
TESLA:	A	Formally	Defined	Event	
Specification	Language

Gianpaolo Cugola
Alessandro	Margara

Proceedings	of	the	Fourth	ACM	International	Conference	on	Distributed	Event-Based	Systems	-
DEBS	'10

Motivation

• Distributed	applications	often	require	large	amount	
of	information	to	be	timely processed.

• The	traditional	data	processing	models	does	not	suit	
the	timeliness	requirements.(DBMS)

Introduction(1/2)

• There	are	two	models	emerged:	Data	Stream	
Processing	&	Complex	Event	Processing.

• Data	Streaming	processing	(DSP)	is	a	model	based	on	
database.	

• Complex	Event	Processing	(CEP)	is	more	of		message-
oriented.

Introduction(2/2)

• This	paper	claim	that	DSP	is	not	suited	to	recognize	
patterns	with	temporal	relationship.

• CEP	often	oversimplified,	which	is	hard	to	express	
desirable	patterns.

• TESLA	,	a	complex	event	specification	language	they	
proposed,		provides	high	expressiveness	and	
flexibility,	by	offering	filters	(content、 temporal)	and	
operation(negation	、 aggregates	…).

Why	a	new	language	:
a	representative	example	

• Consider	a	sensor	network,	which	the	sensors	will	
notify	position,	temperature	and	smoke.

• Suppose	we	want	to	teach	the	system	to	notify	user	
when	fire	occurs.	The	notion	of	fire	can	be	defined	in	
many	ways.	

• Using	the	below	4	rules	to	illustrate	some	features	an	
event	processing	language	should	provide

Cont’d
i. temperature	higher	than	45	degrees	and	some	smoke	are	

detected	in	the	same	area	within	3	minute.	The	fire	
notification	has	to	embed	the	temperature	actually	
measured.

ii. temperature	higher	than	45	degrees	is	detected	and	it	did	
not	rain	in	the	last	hour.

iii. there	is	smoke	and	the	average	temperature	in	the	last	3	
minute	is	higher	than	45	degrees.

iv. at	least	10	temperature	readings	with	increasing	values	and	
some	smoke	are	detected	within	3	min.	The	fire	notification	
has	to	embed	the	average	temperature	of	the	increasing	
sequence.

Select single	notifications
Select set	of	related	notifications	
or	parameterization

Select	timing	 relationship

Sequence
of	

event

negation

aggregates

Iteration

Select	,	parameterization	,	sequence	,	negation,	aggregates,	iteration		

Problem	with	existing	language

• A	representative	DSP	language,	CQL,	has	a	key	aspect	
of	forgetting	the	order.	So	it	is	hard	to	do	sequencing	
operation.

• CEP,	however	,	has	many	restriction	like	forcing	to	
capture	only	adjacent	event,	which	making	it	
impossible	to	express	some	rules(like	i &	iii)

• Also,	CEP	faces	the	event	selection	problem	and	
event	consumption	problem.

Cont’d
I.		Consider	rule	(i),	when	t	=	2,	how	many	fire	notification
should	be	generated?	{T(48)	,S}	?	{T(50)	,S}? Both?
We	call	the	problem	of	deciding	how	to	combine	events	
the	event	selection	problem	.
II.		Now	what	happens	when	t	=2.5,	where	another	smoke	
occur.	Should	the	T	notification	is	considered	as	“used”,	or	
they	should	be	reconsidered	again
We	call	the	problem	of	deciding	invalid	notification	the	
event	consumption	problem.

Overview	- TRIO
• TESLA	represents	Trio-based	Event	Specification	

Language,	where	Trio	is	a	first	order,	metric	temporal	
logic.

• The	special	operator	in	Trio	is	temporal	type	operands	
and	operator.

• Past(A,	t)	(resp.	Futr(A,	t))	,	A	holds	t	time	units	past	(resp.	
future).

• Alw(A)	=	A	∧∀t(t	>	0	→	Futr(A,	t))	
∧∀t(t	>	0	→	Past(A,	t))

:	Always	A	holds.
• WithinP(A,	t1,	t2)	=	∃x(t1	≤	x	≤	t1	+	t2	∧ Past(A,	x))

:	Within	the	past	t1	with	length	t2	

TESLA	event	and	rule	model

Structure	of	the	rules

• Define	a	complex	event(CE)	and	its	structure.
• The	pattern	of	simpler	event	leads	to	complex	ones.
• Assign	the	attributes	to	CE	which	may	depend	on	
pattern.

• Last,	decides	which	event	should	be	invalidated.

Semantics	of	rules(1/3)
• First, introducing	labels for	events	to	differentiate	them.
• Especially	for	complex	events	defined	through	TESLA	rule	

(Assume	events	from	source	have	unique	labels).
• Claiming	that	a	given	of	events	can	only	satisfy	a	rule	at	

most	once(uniqueness	of	selection	theorem).
• Leverage	the	claim	by	defining	a	lab function	which	

returns	new	label	taking	two	argument:	rule	ID	&	set	of	
labels	(labels	that	represent	the	event	leading	to	this	new	
event).

• For	labels	uniquely	identify	complex	events,	lab	has	to	be	
injective.

Semantics	of	rules(2/3)

• Introducing	Occurs(Type,	Label).
• Two	formulas:
– If	there	are	two	notifications	having	same	label,	they	must	
be	the	same	type.

– If	an	event	with		a	label	‘	l	’	occurs,	no	other	events	with	
same	label	can	occur	at	different	time.

• Introducing	attVal (Label,	name)
• Extract	value	of		a	named	attribute	in	a	event	
represented	by	the	label.

Semantics	of	rules(3/3)

• A	generic	TESLA	rule	trans	to	TRIO	formula.

• Every	time	when	Pattern	becomes	true,	CE	occurs.
• Also,	assigning	value	to	CE’s	attributes.

Valid	patterns(1/8)

• Event	occurrence

Valid	patterns(2/8)
• Event	composition	(selection)

• each-within

• last-within

• first-within

Time(Label):	return	time	of	
the	event	having	the	label.

Assuming	ordering !

Valid	patterns(3/8)

• Example:
• When	t	=	4,	if	each-within	is	used,	T(48)	and	T(50)	
will	combine	with	S.	(multiple	selection)

• If	last-within	is	used,	only	T(50)	will	combine	with	S	
(single	selection)

Valid	patterns(4/8)

• Parameterization

• Use	$x	to	ensure	that	these	events	have	same	
attribute	value	(Area	attribute	in	this	example).

Uniqueness	of	selection

• a	set	of	events	can	be	selected	by	a	given	rule	only	
once.

• All	TESLA	rules	joins	the	occurrence	of	a	(complex)	
event	to	the	occurrence	of	a	pattern	of	(simpler)	
events,	one	of	which	must	occur	at	the	same	time	of	
the	complex	one,	while	the	others	occur	in	the	past.	
This	guarantees	that	a	given	rule	r	is	satisfied	by	a	set	
of	events	E	only	once,	at	time	t.

Valid	patterns(5/8)

• Timers:	Timer(H	=	9,M	=	00,D	=	Friday)
• Negation:	between	2	events	or	event	with	a	duration.

Valid	patterns(6/8)

• Event	consumption:		consumption	clause
• Introducing	Consumed(rule	ID,	Label)
• Two	formula:
– Once	an	event	has	been	consumed,	it	will	keep	consumed.
– If	an	event	is	not	captured,	it	will	keep	unconsumed.

Each	rules	has	its	own	
consumed	list.

Valid	patterns(7/8)

• Aggregates

• Fun	is	the	aggregates	function
• Set	includes	all	label-value	couples	of	event	X

Valid	patterns(8/8)
• Iteration
• Example	:	suppose	we	want	to	capture	every	iteration	of	

event	A	where	the	attribute	never	decrease,	and		notify	
another	event	B	which	contain	number	of	A.

Event	Detection	Automata(1/5)

• Consider		the	Tesla	rule	below,	which	can	
transit	into	ordering	graph.

Event	Detection	Automata(2/5)

• Building	automata	model M1

M3

M2

Event	Detection	Automata(3/5)

• Detecting	simple	sequences:

• Starts	by	creating	single	instance
• For	each	incoming	event:
– If	it	matches	the	current	state,	duplicate	automata	and	
enable	transition	to	next	state.

– If	it	doesn’t	match,	ignore	it.
– If	the	maximum	time	of	the	state	exceeded,	delete	it.

Event	Detection	Automata(4/5)

Event	Detection	Automata(5/5)

• Performance:
• Worst	Case:	#	of	automata	grows	exponentially.
• Average	cases:
• Intel	Core	2		2.53Ghz	processor	98%,	less	than	
700MB	RAM,	single	threaded.	

• 5000	rules	with	a	total	of	25000	automata	states	
with	a	constant	input	rate	100	events	/	sec

• Peak:	more	than	1.5	million	automata,	62000	events	
/	sec	input	rate.

Conclusion

• TESLA	provides	a	simple	and	compact	syntax	while	
offering	high	expressiveness	and	flexibility.

• fully	customizable	policies	for	event	selection	and	
consumption.

• allows	TESLA	to	easily	define	event	iterations	without	
requiring	an	explicit	Kleene	operator.

• the	first	languages	for	CEP	to	offer	a	formal	
semantics,	expressed	using	a	temporal	logic.

• introducing	an	event	detection	algorithm	based	on	
automata.

