts into disjoint contacts along the time domain, where

each contact has exactly two parties. That is, simple time-division multiplexing is done

to avoid interference due to concurrent transfers. We let pu,c be the other party of contact
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c (1 ≤ c ≤ Cu) of user u (1 ≤ u ≤ U ), where 1 ≤ pu,c ≤ U + S. When pu,c ≤ U , it

points to mobile user pu,c, while pu,c > U , it points to fog device pu,c −U . Last, we write

the duration of contact c of user u as κu,c.

Combining the contacts with trajectories, we can estimate the throughput and energy

consumption of each contact. In particular, we write the receiving throughput of contact

c of user u as ru,c, the transmitting per-byte energy consumption as êu,c, and the receiving

per-byte energy consumption as ěu,c. Last, we use qu and du to represent the energy and

disk budgets of mobile user u during t ∈ [1, T ]. qu and du are user-specified parameters.

6.4.2 Problem Formulation

We first write the distribution plans as xu,n,l,c, where 1 ≤ u ≤ U , 1 ≤ n ≤ N , 1 ≤ l ≤ L,

and 1 ≤ c ≤ C. xu,n,l,c = 1 if mobile user u requests unit nL+l during contact c; xu,n,l,c =

0 otherwise. Then, we need to keep track of various types of resources: disk space, battery

level, and network traffic. We make an important observation: the amounts of resource

consumptions are proportional to unit sizes. Hence, we derive a unified budget Ru,c for

each contact c of user u, which is the resource cap imposed by the rarest resource among

disk, battery, and network. In particular, we define Ru,c = min (q̌′u,c, q̂
′
u,c, d

′
u,c, ru,cκu,c),

where q̌′u,c is the download energy budget, q̂′u,c is the upload energy budget, d′u,c is the disk

budget, and ru,cκu,c is the network budget.

The precise derivation of the resource budgets is as follows. We first divide the en-

ergy budget qu into q̌′u and q̂′u based on the number of contacted fog devices. Specifi-

cally, we let q̌u = qu
2
(1 +

∑Cu
c=1 max(min(pu,c−U,1),0)

Cu
), where the term in parentheses is the

weight on download energy: running into more fog devices means this user has more

chances to download than upload content. We then have q̂u = qu − q̌u. Next, we al-

locate the energy budgets to individual contacts, by setting q̌′u,c = q̌u
ru,cκu,c

∑Cu
c=1 ru,cκu,c

and

q̂′u,c = q̂u
ru,cκu,c max(min(U−pu,c+1,1),0)

∑Cu
c=1 ru,cκu,c max(min(U−pu,c+1,1),0)

. We notice that we do not allocate upload en-

ergy for users who run into fog devices since mobile users never send any multimedia

content to fog devices. Last, we allocate the disk budget by setting d′u,c = du
ru,cκu,c

∑Cu
c=1 ru,cκu,c

,

which is also proportional to the network budget normalized across all contacts.

With all the notations developed above, we write our distribution planning problem
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as:

max
U
∑

u=1

N
∑

n=1

L
∑

l=1

Cu′
∑

c=1

xu,n,l,c ρnL+l ψu,n (6.1a)

st :ψpu′,c′ ,n
′ ≥ ψ̄xu′,n′,l′,c′ ; (6.1b)

N
∑

n=1

L
∑

l=1

bnL+lxu′,n,l,c′ ≤ Ru′,c′ ; (6.1c)

Cu′
∑

c=1

xu′,n′,l′,c ≥
Cu′
∑

c=1

xu′,n′,l′′,c; (6.1d)

Cu′
∑

c=1

xu′,n′,l′,c ≤ 1; (6.1e)

∀u′ ∈ [1, U ], n′ ∈ [1, N ], (l′ < l′′) ∈ [1, L], c′ ∈ [1, Cu′ ].

xu,n,l,c ∈ {0, 1} ∀u, n, l, c.

The objective function in Eq. (6.1a) maximizes the expected overall user experience with

viewing probabilities across all mobile users. Eq. (6.1b) makes sure that mobile users

never request multimedia content from someone who is unlikely to watch it. Eq. (6.1c)

ensures that for each contact: (i) the contact duration is long enough to complete the

planned unit transfer under the given transmission throughput, (ii) the total size of planned

transmission does not exceed the user’s disk budget, and (iii) the total energy does not

exceed the energy budget. Eq. (6.1d) captures the layer dependency, i.e., higher layer l′′

is only decodable/meaningful when all its lower layers l′ are received. Eq. (6.1e) ensures

that users do not receive the same unit multiple times, which results in wasted resources.

Lemma 10 (Hardness). The considered distribution planning problem (Problem 6.1) is

NP-Complete.

Proof. We reduce the Multiple Knapsack Problem (MKP) to our Problem 6.1. The MKP

problem is written as:

max
J
∑

j=1

K
∑

k=1

vjyj,k (6.2a)

st :
J
∑

j=1

wjyj,k ≤ Ok ∀k = 1, 2, . . . , K (6.2b)

K
∑

k=1

yj,k ≤ 1; ∀j = 1, 2, . . . , J (6.2c)

yj,k ∈ {0, 1} ∀j = 1, 2, . . . J, k = 1, 2, . . . , K. (6.2d)

In the MKP problem, we consider J objects and K knapsacks. The boolean decision

variable yj,k indicates whether we want to put object j into knapsack k, while vj represents
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the profit of having object j. Each knapsack k has its capacity Ok, which is a resource

limit and each object j consumes a given amount of resource wj,k. The MKP problem

strives to pick a subset of objects, so that the total profit is maximized, while none of the

constraints are violated.

Given an MKP problem, we generate a corresponding Problem 6.1, as follows. First,

we let U = 1, L = 1, and ψu,n = 1, which means only one user would like to receive

multimedia content from fog devices. Moreover, each content has only one layer and the

viewing probability is 100%. Second, because we let U = 1, we write the number of

contacts Cu of user u as C and the resource constraint Ru,c as Rc. We then let C = K

and Rc = Ok. Third, because we let L = 1, we write the size of units bnL+l as bn and

user experience improvement ρnL+l as ρn. We then let bn = wj and ρn = vj . This

results in a proper instance of Problem 6.1 in polynomial time. In addition, a solution of

Problem 6.1 can be verified in polynomial time. Because we let U = 1 and L = 1, the

decision variable xu,n,l,c can be written as to xn,c. Hence, we let xn,c = yj,k, which yields

a solution of the MKP problem. Since MKP problem is NP-Complete, Problem 6.1 is

also NP-Complete.

6.4.3 Optimal Algorithm: DP

We solve the formulation in Eq. (6.1) using a Dynamic Programming (DP) algorithm,

which systematically skips redundant computations. DP memorizes the computed user

experience of a user u while downloading unit i during contact c with remaining unified

budget R′
u,c, where 0 ≤ R′

u,c ≤ Ru,c. Fig. 6.4 shows the pseudocode of our algorithm,

which recursively decides whether user u downloads unit i from one of the contacts or

does not download the unit, until the unified budget is used up or all units have been

considered. The proposed DP algorithm essentially conducts a grid search, and goes

through all possible solutions. Hence, the DP algorithm gives optimal solution at an

expense of high computational complexity, which is discussed in Lemma 11.

Lemma 11 (Time Complexity). The DP algorithm has an exponential time complexity.

Proof. The dynamic programming algorithm recursively solves the problem. Each recur-

sive function creates other C + 1 recursive functions as its children. Thus, the worst-case

time complexity of creating a plan for a user is O((C+1)NL). We need to create U plans,

thus O(U(C + 1)NL) is the time complexity of our DP algorithm. This exponential time

complexity may render the DP algorithm not feasible for some large problems. Hence,

we develop a heuristic algorithm in the following section.
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Input: User profiles, such as viewing probability ψu,n, multimedia content information,

such as size of a unit bi, and resource budgets Ru,c

Output: Distribution plan M
1: let M as the table to memorize the computed values

2: for all user u, contact c, and unit i do

3: Call Procedure DP (i, c, Ru, Ru,c)

4: procedure DP(i, c, Ru, R
′
u,c) Ru,c = R′

u,c

5: if R′
u,c ≤ 0 then //remaining resource is not enough

6: return −∞ //return negative user experience

7: if i = 0 then //all the units have been put into the plan

8: return 0

9: if M [i][Ru,1][Ru,2]...[Ru,Cu ] exists then

10: return M [i][Ru,1][Ru,2]...[Ru,Cu ]

11: let M [i][Ru,1][Ru,2]...[Ru,Cu ] =

12: //download from contact c

13: max(DP (i− 1, c, Ru, Ru,c − b[i]) + ρiψu,i/L) ∀c ∈ [1, Cu]

14: let M [i][Ru,1][Ru,2]...[Ru,Cu ] =

15: // do not download

16: max(DP (i− 1, 0, Ru, Ru,c),M [i][Ru,1][Ru,2]...[Ru,Cu ])

Figure 6.4: The pseudocode of our DP algorithm for solving the distribution planning

problem.

6.4.4 Efficient Algorithm: CDRR

We propose an efficient heuristic algorithm, called Contact-Driven Round Robin (CDRR),

for larger distribution planning problems. CDRR is based on three major intuitions:

1. Deliver higher user experience improvement using less resources (energy, disk, and

network budgets).

2. Send multimedia content to mobile users who have more chances to relay the con-

tent to others.

3. Download multimedia content from mobile users who have fewer chances to send

content to others.

In particular, we first define the resource efficiency as νu,nL+l = ψu,n × ρnL+l/bnL+l.

For each user u, we sort all units that exist on any contact user pu,c in the descending

order on resource efficiency. To avoid allocating too much resource to a single user, users

take turns to choose units from the sorted lists. In addition, we calculate the number of

contacts Cu and the contact duration κu,c, and we define the contribution potential of
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mobile user u as τu = Cu × ∑Cu

c=1 κu,c. In each round, user u chooses ιu units. We let

ιu = ⌈ τu
τ̂u
C̄⌉, where τ̂u is the highest contribution potential and C̄ = 1

U

∑U
u=1Cu. In this

way, users with higher contribution potential choose more units in each round. Then, for

each mobile user, we know the units to be downloaded. Last, we determine which contact

to download each unit. For each unit, user u selects the contact user pu,c with the smallest

contribution potential τpu,c , as long as the resources of users u and pu,c are enough for

transferring the unit. Receiving the unit from this contact user reduces negative impacts

on other users.

Fig. 6.5 gives the pseudocode of the CDRR algorithm. Lines 1–4 implement the first

intuition, and save all the units that may be downloaded by mobile user u (1 ≤ u ≤ U )

in a list Zu, which is sorted on resource efficiency. Lines 6–9 realize the second intuition,

where users choose units in a round robin fashion. Each user u gets to select up to ιu units

in each round. Lines 10–19 implement the third intuition to select the contact users to

download individual units. Lines 20–21 check if there are residue resources, and terminate

once resources are saturated.

Lemma 12 (Time Complexity). The CDRR algorithm terminates in polynomial time.

Proof. We first define H as the index set of unfinished users. Next, we create the sorted

units list Zu in lines 2–4, which has a complexity of O(UCNL log(CNL)) since the

maximal number of units of any contact user is NL. The for-loops starting from lines

6 and 7 both go through user u ∈ H until H is empty. In each iteration, we take turns

to check the units in Zu. We also make sure that at least one unit is removed and the

user u will be removed from H once Zu is empty. Since the maximal number of units

in Zu is CNL, the complexity of the loop is O(UCNL). Hence, O(UCNL log(CNL))

dominates and thus is the complexity of our CDRR algorithm.

Table 6.3: Sample Running Time and Total User Experience, GeoLife

No.

Content

Running Time (sec)
No.

Content

Total User Experience

DP CDRR
DP CDRR Perf. Gap

Mean Max Mean Max

1 0.08 0.08 0.05 0.05 1 0.43 0.42 3%

2 0.11 0.11 0.06 0.07 2 0.36 0.34 6%

3 0.19 0.19 0.63 0.66 3 0.33 0.31 6%

4 0.6 0.61 0.07 0.07 4 0.31 0.29 6%

5 1.8 1.8 0.07 0.08 5 0.27 0.25 7%

6 110.2 111.2 0.08 0.08 6 0.29 0.27 7%

7 269.4 457.2 0.08 0.09 7 0.29 0.27 7%
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Input: User profiles, such as contact duration κu,c, multimedia content information, such

as size of a unit bi, and resource budgets, such as the disk budget du

Output: The distribution plan xu,n,l,c
1: let H = {1, 2, 3, . . . , U} // index set of unfinished users

2: for u = 1 to U do

3: store units existing on any pu,c in a list Zu

4: sort Zu by resource efficiency in the dsc. order

5: let Bu,c = γu,cκu,c ∀1 ≤ u ≤ U, 1 ≤ c ≤ Cu // network budget

6: while H is not empty do

7: for u ∈ H do // iterate in round robin fashion

8: let R = ιu units removed from the head of Zu

9: for r ∈ R do

10: for k = 1 to Cu do

11: if du ≥ br, qu ≥ ěu,kbr, qpu,k ≥ êu,kbr, and γu,kκu,k ≥ br then

12: if τpu,k < τpu,c then

13: let c = k // least contribution potential

14: if c exists and Eq. (6.1e) is satisfied then

15: let du = du − br // get r from c

16: let qu = qu − ěu,cbr

17: let qpu,c = qpu,c − êu,cbr

18: let Bu,c = Bu,c − br

19: let xu,⌊r/L⌋,r mod L,c = 1

20: if du ≤ 0 or qu ≤ 0 or Zu is empty then

21: remove u from H

Figure 6.5: The pseudocode of our CDRR algorithm for solving the distribution planning

problem.

6.4.5 Near-Optimality of the Proposed Algorithm

We perform numerical analysis to quantify the performance of CDRR. We use our DP

algorithm to optimally solve the formulation in Eq. (6.1), and use it as a benchmark. We

adopt real datasets: GeoLife [193], San Francisco [150], and SIGCOMM [149] trajectory

traces. The details of the datasets are given in Sec. 6.5. The datasets give us number of

users and contacts per user. We then vary the number of multimedia content, and solve

the distribution planning problem using the CDRR and DP algorithms. We repeat each

experiment 5 times and report their running time and user experience.

Table 6.3 gives the sample running time and user experience from the GeoLife trace.

We draw three observations from the tables. First, the proposed CDRR algorithm runs

in real time, and scales to more multimedia content. Second, the DP algorithm leads
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to prohibitively long running time with large number of multimedia content. Third, we

observe that CDRR achieves at least 93% of the user experience compared to DP. In

summary, DP can optimally solve our problem under small problem size, but it is not

feasible for large problems because of the long running time. In contrast, CDRR can

solve larger problem with near-optimal user experience in short time. We note that we

only report the expected user experience in this subsection, and more detailed simulation

results are provided in Sec. 6.5. In that section, less-than-perfect optimality of CDRR is

further compensated by the practical heuristics presented in Sec. 6.4.6.

6.4.6 Practical Considerations

Our system implementation contains the following practical optimizations.

Determining the downloading order. For each contact, a mobile user downloads

units based on the plan. After the units planned for a contact are all finished, the units

planned for other contacts are downloaded. Once all units on the distribution plan are

downloaded (or the plan is empty, which means the mobile user has not received his/her

plan), the mobile device shows available units to the user, and allows him/her to select the

contents to request. When requesting multiple units, the order is crucial: it is preferred

to devote resources to those units that result in higher user experience improvement nor-

malized to unit size. Therefore, in each contact, each mobile device computes ρi/bi of

the next outstanding layer of each content. The mobile device requests unit i∗ with the

highest ρi∗/bi∗ . This is repeated until the contact is over or resources (energy and disk)

are used up.

Segmenting video layers. Because multimedia content could be quite large, we de-

fine a maximal segment size F as a system parameter. For unit with size b larger than F ,

we divide it into ⌈b/F ⌉ segments, where the first ⌈b/F ⌉ − 1 segments are in the size of

F . Doing segmentation is to avoid unnecessary retransmission after interrupted transfers.

The user experience improvement of a unit is equally split among all segments in that

unit; more comprehensive approaches are also possible. Segmentation is done after the

distribution plans are computed because incorporating the concept of segments in the dis-

tribution planning problem increases the problem size, which leads to high computational

overhead.

6.5 Trace-Driven Simulations

In this section we use real datasets to analyze the performance of the distribution planning

algorithm in a detailed simulator and show that it outperforms other algorithms by wide
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margins. various metrics including: (i) user experience, (ii) watched user experience, (iii)

missed units, (iv) disk efficiency, (v) energy efficiency, and (vi) watched units.

6.5.1 Datasets

We employ three datasets: (i) user contacts, (ii) multimedia content, and (iii) user inter-

ests to drive our simulator. In order to evaluate our distributed system in different envi-

ronments, we adopt three user contact datasets: GeoLife [193], San Francisco [150], and

SIGCOMM [149]. In GeoLife dataset, there are multiple transportation modes, including

walk, bike, bus, taxi, train, and subway. In San Francisco dataset, the transportation mode

is taxi, and the participants of SIGCOMM dataset walk in the conference. The 4-year

GeoLife and 30-day San Francisco datasets contain the GPS trajectories of 178 and 500

participants, respectively. Using the locations of the participants, we estimate the con-

tact duration using a WiFi range of 55 m, measured under the setup proposed in Wang et

al. [175] with HTC Desire 620 smartphone. We use the average throughput measured by

Friedman et al. [85] for each contact. The SIGCOMM dataset contains 76 mobile users’

BlueTooth contacts for 3 days. The characteristics of these three datasets are diverse.

Therefore, the evaluation results using these three datasets will shed some lights on the

performance of our solution in diverse environments, including challenged networks.

For the multimedia content dataset, we collect 300 news reports from NBC in 2015,

and divide each news report into five layers: text, audio, low-, medium-, and high-

resolution videos. The size of each layer is calculated. The shortest and longest news

reports last for 12 and 287 secs, respectively. We adopt Topia Term Extractor [46] to ex-

tract keywords from the articles. The resulting keywords are used by the Content Matcher.

Last, we derive the user interests by leveraging the user queries in the LETOR [30] dataset.

In particular, we randomly pick a user query, and take the keywords in it to mimic the

user’s interests. The keywords in LETOR dataset are different from our NBC dataset, and

we map the keywords using their orders of appearance.

6.5.2 Simulator Implementation

We implement a detailed simulator using a mixture of Python, Java, and Matlab. The

distribution planning algorithm is executed once a day in our simulations. Once the dis-

tribution plans are computed, we carry out the simulations following the ground truth

given in the datasets.

State-of-the-art algorithms. For comparisons, we implement two algorithms: (i)

Epidemic that transmits all the units when a contact occurs [169] and (ii) CSI that sends

the units of interested multimedia content to mobile users based on mobile similarity [108].
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Table 6.4: Statistics of User Contact Datasets
Contacts Per Day Contact Duration (sec)

Mean Std Mean Std

GeoLife 2.7 7.1 91 399

SIGCOMM 19 29 526 2606

San Francisco 258 209 25 50

Performance metrics. We consider the following performance metrics, and report

the average performance with 95% confidence intervals whenever applicable.

• User experience: The average user experience (between 0 and 100%) of all the

user demanded news reports. We also report watched user experience that only

considers watched multimedia content.

• Missed units: The number of unavailable news units among all the user demanded

ones.

• Disk efficiency: The ratio of per-user user experience and per-user disk consump-

tion.

• Energy efficiency: The ratio of per-user user experience and per-user energy con-

sumption.

• Watched units: The number of watched multimedia content units.

We note that performance metrics used for live video streaming, such as initial buffering

time, number of rebuffering instances, and number of dropped frames, are not directly

applicable to our multimedia content delivery application. This is because we only shows

fully-downloaded content to users. Therefore, none of the aforementioned, and unfortu-

nate, situations that are common to live video streaming ever occur in our platform.

Content Matcher and Contact Predictor. We also implement several machine learn-

ing algorithms in Content Matcher and Contact Predictor. The algorithms use historical

data up to the past a days to predict contacts and user interests. The Contact Predictor

keeps track of the historical contacts, and predicts the future contacts based on frequen-

cies. The Content Matcher first classifies the news reports into several categories and

calculates the viewing probability using a Bayesian approach inspired by Google news

recommendation [129]. We utilize the BBC dataset [92], which classifies 2225 news

reports in 5 categories, to train a classification model following a frequency-based ap-

proach, which uses numbers of keyword occurrences in each category for classification.

We note that these machine learning algorithms are not developed by us, nor are the most

advanced ones. We adopt them to be conservative: our platform will achieve even better

performance with updated machine learning algorithms.

Simulation scenarios. We run 3-day simulations using GeoLife, San Francisco, and

SIGCOMM datasets. The GeoLife dataset is very sparse as only 3.33% of user-day GPS
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trajectories are non-empty and the dataset spans over the greater Beijing area. Therefore,

we focus on the 88 km2 downtown area, and create a 3-day trace by choosing the top 30

active days of each mobile user. We assume that only 10% of the residents participated

in GeoLife data collection, so that we aggregate 30 days trace to 3 days. We remove

the mobile users who never get into the downtown area, which yields a trace with 870

mobile users. 80 fog devices are randomly deployed in the crowded locations. For San

Francisco and SIGCOMM, we promote 50 and 10 mobile users with the most contacts

to be the fog devices, respectively. Table 6.4 shows some statistics of the generalized

datasets. We observe that GeoLife dataset has the lowest connectivity, while SIGCOMM

and San Francisco have 7 and 96 times more contacts compared to GeoLife. The contact

duration of San Francisco is lower than other datasets because the speed of taxi is much

higher than other transportation modes. SIGCOMM has the highest contact duration be-

cause the attendees in SIGCOMM conference walk and discuss with each other in a small

area. These three datasets with different characteristics help us to evaluate our distributed

system under diverse environments.

Parameters. We vary the number of random NBC daily news reports within {10, 25, 50, 100, 200}.

We also assume that 1
3

energy is used by communications, and 1
3

of communication en-

ergy is used by our app. We then consider the disk budget in {15, 30, 60, 125, 250, 500}
MB, and the energy budget in {100, 200, 400, 800, 1500} J. By default, we pick 100 news

reports everyday and set disk (energy) budget to be 125 MB (400 J). Moreover, the per-

byte WiFi energy consumption is 9× 10−7 J [85], and the maximal segment size is 5 MB.

For prediction, we let a = 3 (days) for predicting the viewing probability and contacts.

Last, we set the user experience following Table 6.1.

6.5.3 Results

The performance of our CDRR algorithm is near optimal under unlimited resources.

Fig. 6.6 shows the service quality and resource usage under unlimited resources. We use

Epidemic algorithm as a benchmark which gives optimal results in terms of user expe-

rience and delivery delay with unlimited resources. To achieve the optimality, Epidemic

uses excessive energy and disk to flood news reports. Figs. 6.6(a) and 6.6(b) show that

our CDRR algorithm achieves near optimal (< 3% gap) user experience and low deliv-

ery delay (< 6% gap), compared to Epidemic algorithms. Regarding system overhead

reported in Figs. 6.6(c) and 6.6(d), CDRR saves up to 8% energy consumption and 8%

used disk space compared to Epidemic algorithm. CSI saves about 67% energy and disk

consumption on average, but suffers from 10% longer delivery delay and 20% lower user

experience compared to Epidemic. In summary, while CDRR is not designed for environ-

ments with unlimited resources, it performs almost optimally in terms of user experience,
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Figure 6.6: CDRR with unlimited resources is near optimal, average: (a) user experience,

(b) delivery delay, (c) energy consumption, and (d) used disk space over 3 days.

yet achieves short delivery delay. CSI has lower resource usage, but suffers from higher

delivery delay and lower user experience. In real life, the resources are always limited,

and thus we take limited energy, disk, and network budgets into considerations in the rest

of this chapter.

The proposed CDRR algorithm improves the service quality. Fig. 6.7 reports the

service quality of individual mobile users in user experience, watched user experience,

and missed units among three datasets over 3 days. Figs. 6.7(a) and 6.7(b) show that

our algorithm outperforms all other algorithms in terms of user experience and watched

user experience. The gap of Epidemic and CSI to our algorithm is at least 20% in terms

of user experience and watched user experience. This is because Epidemic and CSI do

not take the characteristics of multi-layer news reports into considerations. Fig. 6.7(c)

gives the number of missed units, which shows that Epidemic and CSI miss at least 10%

and 11% more demanded units than our CDRR algorithm, respectively. Next, we plot

sample empirical CDF (Cumulative Distribution Function) curves from SIGCOMM in

Figs. 6.7(d), 6.7(d), and 6.7(f), which clearly show that our algorithm results in much

higher user experience and fewer missed units. In summary, Fig. 6.7 demonstrates that

our CDRR algorithm significantly improves the service quality.

The proposed CDRR algorithm is resource efficient. We report the resource ef-

ficiency of our proposed CDRR in Fig. 6.8. Figs. 6.8(a) and 6.8(b) present the energy

efficiency and disk efficiency of our CDRR, which are the ratios between user experience
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Figure 6.7: Service quality improvement of our CDRR algorithm: (a) user experience,

(b) watched user experience, (c) missed units, (d) user experience CDF, (e) watched user

experience CDF, and (f) missed units CDF over 3 days. Sample CDFs in (d), (e), and (f)

are from SIGCOMM dataset.

and energy/disk consumption. The figures show that our CDRR algorithm is more energy-

efficient than all other algorithms. In particular, at least 33% higher energy efficiency is

observed compared to Epidemic and CSI algorithms. Moreover, the disk efficiency of

our CDRR algorithm outperforms others by at least 39%. Figs. 6.8(a) and 6.8(b) reveal

that CDRR delivers high service quality in a resource-efficient manner. Next, we plot

the watched units in Fig. 6.8(c), which reveals that Epidemic and CSI suffer from lower

watched units: at least 70% and 76%, compared to our CDRR algorithm. This partly

explains why the CDRR algorithm is resource-efficient: it downloads more useful units.

In summary, Fig 6.8 shows that our CDRR algorithm is resource efficient.

Implications of different datasets. In Table 6.5, we report the average performance

comparisons between our CDRR algorithm and the other two baseline algorithms across
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Figure 6.8: Resource efficiency of our CDRR algorithm: (a) energy efficiency, (b) disk

efficiency, and (c) watched units over 3 days.
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Figure 6.9: Number of per-user contacts in 3 datasets.

all considered simulations. This table shows that our CDRR algorithm significantly out-

performs others in all the aspects using all three datasets. A closer look reveals that our

CDRR algorithm has its limitations with San Francisco dataset. We only outperform oth-

ers by up to 21% in terms of user experience. This can be explained by Fig. 6.9, which

shows the mobile users in San Francisco dataset are better connected, compared to Geo-

Life and SIGCOMM datasets. Since the number of contacts is very high, any distribution

plans will work reasonably well. However it is not an issues, because typical challenged

networks, especially those in developing countries and rural areas are not well-connected.

The proposed CDRR algorithm is scalable. Next, we vary the disk budget, energy

budget, and number of daily news reports to compare the performance of our CDRR al-

gorithm against the other algorithms with SIGCOMM dataset in Fig. 6.10. Fig. 6.10(a)

presents the user experience under different disk budgets, which shows that higher disk
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Figure 6.10: Scalability of our CDRR algorithm under different resource budgets and

number of multimedia objects: (a) user experience, and (b) number of missed units with

diverse disk budgets; (c) user experience, and (d) number of missed units with diverse

energy budgets; (e) user experience, and (f) number of missed units with diverse number

of news reports. Sample results from SIGCOMM dataset.

budgets lead to higher user experience with our CDRR algorithm, but it is not the case

with Epidemic and CSI algorithms. This can be explained by Fig. 6.10(b), which shows

that the CDRR algorithm utilizes higher disk budgets efficiently to reduce missed units.

The other two algorithms, however, do not leverage the additional disk budgets. Com-

pared with our CDRR algorithm, Epidemic and CSI miss 40% and 42% more units under

500 MB disk budget. Next, we plot the user experience under different energy budgets in

Fig. 6.10(c). This figure shows that our CDRR algorithm capitalizes higher energy budget

for better user experience, while CSI and Epidemic algorithms do not result in the same

trend. This can be explained by Fig. 6.10(d), which reveals that the CDRR algorithm uti-

lizes higher energy budgets efficiently to reduce the number of missed units. Compared
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Figure 6.11: Effectiveness of our Content Matcher and Content Predictor: (a) GeoLife,

(b) SIGCOMM, and (c) San Francisco datasets.

Table 6.5: Performance Comparisons of CDRR over Epidemic and CSI

Metric
GeoLife SIGCOMM SF

Epidemic CSI Epidemic CSI Epidemic CSI

User Experience 14X 26X 1.28X 1.38X 1.2X 1.21X

Watched User Experience 13X 15X 1.26X 1.33X 1.56X 1.19X

Missed Units 1.1X 1.11X 1.24X 1.26X 1.21X 1.25X

Watched Units 11X 26X 1.78X 1.78X 1.7X 1.76X

Energy Efficiency 13X 12X 1.33X 1.36X 1.33X 1.33X

Disk Efficiency 14X 15X 1.5X 1.52X 1.39X 1.41X

with our CDRR algorithm, Epidemic and CSI algorithms miss 24% and 26% more units

under 1500 J energy budget. Finally, we plot the user experience under different numbers

of news reports in Fig. 6.10(e). This figure shows that more news reports lead to lower

user experience. This can be explained by Fig. 6.10(f), which reveals that more news re-

ports will degrade the user experience because of more missed units. However, our CDRR

algorithm outperforms Epidemic and CSI by at least 17% and 27% under any number of

news reports, respectively. In Fig. 6.10(f), compared to our CDRR algorithm, Epidemic

and CSI algorithm miss up to 20% and 26% more units. In summary, Fig. 6.10 shows

that our CDRR algorithm scales better with more resources and news reports, compared

to other algorithms.

Effectiveness of our Content Matcher and Content Predictor. We quantify the

effectiveness of the machine-learning algorithms implemented in the Content Matcher

and Content Predictor as follows. We augment our simulator to prohibit mobile users
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Figure 6.12: The fog device built on Raspberry PI.

from requesting for any content that are not on their distribution plans, so as to focus

on the impact of the machine learning algorithms. For comparisons, we assume perfect

predictions using the user contact datasets, and refer to it as Oracle in the figures. We

emphasize that Oracle is an impractical upper bound for benchmarking purpose only.

We report the empirical CDF curves of user experience from the 3 datasets in Fig. 6.11.

This figure reveals that our machine learning algorithms achieve similar performance with

Oracle with SIGCOMM and San Francisco datasets: on average, only 26% and 17% gaps

are observed, respectively. For the GeoLife dataset, our algorithms suffer from a larger

gap of 69%, which can be attributed to more challenging scenarios as indicated by the

inferior connectivity reported in Fig. 6.9. We note that, in such challenging scenarios, our

CDRR algorithm significantly outperforms Epidemic and CSI as summarized in Table 6.5.

6.6 Real Implementation

This section presents a complete prototype system1 that distributes multimedia news re-

ports to multiple users. We also compare our algorithm against others under real-life

settings.

6.6.1 Implementation on Linux and Android

We have implemented a complete testbed of the proposed content delivery applications

running on cloud-to-things continuum platforms using Linux machines and Android mo-

bile devices. The fog controller is built on a Linux workstation, and we realize our CDRR

algorithm on it. fog devices can be built on any Linux embedded devices and general-

purpose computers. We adopt Raspberry PI for fog devices, as shown in Fig. 6.12. Using

1Parts of the prototype system were presented in Hong et al. [106].
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Figure 6.13: Mobile client: (a) a list of news reports and (b) a downloaded news report.

Raspberry PI as the fog device results in the following benefits: (i) smaller form factor,

(ii) more cost effective, and (iii) easier deployments. The size of a Raspberry PI is only

100 cm2. Each Raspberry PI, including a WiFi dongle, a case, a network cable, a memory

card, and a power line, only costs about 55 US dollars at the time of writing. Compared

to PCs, Raspberry PIs are easier to be transported to different places and countries.

The fog devices are connected to the fog controller via wired networks. We configure

the fog devices to be WiFi access points, and program them to bridge the fog controller

and mobile devices. We implement an Android app, which follows the distribution plan

8 Fog Devices and 

1 Fog Controller

One Fog 

Device for 

Each Village
Village 1

2 km

City

Village 2

Village 3

Figure 6.14: The locations of the deployed fog devices.
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to download multimedia content whenever it runs into fog devices. It also records times-

tamped events and sends them via fog devices to the fog controller as profiles. Fig. 6.13

shows sample screenshots of our app. The fog controller analyzes the profiles for various

inputs, such as contacts, and computes distribution plans at 5 a.m. as a cron job. The

computed plans are sent to mobile users via fog devices. To preserve user privacy, we

anonymize the collected profiles, and allow mobile users to opt out from the data col-

lection any time. We also allow users to configure several settings, such as the disk and

energy budgets.

6.6.2 Experimental Setup

We set up a fog controller and eleven fog devices at four different locations: three different

rural villages and a city (on our university campus). Fig. 6.14 shows a map with the

locations of fog devices. There are 15 users2, including university students, university

employees, and farmers who use our Android app. In particular, they install our app from

Google Play. The app comes with the default disk budget of 200 MB and the default

energy budget of 80% battery capacity.

Every midnight, the fog controller automatically downloads the latest news reports,

including text, audio, and videos from CNN, BBC, and Apple Daily. It transcodes the

news videos to three resolutions: 240p, 360p, and 480p using FFmpeg. For each user,

we use his/her profile collected in the past 7 days to predict his/her behavior. We then

use the predicted behaviors to compute the distribution plans and send the plans to mobile

users when they have the first contact with a fog device. Our mobile app downloads news

reports following the distribution plan, and the user may watch news reports anytime.

6.6.3 Experimental Scenarios

In the first two weeks of our experiment, the fog controller downloads 46 news reports

on average every day, which is equivalent to 900+ MB total size. On average, each user

spends 2.8 hours within the coverage of fog devices everyday. The average number of

contacts of each user in each day is 7.8, the average contact duration is 101 seconds,

and each user moves 3.6 km on average everyday. The distance between the university

to the villages is 38.8 km and there are no users commuting between the campus and

the villages. The size of the university and the villages are about 1.2 km2 and 4 km2,

respectively. There are 67% and 87% of users using the default disk and energy budgets,

respectively. With the default disk budget, each user can download news reports for up

to about three layers. We note that when the app runs out of the disk budget, it pops up

2In total, there are 31 users, but 16 of them decide to use our app without uploading their profiles.
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Figure 6.15: Our emulation testbed for measuring energy consumption.

a dialog reminding the user about the possibility of increasing the disk budget for better

video quality. We observe that more than 2/3 of users stick with the default disk budget,

which shows that many users are satisfied with the low-resolution videos. This is inline

with our observation of user experience improvements decreasing along with the number

of layers in Sec. 6.3.

6.6.4 Emulation Setup

One limitation of our deployed testbed is that the application specific optimizer can only

execute a single distribution planning algorithm at a time and we only implement our

CDRR algorithm in the testbed. To compare our algorithm against the baseline algo-

rithms, we use the collected profiles to drive our simulator multiple times, and save the

distribution plans generated by different algorithms. We then set up an emulation testbed,

which consists of a Linux FTP server, a smartphone, and a power meter, so as to mea-

sure the actual energy consumption resulted by different algorithms. Fig. 6.15 illustrates

the emulation testbed. We configure the FTP server to limit the bandwidth following the
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Figure 6.16: Sample measured current levels from user 1.

traces in Friedman et al. [85]. We then augment our mobile app to download the multime-

dia news reports following the distribution plans. We run the mobile app on a Samsung

Galaxy J7 smartphone connected to an Agilent 66321D power meter. The power meter is

configured to serve as a power source at 3.85 V, and connected to a PC via an USB cable.

We record the voltage and current at 200 Hz. The records are then used to calculate the

energy consumption.

In addition, we use the distribution plans from the diverse algorithms to conduct a

user study for real user experience. Questionnaires, similar to the ones used in Sec. 6.3,

are prepared for the user study. Running 2-week emulations with 3 different algorithms

for all 15 users is time consuming without revealing too many insights. For example,

for a less active user, he/she doesn’t have too many contacts, and none of the algorithms

work for him/her. Therefore, we focus on top three active users and their top seven active

days for a 1-week emulation, which is equivalent to 21 days in totals. We repeat each

day of emulation with three algorithms, resulting in 63 1-day news reports. We recruit 63

participants, among them 70% are males and the average age is 24 years old. To avoid

overloading the participants, each participant watches 1-day news report and fills in the

questionnaire using the Web interface shown in Fig. 6.3. Each 1-day news report takes

a participant about 10-40 mins. The participants then fill the questionnaire to give MOS

scores.

6.6.5 Emulation Results

Our implementation is energy efficient. Fig. 6.16 shows 2-hour sample measurements

of the current from user 1. In this figure, the user’s smartphone downloads news reports

for 43 minutes before being idling. We compute the communication energy consumption

by deducting the idling energy consumption from the total energy consumption. We re-

port the mean and standard deviation of daily energy consumption resulted by different
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Figure 6.17: Better service quality and resource efficiency of our CDRR algorithm: (a)

quality improvement, (b) disk efficiency, and (c) energy efficiency over a 1-week emula-

tion. Sample results from user 1 are shown.

algorithms in Table 6.6. This table shows that completing a 1-day distribution plan only

consumes up to 153 J, which is 0.3% of the battery capacity (3300 mAh, 3.85 V). We also

report the energy consumption per MB in the same table. It shows that the gaps among

different algorithms is at most 7%, which is insignificant.

Our CDRR algorithm leads to better service quality and resource efficiency. Al-

though different distribution planning algorithms result in similar energy consumption,

they may lead to diverse user experience. We plot the sample user experience from user 1

in Fig. 6.17(a), which shows that our CDRR algorithm outperforms CSI and Epidemic by

1.1 and 2.7 times on average in terms of user experience. Figs. 6.17(b) and 6.17(c) report

the sample disk efficiency and energy efficiency from user 1. In terms of disk efficiency,

our CDRR algorithm outperforms CSI and Epidemic by 3.4 and 4.1 times; in terms of

energy efficiency, our CDRR algorithm outperforms them by 1.2 and 1.5 times. In Ta-

ble 6.7, we give the average performance improvement of our CDRR algorithm over the

other two baseline algorithms for individual users. Among the three users, our CDRR al-

gorithms outperforms others by up to 206%, 472%, and 188% in terms of user experience,

disk efficiency, and energy efficiency.
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Table 6.6: Statistics of Daily Communication Energy Consumption (J) Over a 1-week

Emulation
Total Energy Consumption

CDRR CSI Epidemic

Mean Std Mean Std Mean Std

User 1 79.5 21.7 82.2 28.7 79.1 19.8

User 2 99.1 23.6 100.2 24.8 91.4 18.6

User 3 55.5 4.1 50.4 2.6 50.2 7.3

Per MB Energy Consumption

CDRR CSI Epidemic

Mean Std Mean Std Mean Std

User 1 0.46 0.04 0.46 0.1 0.44 0.02

User 2 0.45 0.04 0.44 0.04 0.43 0.01

User 3 0.43 0.02 0.40 0.01 0.41 0.02

Table 6.7: Performance Improvements of CDRR over Epidemic and CSI

Metric
User 1 User 2 User 3

CSI Epidemic CSI Epidemic CSI Epidemic

User Experience 128% 206% 89% 66% 143% 65%

Disk Efficiency 349% 43% 42% 143% 69% 472%

Energy Efficiency 148% 188% 129% 87% 177% 77%

6.7 Discussion

In this chapter, we studied the problem of distributing multimedia content over challenged

networks to mobile devices. We running our content delivery application on our cloud-to-

things continuum platform, which carefully plans the distribution of multimedia content

to mobile users. The critical component is the distribution planning algorithm, which

intelligently distributes multi-layer multimedia objects over challenged networks using

opportunistic communications. Our CDRR achieves near-optimal results in terms of user

experience, despite the complexity of the distribution planning problem (NP-Complete).

We conducted extensive simulations using real datasets. The simulation results indicate

that our proposed CDRR algorithm results in: (i) better user experience, which outper-

forms other algorithms by at least 20%, (ii) higher energy and disk efficiency, which out-

performs other algorithms by at least 33% and 39%, respectively, (iii) fewer missed units

which outperforms other algorithms by at least 10%, and (iv) more watched units, which

are at least 70% more than other algorithms. Moreover, we implemented and deployed

a prototype testbed in a university and three rural villages. Experiments reveal that our

proposed algorithms outperform the baseline algorithms by up to 206%, 472% and 188%

in terms of user experience, disk efficiency, and energy efficiency, respectively.
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Chapter 7

Future Directions

A report from Gartner states that ”Currently, around 10% of enterprise-generated data is

created and processed outside a traditional centralized data center or cloud.” By 2022,

Gartner predicts this figure will reach 50% [49]. Moreover the market of fog computing

is expected to increase 10 times from 2017 to 2022 [14]. These reports point out that

performing operations on cloud-to-things continuum platforms is a clear trend. In the

future, with the cloud-to-things continuum platforms, various resources from not only

traditional cloud data centers, but also fog devices scattering across wide geographical

locations can be easily accessed anytime and anywhere. When we are at home, we can ask

our intelligent IoT devices to detect safety events, such as carbon monoxide spikes, and

send notifications to hospitals to protect us. When we are driving, we can ask smart street

lights to analyze road conditions and coordinate all the cars to avoid traffic jams. When

we are playing complicated games over mobile phones, we can ask cellular base stations

to render the complicated scenes to have better gaming quality and save mobile phones’

energy. When we are walking alone on a street at midnight, we can ask a patrolling tiny

drone to detect some dangerous events, such as brawling and gun shots. In this chapter,

we list future directions to complete such a large-scale, comprehensive, and innovative

cloud-to-things continuum platform.

7.1 Application Developer Support

In this thesis, we have introduced two actors (the provider and users) in the cloud-to-things

continuum platforms. In order to build a comprehensive cloud-to-things platform, another

actors, called application developers need to be added into an ecosystem as illustrated

in Fig. 7.1. The application developers implement many applications and publish them

through the provider to the users. However, in cloud-to-things continuum platform, the

provider has to offer a large number of applications, which is challenging for a small
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Figure 7.1: A cloud-to-things continuum ecosystem.

group of application developers. Hence, we need to give the application developers some

supports to make their life easier when implementing the applications. Doing so, we can

lower the learning curves to be an application developer and allow various people, such

as students, engineers, and anyone who can follow the supporting tools to implement the

applications. The resulting ecosystem will be similar to Google Play and Apple Store,

where the application developers publish and sell their applications to the users.

Having the application support results in many benefits. First, because the number of

application developers is increased and the developers have various backgrounds, many

and various applications are provided to the users, and the users will automatically inter-

act with the application developers to figure out killer cloud-to-things continuum appli-

cations. Second, it is also helpful for retaining the users because they have many options

of applications. They can switch among the applications based on their requirements that

are changed over time. Third, it also increases benefits earned by the providers and it

further makes more providers and companies interesting in realizing the comprehensive

cloud-to-things continuum platform.

One possible solution to achieve the application developer support is to design a pro-

gramming model. In order to implement applications, which can run on such heteroge-

neous platform in a distributed way, the programming model has to support three fea-

tures: (i) decomposition, (ii) communications, and (iii) performance optimization. With

the decomposition feature, the provider can easily and dynamically split the applications

into smaller operators. The splitted operators are distributedly deployed to multiple fog

devices. When doing so, the communication channels among the operators need to be

transparently set up. Finally, performance optimization strategies, such as stream pro-

cessing [97] to optimize the applications running across multiple fog devices, are also

required. The resulting programming model can be readily followed by application de-
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velopers to implement tailored applications for cloud-to-things continuum platforms.

Provider
Application 

Developers

Models

Model Parameters

!"# !$# !%# &

Models+

Parameters

Users

Figure 7.2: An illustration of Training-as-a-Service (TaaS).

7.2 Data Management and Privacy Protection

In the clout-to-things continuum platforms, many sensors, such as camera, temperature,

and gas sensors generate tremendous amount of data. Various data are collected and used

by different people, such as researchers, application developers, users, companies, and

providers. Hence, we need a data management mechanism to help them readily access

the data. Moreover, some of the data are privacy-sensitive, so we need to protect these

data before accessing. For example, a smart street light may collect some images that

contain plates and faces, which are large and privacy-sensitive. If a data management and

privacy protection strategy is proposed, these people can efficiently access the protected

large amount of data and start to use them.

A well-designed data management mechanisms results in many benefits. First, the

data management mechanism can reduce redundant data, e.g., we may not need to collect

readings from two temperature sensors close to each other (say one meter) at the same

time. The readings may not have much difference to derive more information from the

sensors. Second, the data management mechanism may reduce the cost and network traf-

fic congestions while sending and storing the large amount of data to/on remote servers.
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For example, the data can be prioritized and the data with the lowest priority can be sent

at midnight to avoid network traffic congestions. About privacy protection strategy, it is

required while using the privacy-sensitive data to avoid violating the law. Moreover, pro-

tecting the privacy helps to eliminate doubts of users while using the applications running

on the cloud-to-things continuum platform.

Designing the data management and privacy protection strategies requires three im-

portant components: (i) Training as a Service (TaaS), (ii) data analyzing API, and (iii)

sensor-rich indexing mechanism. The TaaS is designed for the application developers

who need to access the privacy sensitive data. For example, when an application devel-

oper designs a car tracking application, he/she needs to analyze images containing plates

and derive a model for the application. However, the provider cannot directly send the

privacy-sensitive data to the application developer for training the model. Hence, as il-

lustrated in Fig. 7.2, the provider provide a new service called TaaS. The application

developers follows TaaS to send their car tracking models to the data owner (the provider)

for training. The provider then sends back the training results (model parameters) to the

application developers who publish their applications through the provider, so that the

users can request for these applications. Furthermore, the provider also provides a data

analyzing API. The API allows application developers to analyze the data without reveal-

ing the original privacy-sensitive data. It also helps the application developers understand

the characteristics of the data for better application design. Moreover, when the accuracy

of the model trained by provider is poor, the application developers can use the API for

root-cause analysis. In order to support the data analyzing API, we require a sensor-rich

indexing mechanism, which can efficiently access required data for analyzing. For exam-

ple, in the cloud-to-things continuum platform, we have many sensors giving informations

about the weather, such as wind speed, temperature, humidity, and so on. We can design a

sensor-rich indexing mechanism to access these data with a single request. The resulting

data management and privacy protection strategies can maximize the value of the various

and large amount of data.

7.3 Design-Time Optimization

In this thesis, we have solved three run-time optimization problems, while the design-

time optimization problem remains open. Run-time optimization algorithms are launched

after the cloud-to-thing continuum platform has been built. The design-time optimization

problems are solved while designing the platform. More specifically, we can propose

design time optimization algorithms to make deployment decisions of sensors, network

devices, and fog devices. Taking smart street light as an example, the street lights are fog
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devices, which have computing, networking, sensors, storage, and actuators. If we plan

to deploy PM 2.5 sensors on the street lights to create detailed pollution maps, we have

to decide where to install the sensors because it is too dense to install the PM 2.5 sensors

on every single street light while it may be to sparse to install the sensors on every cross

streets. Deploying on every single street lights would leads to high cost with marginal

performance gain. In contrast to it, we may not satisfy requirements to plot a detailed

pollution map.

Moreover, when we make plans of sensor and actuator deployments at design-time, we

can further consider representative analytics. Take smart street lights as an example again,

we may solve a camera planning problem at design-time to optimize the computer vision

applications. More specifically, the camera planning algorithms decide where to install

which types of camera with what orientations. Different kinds of camera have different

resolutions, field-of-view, focus, and so on. Hence, the decisions made by design-time

optimization algorithms affects features, such as angle, covered range, and resolution of

captured images. These features further make huge influence of the analytics, that is, a

well-planed sensor deployment decisions may increase accuracy of the analytics, reduce

the computation time, and shorten the training time.

Because we have various sensors and analytics on our platform, we need to propose

a generalized design-time optimization algorithm. The algorithm can be used on any or

similar types of sensors and analytics. Otherwise, if we propose the algorithms for every

sensors and analytics, it will take quite a long time and will be a challenging and tedious

task. The possible starting point of the generalized design-time optimization algorithm

is to figure out a generalized feature list. For example, the distance between sensors

and its sensing targets is one of generalized features of most sensor types. When the

distance increases the noise of sensing data is larger and the performance of corresponding

analytics become worse. However, when the distance of the all the sensors are too short,

the density of deployed sensors will be too large, which leads to very high cost. Listing

these features is a starting point of designing the generalized design-time optimization

algorithm. With it, we can further optimize the cloud-to-things continuum platforms and

provide much better user experiences for the users.

7.4 Outdoor Testbed Deployment

Many studies have proved that fog computing reduces latency, network traffics, and en-

ergy consumptions [139]. However, evaluations of the studies are from simulations or

lab-scale prototypes like what we have shown in Sec. [?]. In order to have a more accu-

rate evaluations, and figure out limitations and other future directions, we need to have
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Figure 7.3: A SmartPole block: (a) devices and (b) network topology.

a real deployment of the cloud-to-things continuum platform. We have deployed an out-

door cloud-to-things continuum testbed, based on the cluster of eight street lamp poles.

We refer to these street lamps as smart poles and the cluster as block. In our deployment,

the block of smart poles are set up surrounding the computer science building at National

Tsing Hua University (NTHU); in large deployments, a block of smart poles may be de-

ployed along a street block. Each pole, as illustrated in Fig. 7.3(a), has two boxes: a

sensor box and a device box. The sensor box contains a Raspberry Pi, which is equipped

with multiple sensors, including temperature, PM 2.5, voltage, and current sensors. The

device box contains an Ethernet switch and an Industrial PC (IPC). We note that all eight

smart poles come with Raspberry Pi 3 and switches, but only two of them have IPCs serv-

ing as edge servers. Moreover, four smart poles have surveillance IP cameras to capture

images and videos for video analysis. For communications, as shown in Fig. 7.3(b), all

poles access to the Internet through an access switch. Four smart poles connect to the ac-

cess switches through local Ethernet and the other four connect to it through WiFi mesh

network.

Fig. 7.4 reports sample performance results from our outdoor smart pole testbed. The

IPCs in the device boxes come with Intel 4-core i3 CPU and 8 GB RAM. One IPC ac-

cesses the Internet through Ethernet switches and another one through WiFi Mesh APs.

Requests are deployed almost instantly in our smart pole testbed. Fig. 7.4(a)

gives the deployment time of diverse number of requests. In the experiments, we submit

{10, 20, 30, 40, 50} requests to measure the deployment time. The requests are object

recognition analytics with random selected QoS values and the docker image of the object
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Figure 7.4: Measurement results of our outdoor deployment in: (a) deployment time, (b)

number of analyzed images, and (c) latency.

recognizer is cached at the IPCs. As shown in the figure, on average, each request can be

deployed in one second, with almost linear increase. This is good enough for most IoT

analytics.

Distributed execution levels to higher throughput. Fig. 7.4(b) reports the number

of analyzed images from an object recognition analytics in a minute. The experiment

shows that when the analytics is split into two smaller operators running on two IPCs

results in 32% throughput improvement.

Placing the analytics close to data originates and users results in shorter latency.

Fig. 7.4(c) presents the end-to-end delay while running the object recognition analytics

in the cloud (with an i5 Intel workstation) and a pole (with an i3 Intel PC) with diverse

network conditions of the access link (from the access switch to the Internet). The im-

ages are from a camera installed on a smart pole and the recognized results are sent to a

user in the Computer Science building. The network conditions are emulated by Wonder

Shaper [51] and tc [44]. The Wonder Shaper is used to throttle the bandwidth and tc is

used to add the network latency. The bandwidth of Ethernet is set to 60 Mbps, WiFi is

set to 32 Mbps, and 4G is set to 22.67 Mbps following a recent study [63]. The latency

to the cloud is measured using Amazon network testing web page [56]. We calculate

average network latencies over 34 Amazon cloud servers under Ethernet, WiFi, and 4G.
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The resulting network latencies are: Ethernet:190 ms, WiFi: 241 ms, and 4G: 288 ms.

The experiment results show that running the analytics on the smart pole (edge) reduces

at least 93% network latency.

Smart pole is built to achieve a smart campus to increase students’ safety, monitor

the university’s environments, and help students’ school life. For example, we have air

pollution sensors to draw a pollution map, water quality sensors to detect lake quality,

and image analytics applications to detect emergent events. Moreover, in the future , we

can install displays and microphones, which allows students to interact with the testbed

and receive activities. Beside the target of implementing the smart campus, smart pole

plays a key role to help researchers from academia and industries to evaluate their new

designs, algorithms, and products. Comparing to lab-scale testbeds, a real deployment

is under a harsh environments, e.g., (i) the fog devices deployed on the street lights may

be broken because of high temperature and humidity, (ii) the communication qualities

may be degraded by the interfered wireless channels, and (iii) the noisy sensing data may

increase the analytic difficulty and degrade the accuracy. These possible issues cannot be

aware from lab-scale testbeds and are required to be solved to realize a comprehensive

cloud-to-things continuum platform. Moreover, the experience of building up the smart

pole can be used to reproduce a new smart campus, build a smart apartment complex, and

extend to built a larger-scale smart city.
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Chapter 8

Conclusion

Studying cloud-to-things continuum platforms is a timely topic because researchers from

academia and industry start move services, applications, and data analytics from tradi-

tional cloud data centers to fog devices, that are closer to end users. However, the cloud

data centers cannot to be totally replaced. Hence, aggregate, communicate, and collab-

orate fog devices in the cloud-to-things continuum is getting popular. In this thesis, we

design an intelligent framework and solve optimization problems for the popular cloud-

to-things continuum platform. The fog devices are located anywhere with rich resources

and capacities, which turn innovative applications. We optimize three resource allocation

problems: (i) application deployment problem, (ii) delay-sensitive application optimiza-

tion problem, and (iii) delay-insensitive application optimization problem. The first prob-

lem is designed for providers to serve as many users as possible. The other two problems

are designed for users to adapt to system dynamics and optimize applications at run-time

to maximize user experience.

We solve the application deployment problem while considering heterogeneous fog

devices with diverse resources, required application resources, location requirements, and

user-specified QoS targets. We formulate the problem into two formulations for ideal and

generalized cloud-to-things continuum, respectively. We design an approximation algo-

rithm with 1/|U | approximation factor to solve the ideal problem. The approximation

factor is mathematically and experimentally proved in this thesis. The goal of this prob-

lem is to maximize number of served users. Our evaluations show that our algorithms

outperform the state-of-the-art algorithms by at least 134%, 167%, 161%, and 124%, in

terms of the number of satisfied requests, the CPU resource consumption, the RAM re-

source consumption, and the network resource consumption, respectively.

After deploying the applications, in order to adapt to system dynamics, we add an

application specific optimizer into our framework. It solves delay-sensitive application

optimization problem and delay-insensitive application optimization problem. For the
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delay-sensitive application, we focus on optimizing game streaming applications running

on our platform. The optimization goal is to maximize gaming experience by adapting

to network dynamics of ongoing sessions. Thus, we propose an optimal bitrate adapta-

tion algorithm to dynamically configure the bitrate of game streaming applications in the

ongoing sessions running in polynomial time. The proposed algorithm outperforms the

baseline algorithms by up to 46% and 30%.

For the delay-insensitive application, we focus on optimizing multimedia content de-

livery applications over challenged networks on our platform. The optimization goal is to

maximize the user experience, which is calculated based on understanding levels to solve

digital divide. We propose an optimal DP algorithm which runs in pseudo-polynomial

time. Moreover, we also design another efficient algorithm to solve the problem in poly-

nomial time. The goal of our algorithms is to maximize user experience. In fact, our

efficient algorithm outperforms the baseline algorithms by at least 20%, 33%, and 39% in

terms of user experience, energy efficiency, and disk efficiency.

Besides our optimization algorithms, which is the core of cloud-to-things continuum

platforms, we also discuss future directions and remaining tasks of realizing a more com-

prehensive cloud-to-things platform. Solving the future directions, the comprehensive

platform allows more application developers to implement novel applications and even

improve existing applications, such as cloud applications, e.g., moving current IoT ana-

lytics from data centers to fog devices can reduce network latency and traffics. Moreover,

having the platform, novel applications, such as self-driving cars and wearable augmented

reality can be realized. The cloud-to-things continuum platform, in the future, leads us to

the next era, which makes our life easier, fantastic and safer.
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