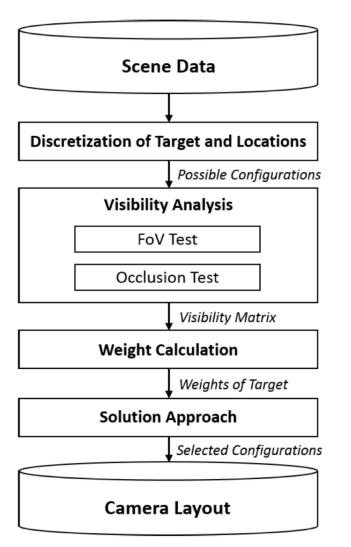
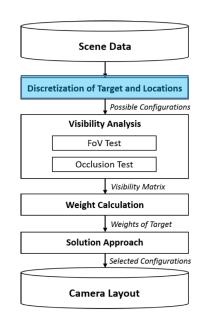
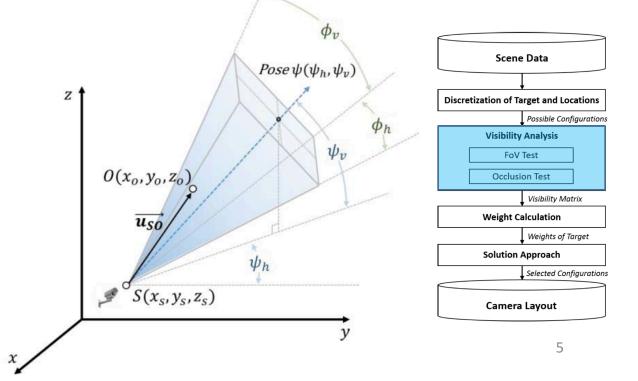

Camera Placement in Smart Cities for Maximizing Weighted Coverage With Budget Limit


IEEE SENSORS JOURNAL, VOL. 17, NO. 23, DECEMBER 1, 2017

Sungbum Jun, Tai-Woo Chang, Hanil Jeong, and Seokcheon Lee

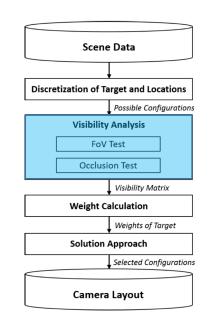
Introduction


- Video surveillance systems incorporating wireless camera networks have played significant roles in the management of core infrastructures.
- This paper address the camera placement problem for minimization of weighted coverage under a budget limitation in a 3D environment.
- They develop a heuristic algorithm.



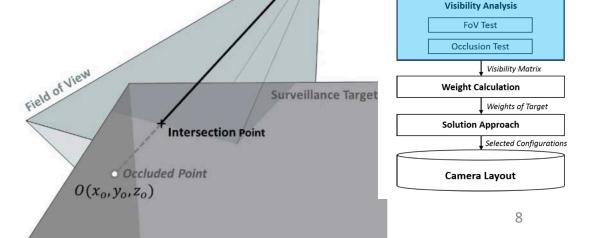
• Framework for solving camera placement problem

- Discretization of Target and Location
 - Discretization of the the target and camera locations into 3D grid points
 - To reduce the computation time of the entire methodology
 - The computation time of visibility analysis is inversely proportional to the grid size


- Field of View Test
 - The FoV area calculate between working distance, horizontal and vertical viewing angle, and the pose.
 - The working distance and the camera viewing angle can be required minimum resolution.

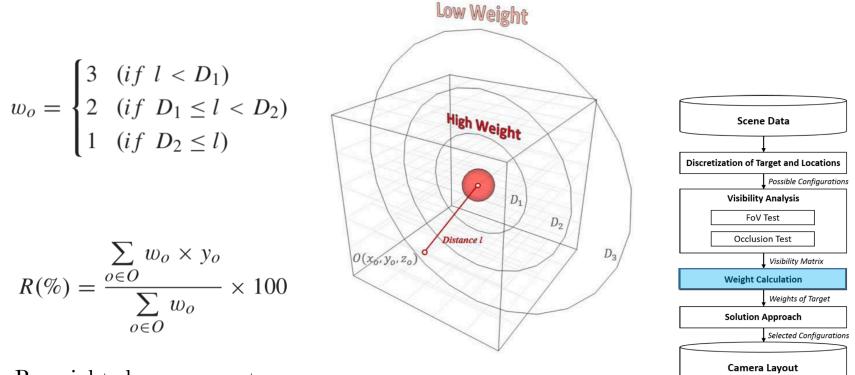
- Field of View Test
 - Confirm whether a camera position *s* can cover a target point *o*. The constrain shows as follow:

$$\begin{aligned} \overrightarrow{u_{so}} &= \overrightarrow{o} - \overrightarrow{s} \\ \psi_h - \frac{\phi_h}{2} \leq \arctan(\frac{x_o - x_s}{y_o - y_s}) \leq \psi_h + \frac{\phi_h}{2} \\ \psi_v - \frac{\phi_v}{2} \leq \arcsin(\frac{z_o - z_s}{\|\overrightarrow{u_{so}}\|}) \leq \psi_v + \frac{\phi_v}{2} \\ \|\overrightarrow{u_{so}}\| \leq d \end{aligned}$$


o: target point, s: camera position, ψ : pose

- Field of View Test
 - Select three different types of camera and calculate the working distance.

Camera Types	А	В	С	Scene Data
Vertical Angle (ϕ_v)	51.45	60.95	60.62	Discretization of Target and Locations
Horizontal Angle (ϕ_h)	93.91	105.19	104.82	Possible Configurations Visibility Analysis
Working distance with	27.5	15	11.3	FoV Test
zooming (d) (meters)				Occlusion Test
Price (USD)	1085	429	379	Visibility Matrix Weight Calculation
				Weights of Target
				Solution Approach Selected Configurations
				Camera Layout


- Occlusion Test
 - The gray dotted line in the following figure represents the invisible area occluded by the plane of a surveillance target itself.
- Visibility Analysis
 - A Candidate Camera Configuration: position, camera type, azimuth, elevation
 - Candidate camera configuration $S(x_s, y_s, z_s)$ is saved in the visibility matrix (v_o, o)

Scene Data

Discretization of Target and Locations

Possible Configurations

R: weighted coverage rate, $y_0 = 1$, the target point is coverage $y_0 = 0$, the target point is not coverage

• Mathematical Representation

$$\begin{array}{ll} maximize \ \sum_{o \in O} w_o \cdot y_o / \sum_{o \in O} w_o &=\\ subject \ to \ \sum_{(s, j_s) \in V_o} c_s \cdot x_{s, j_s} \leq B &=\\ &\sum_{(s, j_s) \in V_o} x_{s, j_s} \geq y_o &=\\ &\sum_{j_s} x_{s, j_s} = 1 \quad \forall s \in S &=\\ &x_{s, j_s} \in \{0, 1\} \quad \forall s \in S &=\\ &y_o \in \{0, 1\} \quad \forall o \in O &=\\ \end{array}$$

Indices	S	Index of cameras, $s \in S$		
	0	Index of target points, $o \in O$		
	j_s	Index of configurations of camera s		
	Wo	Weight of target points		
Parameters	C_s	Cost of cameras		
	В	Budget Limitation		
Set	V_o	Cameras and their configurations that cover target point <i>o</i>		
Decision Variables	y_o	If a target point <i>o</i> is covered by the selected camera configurations, $y_o = 1$; otherwise, $y_o = 0$.		
	x_{s,j_s}	If a configuration j_s is chosen for camera s , $x_{s,j_s} = 1$; otherwise, $x_{s,j_s} = 0$.		

Calculate the c_o
 Calculate the cr_s
 Select the c' with highest cr_s
 until reach the budget limit

$$c_o = \frac{n_c - \sum_{c \in C} v_{c,o}}{n_c} \times \prod_{c \in C'} (1 - v_{c,o})$$

 $cr_c = \frac{\sum\limits_{o \in O} \left(w_o \cdot c_o \right)}{cr_c}$

 K_{c}

Scene Data

Scene Data

Discretization of Target and Locations

Possible Configuration.

Visibility Analysis

FoV Test
Occlusion Test
Visibility Matrix
Weight Calculation

Weights of Target
Solution Approach
Selected Configurations
Camera Layout

Algorithm 1 Collaborative Allocation Phase **input :** $C = \{$ set of camera configurations $\}; O = \{$ set of targets}; $v_{c,o} = \{v_{i}(v_{i}) \mid v_{i}(v_{i})\}$ **output :** C' = Chosen Camera Configurations Set $C' = \emptyset$ Set TC = 0. While $(\sum_{c} cr_{c} \neq 0 \text{ or } C \neq \emptyset \text{ or } O \neq \emptyset \text{ or } TC = 0)$ do for (camera configuration $c \in \{1, 2, \dots, C\}$) do for (target point $o \in O$) do Compute the relative chance c_o to be covered using (13) $\forall o \in \{1, 2, \dots, O\}.$ **End for** Update $cr_c \forall c \in C$ according to (14). Select c' with the highest cr_c . If $(\sum_{c} K_{c} + K_{s'} \ge B)$ then Set TC = 1. Exit for else Set c' in C'. End if Remove target points covered by c' from O. Remove c' from C. End for end while Return C. 11

 Adjust the sensing orientations
 Calculate the weighted coverage rate Algorithm 2 Local Search Phase **input** : C' = Chosen Camera Configurations of Algorithm 1; DX; DY; DZ; DH; DV **output :** C'' = Improved Camera Configurations by local search phase Set DX, DY, $DZ = \{-1, 0, 1\}$. Set $DH = \{-30, -15, 0, 15, 30\}$. Set $DV = \{-40, -20, 0, 20, 40\}$. $C'' \leftarrow C'$. For (camera configuration $c \in C''$) do Set $N = \emptyset$ Initialize c'for (each $d_x \in DX$, $d_y \in DY$, $d_z \in DZ$, $d_h \in DH$, and $d_p \in DV$) do Set $x_{c'}$ to $x_c + d_x$ Set $y_{c'}$ to $y_c + d_y$ Set $z_{c'}$ to $z_c + d_z$ Set ψ_h of c' to $\psi_h + d_h$ Scene Data Set ψ_p of c' to $\psi_p + d_p$ Initialize C_n **Discretization of Target and Locations** $C_n \leftarrow C'$. Possible Configurations Change $c \in C_n$ to c'. Add C_n to N. **Visibility Analysis** end for FoV Test end for Occlusion Test for (camera configuration $C_n \in N$) do Visibility Matrix Calculate the weighted coverage rate of C_n using (5) Weight Calculation end for find the best C_{nh} in N. Weights of Target if (there is no improvement between C_{nb} and C'') then **Solution Approach** exit for Selected Configurations else $C'' \leftarrow C_{nb}$. **Camera Layout** end if end for Return C"

Experiment

• Experiment Design

Parameters	Small Size	Large size		
Maximum size of 3D space (x_s, y_s, z_s) (meter)	(500, 500, 500)			
	0°, 45°, 90°, 135°,			
Azimuth (ψ_h)	180°, 225°, 270°, 315°			
Elevation (ψ_v)	30°, 330°, 150	0°, 210°, 270°		
Average number of camera configurations	42309	73673		
Average number of target points	4112	12820		
Average total weights	8658	28069		
Length of target for each edge (meter)	N(30, 5)	N(50, 10)		
Distance between target grid points	1	1		
(Δ_o) (meter)				
Distance between camera grid points	4	6		
(Δ_s) (meter)				
Minimum covered target points	10	20		
Average computation time for visibility analysis (minutes)	11.63	26.76		

Experiment

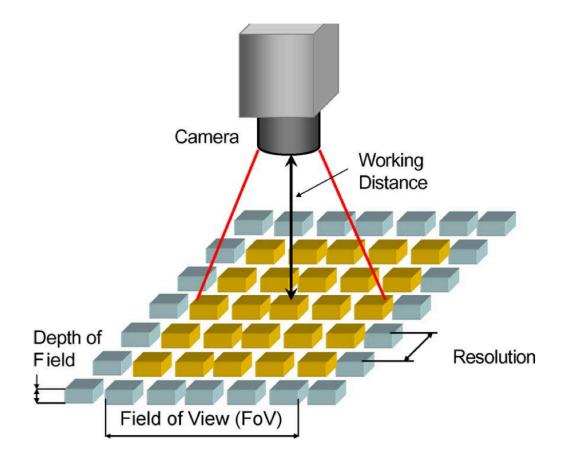
• Experiment Result Image: Non-weighted

Budget	Algorithms	Small		Large	
Limitation (USD)		Computation Time (Min)	Coverage Rate (%)	Computation Time (Min)	Coverage Rate (%)
5,000	BPSO	1.72	28.55	14.44	11.22
	BGA	2.71	40.88	22.51	19.59
	Greedy	0.16	48.03	0.7	20.07
	COLSA	0.54	52.75	1.92	20.94
10,000	BPSO	1.9	40.8	16.3	18.21
	BGA	2.72	61.83	23.35	33.02
	Greedy	0.31	71.17	1.54	37.98
	COLSA	1.17	81.24	3.56	41
20,000	BPSO	19.73	60.35	53.51	29.72
	BGA	9.44	79.7	41.47	48.44
	Greedy	0.61	96.3	2.96	62.37
	COLSA	2.1	98.5	5.98	66.65

Experiment

• Experiment Result • Weighted

Budget	Algorithms	Small		Large	
Limitation (USD)		Computation Time (Min)	Weighted Coverage Rate (%)	Computation Time (Min)	Weighted Coverage Rate (%)
5,000	BPSO	2.21	25.97	18.05	11.26
	BGA	2.71	41.44	22.48	20.34
	Greedy	0.21	46.1	0.85	19.1
	COLSA	0.68	52.08	2.56	22.24
10,000	BPSO	2.4	38.76	19.15	17
	BGA	2.77	60.43	23.05	33.94
	Greedy	0.4	73.74	1.83	37.67
	COLSA	1.3	80.3	4.62	40.62
20,000	BPSO	19.87	55.81	42.81	27.32
	BGA	9.51	78.3	34.4	49.18
	Greedy	0.79	96.02	3.63	61.92
	COLSA	2.54	98.39	8.35	66.85


Conclusion

- Addressing of the camera placement problem for maximized weighted coverage with the budget limitation in a 3D environment
- Developing of a new heuristic algorithm
- The second phase of proposed algorithm can be applied extensively for adjustment of angles

Questions?

Literature Review

- Much work relating to camera placement problems for maximization of surveillance target.
- The camera placement problems for maximization of surveillance problem under budge limitations im 3D environment has been far less study.

