Estimation of Optimal Encoding Ladder for Tiled 360° VR Video in Adaptive Streaming Systems

Cagri Ozcinar, Ana De Abreu, Sebastian Knorr, and Aljosa Smolic Trinity College Dublin (TCD), Dublin 2, Ireland

IEEE International Symposium on Multimedia (ISM'17)

Introduction

- 360° video streaming is significantly challenging owing to its resource-intensive encoding and storage requirements
- Adaptive streaming: each 360° video is divided into a set of tiles that includes different bitrate levels of the tiled video
- Representation sets for the video content forms the encoding ladder

Cost-Optimal Encoding Ladders

- Tiles affects coding efficiency
- Tiles have a different level of contribution for the overall 360° video viewing quality
- → new encoding ladder configurations are required
- ⇒ focus on the configuration of cost-optimal encoding ladders in adaptive streaming systems
 - considering both the provider's and client's perspective
 - develop an encoding ladder estimation method for tiled 360° video streaming

System Models: Distortion Modeling

Distortion function

$$FT_{ogB} = k_{og} Z_B^{\Omega_{og}} + \Phi_{og}$$

 Noise power for the i-th representation of the j-th tile $\sum \sum \left((t_j(x,y) - \tilde{t}_{ij}(x,y))^2 q_j(x,y) \right)$ $d_{ij} = \frac{x \in Wy \in H}{}$ $\sum \sum q_i(x,y)$ $x \in W y \in H$ $q_j(x,y) = cos \frac{(y+0.5 - H/2)\pi}{H}$ Source Media Platform Deliverv Clients **Edge Servers** Estimation of T, F υ \mathcal{T} Planar Tiling Encodina Encoding Packaging Projection parameters Ladder 360° Video **Origin Server** Capture

System Models: Cost Modeling

• Encoding cost

$$c_{ij}^{e} = \begin{cases} \mu_{e}, & r_{ij} \leq 720p \\ 2\mu_{e}, & 720p < r_{ij} \leq 1080p \\ 4\mu_{e}, & 1080p < r_{ij} \leq 4K \\ 8\mu_{e}, & 4K < r_{ij} \leq 8K \end{cases}$$

• Storage cost $c_{ij}^s = \mu_s b s_{ij}$

Resolution \mathcal{G}	g_1					g_2					g_3								
Model Distortion		Data size			Distortion		Data size		Distortion		Data size								
		k	Ω	Φ	k	Ω	Φ	\boldsymbol{k}	Ω	Φ	k	Ω	Φ	\boldsymbol{k}	Ω	Φ	k	Ω	Φ
	o_1	1809	-0.6959	5.649	0.7613	0.9901	52.54	4002	-0.7558	2.723	0.8005	0.9859	52.25	1829	-0.5587	-3.266	0.8264	0.9846	214.9
Content type \mathcal{O}	02	220.1	-0.3583	6.447	0.6467	1.003	29.36	191.9	-0.2763	-5.728	0.6078	1.009	71.15	480.6	-0.3643	-5.728	0.5654	1.015	269
	<i>o</i> 3	820.4	-0.4702	6.2	0.6631	1.001	10.69	643	-0.3825	-2.625	0.6691	1	17.46	616.9	-0.2837	-23.78	0.5943	1.012	203.8

Problem Formulation

	Profiles:	p_1	p_2	p_3	p_4
Constraints	B^{min} (Mbps) B^{max} (Mbps)	1 4	3 20	15 30	25 40
 Bandwidth: B_{min} and B_{max} 	Λ (mops)	0.25	0.25	0.25	0.25

- Computational and storage costs: C_{max} and S_{max}
- Encoding rate: minimum step size τ

$$\mathcal{L}^* : \operatorname{argmin}_{\mathcal{L}} \sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} (\gamma c_i + (1 - \gamma) d_i) a_{ip}$$
 $c_i = \sum_{j \in \mathcal{T}} (c^e_{ij} + c^s_{ij}) \quad c_i \in \mathcal{P}$ $d_i = \sum_{j \in \mathcal{T}} d_{ij}$

$$\begin{split} B_p^{min} &\leq b_i a_{ip} \leq B_p^{max} \quad \forall i \in \mathcal{L} \text{ and } \forall p \in \mathcal{P}, \\ &\sum_{i \in \mathcal{L}} a_{ip} = \lfloor \frac{M\Lambda_p}{\sum_{p \in \mathcal{P}} \Lambda_p} \rfloor \qquad \forall p \in \mathcal{P}, \\ &\sum_{p \in \mathcal{P}} a_{ip} \leq 1 \qquad \forall i \in \mathcal{L}, \\ &\sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} s_i a_{ip} \leq S^{max}, \\ &\sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} c_i a_{ip} \leq C^{max}, \\ &\sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} c_i a_{ip} \leq C^{max}, \end{split}$$

Problem Formulation

	Profiles:	p_1	p_2	p_3	p_4
Constraints	B ^{min} (Mbps) B ^{max} (Mbps)	1 4	3 20	15 30	25 40
 Bandwidth: B_{min} and B_{max} 	Λ (<i>inters</i>)	0.25	0.25	0.25	0.25

- Computational and storage costs: C_{max} and S_{max}
- Encoding rate: minimum step size τ

$$\mathcal{L}^* : \operatorname*{argmin}_{\mathcal{L}} \sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} \left(\gamma c_i + (1 - \gamma) d_i \right) a_{ip}$$

$$\begin{split} B_p^{min} &\leq b_i a_{ip} \leq B_p^{max} \quad \forall i \in \mathcal{L} \text{ and } \forall p \in \mathcal{P}, \\ &\sum_{i \in \mathcal{L}} a_{ip} = \lfloor \frac{M\Lambda_p}{\sum_{p \in \mathcal{P}} \Lambda_p} \rfloor \quad \forall p \in \mathcal{P}, \\ &\sum_{p \in \mathcal{P}} a_{ip} \leq 1 \quad \forall i \in \mathcal{L}, \\ &\sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} s_i a_{ip} \leq S^{max}, \\ &\sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} c_i a_{ip} \leq C^{max}, \\ &\frac{b_i a_{ip}}{b_n^*} \geq \tau, \quad \forall i \in \mathcal{L}, \ \forall n \in \mathcal{L}^* \text{ and } \forall p \in P. \end{split}$$

Experimental Setup

• N=10

•

- H.264/AVC
- Quality: WS-MSE and WS-PSNR
- Baselines: one-size-fits-all encoding ladders

Profiles:	p_1	p_2	p_3	p_4	
B^{min} (Mbps)	1	3	15	25	
B^{max} (Mbps)	4	20	30	40	
Λ	0.25	0.25	0.25	0.25	
Sequence		f_{spa}	f_{tmp}	\mathcal{O}	
Train		0.977	0.065	0.	
Stitched_left_Dancing36	60_8K	0.884	o_1		
Basketball		0.843	0.090	0.5	
KiteFlite		0.861	0.090	o_2	
ChairLift		0.789	0.212	00	
SkateboardInLot	0.827	0.521	03		

ILP using	Арј	ple [15]	Axin	om [21]	Netflix [16]		
Pyomo	Z (Mbps) 45 30 20	$W \times H$ 8192 × 4096 8192 × 4096 4096 × 2048	Z (Mbps) 45 30 21	$W \times H$ 8192 × 4096 8192 × 4096 4096 × 2048	Z (Mbps) 43 30 23 5	$W \times H$ 8192 × 4096 4096 × 2048 4096 × 2048	
	11	3072×1536	12	3072×1536	17.5	3072×1536	

RD Performance Gain

- High diversity in video content characteristics
- One-size-fits-all schemes cannot provide costoptimal and high-quality streaming performances

	Sequence
RD Performance Gain	Train Stitched_left_Dancing360_8K Basketball KiteFlite ChairLift SkateboardInLot

 f_{spa}

0.977

0.884

0.843

0.861

0.789

0.827

 f_{tmp}

0.065

0.110

0.090

0.090

0.212

0.521

 \mathcal{O}

 o_1

 o_2

*o*3

•
$$\gamma = 0$$
 $\mathcal{L}^* : \operatorname{argmin}_{\mathcal{L}} \sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} (\gamma c_i + (1 - \gamma) d_i) a_{ip}$

BD Rate (%)

Sequence v	Streaming vendor						
	Apple	Axinom	Netflix				
Stitched_left_Dancing360_8K	-5.557	-5.885	-69.253				
KiteFlite	-13.876	-14.436	-69.178				
SkateboardInLot	-1.673	-1.701	-1.155				

Experiment Scenario

• Constraints of S_{max} and C_{max} are 8000, τ = 1.2, and M = 12

Company of the				Representation <i>i</i>									
sequence v	$ \gamma $	1	2	3	4	5	6	7	8	9	10	11	12
	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 3.8)$	(<i>g</i> ₁ ,4.6)	$(g_1, 5.6)$	$(g_2, 10.84)$	$(g_2, 13.11)$	$(g_2, 15.87)$	(<i>g</i> ₂ ,28.11)	(<i>g</i> ₃ ,34.01)	(<i>g</i> ₃ ,41.15)
Stitched_left_Dancing360_8K	0.1	$(g_2, 1.34)$	$(g_2, 1.61)$	$(g_2, 1.95)$	$(g_2, 2.60)$	$(g_3, 3.14)$	$(g_3, 3.80)$	(<i>g</i> ₃ ,6.12)	$(g_3, 7.40)$	(<i>g</i> ₃ ,8.96)	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.5	$(g_2, 1.00)$	$(g_2, 1.21)$	$(g_2, 1.47)$	$(g_2, 2.36)$	$(g_3, 2.86)$	$(g_3, 3.46)$	(<i>g</i> ₃ ,6.12)	$(g_3, 7.40)$	(<i>g</i> ₃ ,8.96)	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_2, 2.15)$	$(g_2, 3.80)$	$(g_2, 4.60)$	$(g_3, 5.56)$	$(g_3, 10.84)$	$(g_3, 13.11)$	$(g_3, 15.87)$	$(g_3, 28.11)$	(<i>g</i> ₃ ,34.01)	$(g_3, 41.15)$
KiteFlite	0.1	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_2, 2.15)$	$(g_2, 3.80)$	$(g_2, 4.60)$	$(g_3, 5.56)$	$(g_3, 6.73)$	$(g_3, 8.14)$	$(g_3, 9.85)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.5	$(g_1, 1.00)$	$(g_1, 1.21)$	$(g_1, 1.47)$	$(g_2, 2.36)$	$(g_2, 2.86)$	$(g_2, 3.46)$	$(g_3, 6.12)$	$(g_3, 7.40)$	$(g_3, 8.96)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 3.80)$	$(g_1, 4.60)$	$(g_1, 5.56)$	$(g_2, 10.84)$	$(g_2, 13.11)$	$(g_2, 15.87)$	$(g_2, 28.11)$	(<i>g</i> ₃ ,34.01)	$(g_3, 41.15)$
SkateboardInLot	0.1	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 2.86)$	$(g_1, 3.46)$	$(g_1, 4.18)$	$(g_1, 6.12)$	$(g_1, 7.40)$	$(g_1, 8.96)$	$(g_1, 17.45)$	$(g_2, 21.12)$	$(g_2, 25.55)$
	0.5	$(g_1, 1.21)$	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.36)$	$(g_1, 2.86)$	$(g_1, 3.46)$	$(g_1, 6.12)$	$(g_1, 7.40)$	(<i>g</i> ₁ ,8.96)	$(g_2, 17.45)$	$(g_2, 21.12)$	$(g_2, 25.55)$

Sequence v	$\Delta \cos$	st (%)	Δ distortion (%)			
	$\gamma = 0.1$	$\gamma=0.5$	$\gamma = 0.1$	$\gamma=0.5$		
Stitched_left_Dancing360_8K	37.463	39.683	-13.628	-42.914		
KiteFlite	33.165	39.206	-9.564	-25.326		
SkateboardInLot	37.214	38.884	-8.977	-15.26		

Conclusion

- A novel encoding ladder estimation method for tiled 360° video streaming systems, considering both the provider's and client's perspectives
- The developed system included classification of the content type, distortion modeling, cost modeling, and problem formulation
- Achieved significant bitrate savings compared to the one-size-fits-all encoding ladders
- Automatically find cost-optimal encoding ladders using several practical constraint