Affordable content creation for free-viewpoint video and VR/AR application

Pagés et al.

Journal of Visual Communication and Image Representation

Yu-Ming Lai

2019/1/31

Introduction

- Empower the viewer to become the director can bring them closer to the action and give them a sense of immersion
 - 3D geometry information of the scene is necessary
 - Affordable 3D content creation tools will be necessary to satisfy the needs of these emerging consumer markets
- Free-Viewpoint Video (FVV) allows users to freely navigate within a recorded scene and select any viewpoint at any moment (6DoF) in time

Contributions

- 1. An end-to-end system to create and process FVV sequences that can be and visualized either in VR/AR or using a view-synthesis mode
- 2. A lightweight system that produces high quality content from a limited number of commodity cameras
- 3. Multi-source shape-from-silhouette (MS-SfS) and efficient fusion of different geometry data

System Overview

Pre-processing

- Color correction
 - Transform the target image color distribution to match a palette image
 - Gaussian Mixture Models
- Camera pose estimation
 - Estimate calibration using SfM at certain time intervals and interpolate frames in between
 - Compute camera pose with EPnP algorithm
- Foreground segmentation
 - Use the up-to-date OSVOS approaches

Scene Reconstruction

Point Cloud Generation

- Use A-KAZE with multi-scale Retinex image enhancement to make feature detection easier
- Final point cloud is fed to the MVS system proposed by Schoenberger et al.

Background Model

- Remove noisy points using a statistical outlier removal approach
- Compute final mesh using Poisson surface reconstruction (PSR)

3D Skeleton Estimation

- Estimate a 3D skeleton by triangulating a set of 2D skeletons detected in the input images
 - A CNN to detect and associate the 2D joints in the images
 - Use foreground mask to filter the unwanted skeletons
- Get final 3D joint coordinates by minimizing a set over determined linear triangulation problems

Multi-Source Shape-from-Silhouette (MS-SfS)

- Apply space carving techniques to handle the concavities and occlusions
 - Carving function:

- Silhouette score (ϕ_{sil}): binary factor
- Color consistency score (ϕ_{cc}): the standard deviation σ of the hue value that **p** projected onto each image
- Skeleton score (ϕ_{skel}): increase with the drop of the distance between ${\bf p}$ and its closest bone

Data Fusion

- Combine the surface M_{v} , defined by MS-SfS and the surface M_{f} , defined by the foreground dense point cloud
 - Use M_f to guide a controlled deformation of M_v to have the features and the completeness
- Cast a ray from every vertex of M_f following its normal, searching for a intersection with M_v
 - If found, move the vertex to the intersection point
 - The displaced vertices define the handled points ${\mathcal H}$ and the deformation region ${\mathcal R}$
 - Displacement function:

$$d(\mathbf{v}_{j}^{r}) = \mathbf{v}_{j}^{r} + \mathbf{n}_{j}^{r} \cdot \mathbf{d}_{i}^{h} \frac{l - l_{j}}{l}, \quad \mathbf{v}_{j}^{r} \in \mathcal{R}$$

Normal of \mathbf{v}_{j}^{r} Displacement vector
of the closest \mathbf{v}_{j}^{h} Steps to \mathbf{v}_{j}^{h}

Reconstruction Evaluation

- Metrics: Hausdorff distance (overall distance of two sets)
- Baseline: Microsoft DancingDuo sequence, composed of a set of 53 RGB images
- Experiment: reduce camera number to 18
 - 1. prioritizing scene coverage
 - 2. prioritizing camera overlap

Reconstruction Evaluation

(a) 53 RGB cameras

(b) Experiment 1: 18 cameras (c) Experiment 2: 18 cameras

VR/AR Application

View Synthesis

Conclusion

- Present a novel pipeline for affordable content creation for FVV, VR and AR
- Present an end-to-end system to process and visualize FVV sequences
 - Produces high quality 3D content with a small number of cameras
 - Effectively combine with fusion of different geometry data makes the result more reliable
- Evaluate the scene reconstruction using a quantitative analysis of several challenging examples

Thanks for listening

Any questions?