Introduction

- Possible factors causing sickness
 - Wide FoV, time latency, low frame rate and rendering speed
 - sensory conflict between the visual perception by the virtual stimuli and the vestibular perception by actual head motion

Goal

- Explore an objective VR sickness prediction framework dealing with the recent HMD based VR contents
 - Perceptual motion features: user's head rotation and virtual camera rotation in virtual space
 - Statistical content features: distribution of the spatial texture, motion of objects and background
- ⇒ objective VR sickness predictor (VRSP)
 - consisting of 36 contents with 10 scenarios
 - 80 subjects

VR Visual Sickness Predictor

VR Visual Sickness Predictor

- Perceptual motion features
 - User head angular velocity ω_{vest}
 - Visual angular velocity ω_{vis}
 - Perceived angular velocity ω_{per}

 $\boldsymbol{\omega}_{vest}^{t} = \left(P_{vest}^{t} - P_{vest}^{t-1}\right) \times \boldsymbol{\gamma} \; (degree/sec), \\ P_{vest}^{t} = \left[r_{vest}^{t}, \; p_{vest}^{t}, \; y_{vest}^{t}\right],$

$$\begin{split} \boldsymbol{\omega}_{vis}^{t} &= \boldsymbol{\omega}_{vest}^{t} - \boldsymbol{\omega}_{cam}^{t} \; (degree/sec), \\ \boldsymbol{\omega}_{cam}^{t} &= \left(P_{cam}^{t} - P_{cam}^{t-1}\right) \times \boldsymbol{\gamma}, \\ P_{cam}^{t} &= \left[r_{cam}^{t}, \; p_{cam}^{t}, \; y_{cam}^{t}\right]. \end{split}$$

VR Visual Sickness Predictor

- Statistical content feature
 - Texture features: the distribution $E^t = \sqrt{\int_{\Omega} CSF(\Omega)|B(\Omega)|d\Omega}$, of the spatial texture has a great effect on the motion perception of the HVS
 - Motion features: the distribution of motion affects visual sickness considerably $V^{t}(x,y) = \frac{1}{N_{x}N_{y}} \sum_{v=1}^{N_{x}} \sum_{v=1}^{N_{y}} \sqrt{u^{t}(x,y)^{2} + v^{t}(x,y)^{2}},$
 - Temporal Pooling: the human perception of the video content is influenced by the scene characteristics in numerous consecutive frames in the time domain

$$\begin{split} \mu_{m} &= \frac{1}{T} \sum_{t=1}^{T} f_{m}^{t}, \\ \sigma_{m} &= \frac{1}{T} \sum_{t=1}^{T} (f_{m}^{t} - \mu_{m})^{2}, \\ l_{m} &= \frac{1}{d_{max}} \cdot \left(\frac{1}{N_{p}^{l}} \sum_{n < N \cdot p/100} d(n) \right), \\ h_{m} &= \frac{1}{d_{max}} \cdot \left(\frac{1}{N_{p}^{h}} \sum_{n > N \cdot (100 - p)/100} d(n) \right) \end{split}$$

VR Sickness Assessment Dataset

- create a reference scene which includes diversified textures using a Unity 3D engine
 - 36 VR scenes
 - HTC Vive
 - 400x300 pixels frame resolution

Object Movement	Camera Movement	Content Component
	- Roll	
- Horizontal	- Pitch	
- Vertical	- Yaw	- Texture
- Diagonal	- Horizontal	- Field of View
- Forward	- Vertical	- Visual Guidance
- Backward	- Forward	
	- Backward	

Experiment Results

- Subjective test environment
 - 80 subjects, 21-50 years
 - 1-5
 - Individual scores and MOS
- Setup
 - SVR with linear kernel
 - 80% for training and 20% for testing
 - Repeated 1000 times
- Metrics
 - Pearson linear correlation coefficient (LCC) and Spearman rank-order correlation coefficient (SROCC)

MOS and Individual Scores

• MOS

•	LCC	Mean	Median	Std.	SRO
•	F _{vest}	0.484	0.492	0.063	\mathbf{F}_{ve}
•	\mathbf{F}_{per}	0.682	0.688	0.054	\mathbf{F}_{p}
•	\mathbf{F}_{con}	0.421	0.439	0.079	\mathbf{F}_{co}
	VRSP	0.724	0.728	0.081	VR

SROCC	Mean	Median	Std.
\mathbf{F}_{vest}	0.434	0.451	0.110
\mathbf{F}_{per}	0.643	0.647	0.050
\mathbf{F}_{con}	0.434	0.457	0.084
VRSP	0.710	0.733	0.048

• Individual scores

LCC	Mean	Median	Std.
F _{vest}	0.413	0.420	0.068
F _{per}	0.601	0.612	0.091
F _{con}	0.322	0.343	0.070
VRSP	0.671	0.676	0.103

SROCC	Mean	Median	Std.
F _{vest}	0.473	0.477	0.047
\mathbf{F}_{per}	0.627	0.634	0.087
F _{con}	0.389	0.391	0.094
VRSP	0.688	0.692	0.098

MOS and Individual Scores

Conclusion

- predicting VR sickness on HMD viewing
 - by suitably characterizing the visual-vestibular interaction model and contents features
 - predicted from human head movement and the perceived scene in the HMD
- Future work
 - develop a database with gaming scenario, natural experience (360 videos) and human subject scores on them