Introduction

- head movement prediction is one essential yet daunting task that needs to be addressed urgently
 - enable bandwidth-efficient 360-degree video streaming
 - significantly reduce the motion-to-photon delay
- Contributions
 - Building a dataset for panoramic saliency
 - Training a saliency detection model for 360-degree videos
 - Consolidating a head movement prediction model for 360-degree videos

Saliency for 360-degree Videos

- two intrinsic problems of traditional saliency models for regular images/videos
 - Central Bias
 - Multi-object Confusion

Dataset

- Deriving Head Orientation (2 public head datasets)
 - 18 videos viewed by 48 users in 2 experiments (9 videos from 1st experiment)
 - 5 videos viewed by 59 users (2 videos from them)
- Extracting Fixation (at a specific region for a short period of time)
 - removing saccade: velocity over 20°/s and acceleration over 50°/s²
- Creating Fixation Maps
 - DBSCAN clustering to remove noisy points
- Outputting Saliency Maps
 - Gaussian Filter to generalize and smooth these scattered user fixation points to a statistical region
- ⇒ 11 videos and 7000 equirectangular frames with fixation maps and saliency maps

Dataset Evaluation

- Equator Bar
 - the saliency is linearly decreased from 1.0 to zero when the latitude is varied from 0° (equator line) to ±90° (two poles)
- Circle at Center
 - labels the frame center point as the highest saliency (1.0) and gradually decreases the saliency by expanding a circle around the center point

Model	sAUC	NSS	CC
Dataset Saliency	0.7966	1.9864	0.2521
Equator Bar	0.5012	0.8086	0.1078
Circle at Center	0.4462	0.3424	0.0487

PanoSalNet

 Transfer learning from VGGNet and SALICON

- Model training
 - 400 pairs of video frames and saliency maps from the panoramic saliency dataset (concentrated fixation points)
 - Resolution: 512x288
 - 800 iterations to prevent overfitting

Head Movement Prediction in HMD

- Long Short-Term Memory (LSTM) model
 - Able to handle a large amount of temporal data and outperform other similar algorithms
- Input data
 - Saliency map predicted from PanoSalNet
 - Orientation map with tiles

Predicted Head

Orientation Map at

Model Training

- 5 videos for training and 4 videos for validation
- 1 segment with a length of 20-45 second
 - One or more events happened and leads to a new saliency region and fast head movements of users
- 300,000 data samples from 432 time series using viewing logs of 48 users
- Loss function: Euclidean distance between predicted head orientation map and ground truth head orientation map
- Model parameters are updated with Root Mean Square Propagation (RMSprop) method

Saliency Detection Evaluation

 Randomly select 1000 frames from the dataset

Model	sAUC	NSS	CC
Dataset Saliency	0.7966	2.4806	0.2885
Deep Convnet	0.6320	1.3256	0.1982
PanoSalNet	0.7112	1.9864	0.2521

 Deep Convnet suffers the problems of central bias and multi-object confusion

Head Movement Prediction Evaluation

- the proposed model achieves an accuracy that is 1.9 times over PanoSalNet, 2.6 times over Deep, and 9% higher than Deep+Head
 - Saliency prediction for 360 video
 - head orientation and its temporal interplay with saliency is important
- Complicated and deeper model may not be needed

Impacts of Prediction Window

Impacts of Video Content

Discussion and Future Work

- Panoramic Saliency Dataset
- Content Trajectory Feature
- System Integration
 - stream a larger area or
 - image-based rendering can be exploited to compensate the missing tiles

Conclusion

- Unique panoramic saliency
- Head movement prediction framework
 - panoramic saliency
 - head orientation history