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中中中文文文摘摘摘要要要

隨著科技日新月異，人們不再滿足於僅僅使用平面顯示器觀看高

清(Full High Definition)、超清(Ultra-High Definition)串流影片，而開始

追求沈浸式(immersive)的觀看體驗。因此，能提供使用者沈浸式體驗

的360度影片蔚為潮流，例如，知名影音串流平台如YouTube及Facebook皆

已支援360度影片串流。此外使用頭戴式顯示器(HMD)觀看360度影

片，更能讓使用者得到身歷其境的體驗，因為使用者能透過轉頭自然

地改變觀看角度，猶如親身處在影片的虛擬環境中。然而，串流360度

影片至頭戴式顯示器並非易事。首先360度影片為提供使用者頭戴式

顯示器中擬真的畫面，需要極高的解析度而造成相當可觀得檔案大

小，這將使頻寬不堪負荷而造成額外的延遲及差強人意的使用者體

驗。此外，由於360度影片需投影到二維影片後才能進行壓縮，所造

成的變形使現存的影片品質指標，如峰值信噪比(Peak Signal-to-Noise

Ratio, PSNR)及結構相似性(Structural SIMilarity Index, SSIM)皆難以準

確衡量360度影片的觀看品質，更遑論考慮人類複雜的視覺系統及使用

者多元的觀看行為。這些困難阻礙了以使用者體驗為導向的360度影片

串流最佳化發展。為了解決上述的挑戰，本論文解決了360度影片串流

至頭戴式顯示器的三個核心問題，這三個問題分別處於串流的三個階

段：串流傳輸、壓縮與包裝，以及顯示與觀看。首先，我們設計並開

發了一個神經網路，運用感測資料及影片分析進行訓練，以預測使用

者未來視野。我們所提出的預測網路有效地減少360度影片傳輸所需頻

寬，但仍維持相當好的影片品質。接下來，我們利用影片模型、觀看

機率及客戶端頻寬分佈，來計算最佳化編碼階梯(Encoding Ladder)，以

決定應儲存哪些影片版本在有儲存空間限制的伺服器上，藉此最佳化

異質客戶端的觀看品質。最後，我們設計並進行使用者研究與分析，

調查並量化各式影響使用者體驗的因子，最終參考這些因子來建立觀

看360度影片的使用者體驗模型。我們所研究的這三個核心問題可以有

效地最佳化360度影片串流系統，這些開發的技術以及經驗，也將成為

未來如虛擬實境、擴增實境、混合實境、以及延伸實境，這些創新應

用的基石。
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Abstract

Immersive videos, a.k.a. 360◦ videos, have become increasingly more

popular. 360◦ deliver more immersive viewing experience to end users be-

cause of the freedom of changing viewports. Streaming immersive videos

to Head-Mounted Displays (HMDs) offer even more immersive experience

by allowing users to arbitrary rotate their heads to change the viewports as if

they are physically in virtual worlds. However, streaming high-quality 360◦

videos to HMDs is quite challenging. First, 360◦ videos contain much more

information than conventional videos, and thus are much larger in resolutions

and size. This may introduce additional delay and degraded user experience

due to insufficient network bandwidth. Second, existing quality metrics are

less applicable to 360◦ videos, which is due to the complex human visual

systems and diverse viewing behaviors. This inhibits the development of

QoE-orientated optimization for 360◦ videos. To address these challenges,

we study three core problems to optimize the: (i) delivery, (ii) production,

and (iii) consumption of immersive video content in the emerging streaming

systems to HMDs. First, we design a neural network that leverages sensor

and content features to predict the future viewports of HMD viewers watch-

ing immersive tiled videos. Our proposed prediction network effectively re-

duces the bandwidth consumption while offering comparable video quality.

Second, we develop a divide-and-conquer approach to optimize the encoding

ladder of immersive tiled videos considering the video models, viewing prob-

abilities, and client distribution. Our proposed algorithm aims to maximize

the overall viewing quality of clients under the limits of server storage and

heterogeneous client bandwidths. Last, we design and conduct a user study

to investigate and quantify the impacts of various QoE factors. We then use

these factors to build QoE models for the immersive videos. The outcomes

of these three studies result in better optimized immersive video streaming

systems to HMDs. Our developed technologies and accumulated experience

will be the cornerstone of the upcoming Virtual Reality (VR), Mixed Real-

ity (MR), and Augmented Reality (AR), collectively referred to as Extended

Reality (XR), applications.
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Chapter 1

Introduction

With the advances in technologies and services, users are no longer satisfied with watch-

ing videos on conventional Full High Definition (FHD) or Ultra High Definition (UHD)

2D displays. Novel types of displays have been developed, such as light-field displays,

volumetric displays, Head-Mounted Displays (HMDs), and Optical Head-Mounted Dis-

plays (OHMDs). In particular, Commodity HMDs, e.g., Oculus Rift [155], HTC Vive [75],

and Samsung Gear VR [178], have become increasingly widespread. A market report [130]

claims that while the global HMD market is valued at US$6,744 in 2020, a Compound

Annual Growth Rate (CAGR) of 22% is forecast from 2020 to 2026. These advanced

technologies are making immersive applications more and more popular, including Vir-

tual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and Extended Reality

(XR).

Among the immersive content, 360◦ videos have gradually entered into our daily life.

360◦ videos allow viewers to dynamically change their orientations during video play-

back. Since 2015, online content providers, such as YouTube and Facebook, have started

streaming 360◦ videos over the Internet, and these videos are becoming very popular.

For example, Hong Kong Airlines’ 360◦ video advertisement has attracted 35 times more

viewers than their regular one [1]. A user study also found that: (i) 360◦ videos attract 8

times more web clicks, and (ii) 360◦ video viewers watch 29% longer on average, com-

pared to conventional videos [128]. Moreover, the market of 360◦ cameras is predicted to

have a CAGR of 25% during 2020-2025 [176]. The momentum of the increasing popu-

larity of watching 360◦ videos shows no indication of slowing down in the coming years.

While 360◦ videos are becoming increasingly popular, offering high quality 360◦

videos is no easy task. In particular, 360◦ videos provide a much wider view than conven-

tional videos and thus must be encoded at extremely high resolutions for good viewing

experience. This is mainly because each viewer only sees a small viewport of about

100◦×100◦ within his/her 360◦ video at any moment. To ensure that every viewport
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has at least 1080p (1920×1080) resolution, the whole 360◦ video needs to be encoded

at a resolution close to 8k (7680×4320), following some back-of-envelope calculations.

Streaming complete 360◦ videos in 8k resolution to HMD viewers consumes a stagger-

ing amount of resources, including encoding/decoding, networking, and storage, and is

therefore vulnerable to degraded playback quality.

To address this challenge, tiled encoding has been proposed [134]. It divides every

360◦ video into equal-size rectangles, called tiles. The tiles are then independently en-

coded and decoded, so that they can be selectively streamed to HMD viewers based on

their likelihood to be viewed (i.e., falling in HMD viewers’ viewports). To further deal

with the diverse and dynamic network environments, the Dynamic Adaptive Streaming

over HTTP (DASH) [83,188] segment in the time domain is adopted to combine with the

tiling concept in the spatial domain, which encodes 360◦ videos into tiled segments. Each

tiled segment represents a spatial region for a time duration of a few seconds. Adopting

DASH requires the predetermination of a set of encoding configurations, called an en-

coding ladder, to generate a set of representations stored on the streaming server. These

representations are adaptively requested by clients according to their network conditions

during streaming sessions.
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Figure 1.1: Overview of a typical tiled 360◦ video streaming system.

Fig. 1.1 illustrates an overview of a typical tiled 360◦ video DASH streaming sys-

tem offered by a content distributor. Content distributors receive production-quality (raw)

videos from content providers, prepare multiple representations of segments, and dis-

tribute the videos over the Internet to clients. The streaming service contains three entities:

(i) production server, which produces the encoded tiled-segments using the tiled-segment

encoder, (ii) streaming server, which stores the encoded tiled-segments and sends the

video streams, and (iii) clients, which request, decode, and render the tiled-segments to

viewers. These three entities compose three crucial phases of 360◦ video streaming: (i)

production, which is triggered only when new videos are added to the streaming server,

(ii) delivery, which is triggered at individual streaming sessions when the clients request

tiled segments from the streaming server, and (iii) consumption, which is triggered when

the viewers watch the videos rendered with the received and decoded tiled segments. Ex-
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ploiting tiled segments enables wider room to maximize the Quality of Experience (QoE)

of 360◦ video streaming to HMDs, which dictates careful optimization of the above three

phases. In this thesis, we solve the problem for these three phases to achieve a QoE-

optimized 360◦ video streaming system.

1.1 Delivery Optimization: Fixation Prediction

In delivery, we study the problem of predicting the viewing probability of different parts

of 360◦ videos when streaming to HMDs. We propose a fixation prediction network based

on a Recurrent Neural Network (RNN), which leverages sensor and content features. The

content features are derived by Computer Vision (CV) algorithms, which may suffer from

inferior performance due to various types of distortion caused by diverse 360◦ video pro-

jection models. We propose a unified approach with overlapping virtual viewports to

eliminate such negative effects, and we evaluate our proposed solution using several CV

algorithms, such as saliency detection, face detection, and object detection. We find that

overlapping virtual viewports increase the performance of these existing CV algorithms

that were not trained for 360◦ videos. We next fine-tune our fixation prediction network

with diverse design options, including: (i) with or without overlapping virtual viewports,

(ii) with or without future content features, and (iii) different feature sampling rates. We

empirically choose the best fixation prediction network and use it in a 360◦ video stream-

ing system. We conduct extensive trace-driven simulations with a large-scale dataset

to quantify the performance of the 360◦ video streaming system with different fixation

prediction algorithms. The results show that our proposed fixation prediction network

outperforms other algorithms in several aspects, such as: (i) achieving comparable video

quality (average gaps between -0.05 and 0.92 dB), (ii) consuming much less bandwidth

(average bandwidth reduction by up to 8 Mbps), (iii) reducing the rebuffering time (on

average 40 sec in bandwidth-limited 4G cellular networks), and (iv) running in real-time

(at most 124 ms).

1.2 Production Optimization: Optimal Laddering

In production, we solve the optimal laddering problem that determines the optimal encod-

ing ladder to maximize the client viewing quality. In particular, we consider video mod-

els, viewing probability, and client distribution to formulate the mathematical problem.

We use the divide-and-conquer approach to decompose the problem into two subprob-

lems: (i) per-class optimization for clients with different bandwidths and (ii) global opti-

mization to maximize the overall viewing quality under the storage limit of the streaming
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server. We propose two algorithms for each of the per-class optimization and global opti-

mization problems. Analytical analysis and real experiments are conducted to evaluate the

performance of our proposed algorithms, compared to other state-of-the-art algorithms.

Based on the results, we recommend a combination of the proposed algorithms to solve

the optimal laddering problem. The evaluation results show the merits of our recom-

mended algorithms, which: (i) outperform the state-of-the-art algorithms by up to 52.17

and 26.35 in Viewport Video Multi-Method Assessment Fusion (V-VMAF) in per-class

optimization, (ii) outperform the state-of-the-art algorithms by up to 43.14 in V-VMAF

for optimal laddering in global optimization, (iii) achieve good scalability under different

storage limits and number of bandwidth classes, and (iv) run faster than the state-of-the-

art algorithms.

1.3 Consumption Optimization: QoE Modeling

Conducting user studies to quantify the QoE of watching the increasingly more popular

360◦ videos in HMDs is time-consuming, tedious, and expensive. Deriving QoE models,

however, is very challenging because of the diverse viewing behaviors and complex QoE

features and factors. In consumption, we compile a wide spectrum of QoE features and

factors that may contribute to the overall QoE. We design and conduct a user study to

build a dataset of the overall QoE, QoE features, and QoE factors. Using the dataset,

we derive the QoE models for both Mean Opinion Score (MOS) and Individual Score

(IS), where MOS captures the aggregated QoE across all subjects, while IS captures the

QoE of individual subjects. Our derived overall QoE models achieve 0.98 and 0.91 in

Pearson’s Linear Correlation Coefficient (PLCC) for MOS and IS, respectively. Besides,

our analysis of the user study results leads to new observations as follows: (i) content

factors dominate the overall QoE across all factor categories, (ii) VMAF is the dominating

factor among content factors, and (iii) the perceived cybersickness is affected by human

factors more than others. Our proposed user study design is useful for QoE modeling (in

specific) and subjective evaluations (in general) of emerging 360◦ tiled video streaming

to HMDs.

1.4 Contributions

The contributions of this thesis are listed below:

• Delivery optimization: fixation prediction [50, 52]
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– We are the first to jointly take both sensor and content features as the inputs to

a neural network to predict the viewer fixation.

– We propose a unified approach based on overlapping virtual viewports to turn

CV algorithms designed and trained for 2D images/videos applicable to 360◦

videos.

– Our proposed fixation prediction network outperforms a state-of-the-art algo-

rithm in the literature in terms of prediction accuracy.

– We employ the fixation prediction network and virtual viewport approach to

optimize our 360◦ video streaming system. The evaluation results show the

superior performance of our solution compared to the baseline approaches,

i.e., our solution (i) achieves comparable video quality, (ii) consumes much

less bandwidth, (iii) reduces the rebuffering time, and (iv) runs in real-time.

• Production optimization: optimal laddering [53]

– We formulate the optimal laddering problem for 360◦ videos into a mathemat-

ical optimization problem considering video models, viewing probability, and

client distribution.

– We solve the problem using the divide-and-conquer approach with a diverse

suite of mathematical tools. We also analytically analyze the performance of

our proposed algorithms.

– We conduct extensive experiments to show the performance and practicality

of our proposed algorithms. Our evaluation results reveal that our algorithms:

(i) result in both higher objective and subjective video quality, (ii) scale well

under different storage limits and different numbers of bandwidth classes, and

(iii) run faster than the state-of-the-art algorithms.

• Consumption optimization: QoE modeling

– We compile a suite of 5 QoE features and 30 QoE factors, which are either

inspired by the literature or from the tiled streaming nature.

– We design and conduct a user study for watching tiled 360◦ videos in HMDs.

We also build MOS and IS models of watching tiled 360◦ videos in HMDs.

– Our evaluation results are fairly promising: e.g., our derived models for the

overall QoE achieve 0.988 and 0.915 in PLCC in terms of MOS and IS, re-

spectively.
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– We find that a reduced set of QoE factors could also lead to good performance.

For example, for the overall QoE, with a single QoE factor, we achieve >97%

of the performance compared to comprehensive models with 30 QoE factors.
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Figure 1.2: Overview of our proposed optimized 360◦ video streaming system.

With the above contributions, we believe that we can achieve a QoE-optimized 360◦

video streaming system, as illustrated in Fig. 1.2. In delivery optimization, we develop the

fixation prediction neural network leveraging both sensor and content features to predict

the viewer’s future viewed tiled segments. This avoids wasting resources on streaming

unwatched parts. In production optimization, we develop the encoding ladder optimizer

to determine the optimal encoding ladder considering content features (video models),

viewing probability, and bandwidth distribution. In consumption optimization, we con-

duct a comprehensive user study to investigate diverse factors that capture user behaviors

and affect user experience of watching tiled 360◦ videos. The collected dataset from the

user study is used to build QoE models in various aspects, such as the overall QoE, immer-

sion level, and cybersickness level. Our encoding ladder optimizer ensures the optimal

resource allocation on the streaming sever, while the fixation prediction network and QoE

models ensure the optimal resource allocation during streaming.

1.5 Thesis Organization

The organization of this thesis is given below. We report the related work for our pro-

posed three core problems in Chapter 2. We solve the delivery problem in Chapter 3, the
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production problem in Chapter 4, and the consumption problem in Chapter 5. Finally, we

conclude this thesis and discuss the future directions in Chapter 6.
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Chapter 2

Background and Related Work

In this chapter, we first introduce the background of tiled 360◦ video streaming to HMDs [51].

Then, we zoom into the related work of the three core problems studied in this thesis.

2.1 Background

2.1.1 Off-the-Shelf Hardware

Table 2.1: The State-of-the-art 360◦ Cameras

Name Release Lenses Video Res. Image Res. OS Support MSRP ($)

Insta360 Evo 2018 200◦ (f/2.2) x2
5760 x 2880/30 fps

3008 x 1504/100 fps
6080 x 3040 iOS 420

Insta360 One X 2018 200◦ (f/2.0) x2 5760 x 2880/30 fps 6080 x 3040 iOS 515

Yi 360 VR 2018 220◦ (f/2.0) x2 5760 x 2880/30 fps 5760 x 2880 iOS, Android 200

Insta360 Nano S 2018 210◦(f/2.2) x2 3840 x 1920/30 fps 6272 x 3136 iOS 239

Insta360 One 2017 230◦(f/2.2) x2
3840 x 1920/30 fps

2048 x 512/120 fps
6912 x 3456 iOS, Android 299

Insta360 Air 2017 210◦(f/2.0) x2 2560 x 1280 /30 fps 3008 x 1504 Android 119

SAMSUNG Gear 360 2017 360◦(f/2.2) x2
4096 x 2048/24 fps

1920 x 1080/60 fps
5472 x 2736

iOS, Android,

Windows, OS X
130

LG 360 cam 2016 206◦(f/1.8) x2 2560 x 1280/30 fps 5660 x 2830 iOS, Android 90

RICOH THETA V 2017 - (f/2.0) x2 3840 x 1920 /30 fps 5376 x 2688 iOS, Android 397

RICOH THETA S 2015 - (f/2.0) x2 1920 x 1080 /30 fps 5376 x 2688 iOS, Android 299

RICOH THETA SC 2016 - (f/2.0) x2 1920 x 1080 /30 fps 5376 x 2688 iOS, Android 189

GARMIN VIRB 360 2017 201◦(f/2.0) x2 3840 x 2160 /30 fps 5640 x 2816 Windows, OS X 800

Rylo 360-degree camera 2017 208◦(f/2.8) x2 4K/30 fps 6K iOS, Andriod 499

KODAK ORBIT360 4K 2017 235◦(f/2.4) x2 1920 x 960/30 fps 7360x3680 iOS, Android 399

KODAK SP360 4K 2016 235◦(f/2.8) x2 2880 x 2880/30 fps 2880 x 2880 iOS, Android 449

KODAK SP360 2014 214◦(f/2.8) x2 1920 x 1080/30 fps 3264 x 3264 iOS, Android 174

GoPro Fusion 2017 180◦(f/2.0) x2 4992 x 2496/30 fps 5760 x 2880 iOS, Android 699

Nikon KEYMISSION 360 2016 180◦(f/2.0) x2 1440 x 960p/30 fps 7744 x 3872 iOS, Android 497

Insta360 Pro 2 2018 200◦(f/2.4) x6
7680 x 7680/30 fps (3D)

3840 x 3840/120 fps

7680 x 7680 (3D)

7680 x 3840 (2D)

iOS, Android,

Windows, OS X
4,499

Insta360 Pro 2017 200◦(f/2.4) x6 3840 x 1920/30 fps 7680 x 3840
iOS, Android,

Windows, OS X
3,499

VideoStitch Orah 4i 2017 170◦(f/2.0) x4 4096 x 2048/30 fps 1920 x 1440 iOS, Android 3,595
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One crucial driving force of the increasing popularity of 360◦ video streaming is the

availability of consumer-grade hardware components, especially the 360◦ cameras and

HMDs. We summarize the state-of-the-art hardware in this section.

Table 2.2: The State-of-the-art HMDs

Name Year Screen Resolution FoV Ref. Rate (Hz) MSRP ($)

FOVE 0 2017 OLED 2560 x 1440 100◦ 70 599

Oculus Go 2018 LCD 2560 x 1440 110◦ 90 209

Oculus Rift 2016 OLED 2160 x 1200 110◦ 90 421

Samsung Gear VR 2017 AMOLED 2560 x 1440 101◦ 60 102

Samsung Odyssey 2017 AMOLED 2880 x 1600 110◦ 90 420

Sony PlayStation

VR
2016 OLED 1920 x 1080 100◦ 120 215

HTC Vive FOCUS 2018 AMOLED 2880 x 1600 110◦ 75 599

HTC Vive Pro 2018 AMOLED 2880 x 1600 110◦ 90 799

HTC Vive 2016 OLED 2160 x 1200 110◦ 90 399

OSVR HDK2 2016 OLED 2160 x 1200 110◦ 90 300

OSVR HDK1 2015 OLED 1920 x 1080 100◦ 60 -

Google DayDream

View VR
2017 Using the inserted cellphone 87

Google Cardboard 2014 Using the inserted cellphone 15

360◦ cameras employ multiple lenses to capture 360◦ images and videos. The first

consumer-grade 360◦ cameras hit the market in 2014, but were extremely expensive until

2016. Ever since, a growing number of 360◦ cameras, especially those for iOS and An-

droid, have been released at affordable prices. Table 2.1 lists representative 360◦ cameras

on the market. Several characteristics, such as the maximal resolution and release year, are

reported in this table. We note that the MSRPs (Manufacturer’s Suggested Retail Prices)

are retrieved from Amazon at the time of writing. We roughly classify the 360◦ cameras

into two groups: professional and consumer-grade. The professional ones are > USD

3000, and typically have more than two lenses. Besides, they have larger form-factors

and are heavier. Most professional 360◦ cameras are standalone rather than clipped onto

smartphones. The consumer-grade cameras focus more on user interfaces and can be at-

tached to smartphones or other mobile devices running iOS or Android. Furthermore,

most of them have no more than two lenses in order to reduce the cost.

HMDs have been used in a wide range of scenarios, including military, medicine,

video gaming, and sports. In Table 2.2, we present some of the most influential HMDs on

the market. We highlight critical specifications, such as the resolution, FoV, and refresh

rate. Such information may be useful for researchers, developers, and users to choose the

HMD that is most appropriate for their usage scenarios.
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2.1.2 Existing Systems

Multiple studies developed 360◦ video systems for various purposes, such as demon-

strating the practicality or evaluating the optimization ideas. Table 2.3 summarizes and

compares the prototype systems proposed in the literature. Some 360◦ video systems ren-

der videos stored in local storage spaces. For example, Petry and Huber [166] presented

a 360◦ display system that allows viewers to interact with the video through an HMD and

a mounted gesture recognizer. In particular, the viewers are able to play, pause, forward,

and rewind the video by performing different mid-air hand gestures. Alface et al. [4] pro-

posed a system that is able to handle 16K videos by only processing the required pixels

in the viewer’s viewport. In particular, they composed a moving 4K canvas that always

keeps the viewport at the center of the canvas. In this way, the processed video is always

in 4K resolution, which reduces the demands for processing power. Anderson et al. [7]

developed a more comprehensive 360◦ video system that comprises capturing, stitching,

and rendering components. They first mounted cameras on a rig, so that all light rays

from the viewer’s eyes are recorded as 360◦ stereo videos. All 16 videos were stitched

using their proposed optical flow and composition algorithms. Ferworn et al. [58] devel-

oped a special-purpose 360◦ video system for dogs to perform urban search and rescue.

In their proposed system, a dog wears multiple cameras, which keep capturing video

frames. These captured video frames are uploaded to a Personal Computer (PC) after the

mission is over. Next, the PC analyzes videos, performs tracking, and stabilizes frames

for better-quality 360◦ videos.

There were more systems developed with Internet streaming supports. Gaemperle et

al. [63] adopted a multi-camera system with image blending algorithms to capture 360◦

videos. The video was then distributed through the server to the client, and the HMD

viewport was reconstructed by the client. Several studies tried building low-cost stream-

ing systems for 360◦ videos. Canessa and Tenze [26] developed a 360◦ video Real-time

Transport Protocol (RTP) streaming system on Raspberry Pi with a fish-eye camera mod-

ule and several open-source packages, such as FFmpeg, OpenCV, and MPlayer. However,

the resolution of their system is only about 360p. Choi and Jun [32] further considered

multiple camera-equipped Raspberry Pis. They sent the images over a network to a PC for

stitching. Several optimization tools have been employed to improve the system perfor-

mance, including simplified algorithm and multi-threading. They tried different blending

methods proposed in the literature and quantified their performance. Jiang et al. [92]

built a 360◦ video streaming system for power consumption measurement. They com-

pared 360◦ video streaming systems with conventional 2D ones. The measurement results

showed that viewport generations consume the most power due to the high computation

overhead for viewports. The network transmission consumed the second most, followed
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Table 2.3: Representative 360◦ Video Streaming Prototype Systems

Networked 360◦ Video Streaming

System Maximum

Resolution

Codec Streaming

Protocol

Adaptive

Streaming

Player

Gaemperle et al. [63] 1024x768 - TCP - Homebrew

Canessa and Tenze [26] 352x288 - RTP - MPlayer [137]

Choi and Jun [32] <

3840x720

H.264 RTSP - -

Ochi et al. [153] 2560x1280 H.264 HTTP - Oculus Player [155]

Ochi et al. [154] 1920x960 H.264 RTMP - Oculus Player [155]

Qian et al. [168] 1080p AVC HTTP/1.1 DASH YouTube Player

Xie and Zhang [219] 4K VP8 RTP WebRTC -

Schafer et al. [179] 10000x1920 H.265 HTTP/1.0 DASH -

Lim et al. [118] - H.264 HTTP/1.0 DASH/SRD Homebrew

Feuvre et al. [111] 4K HEVC HTTP/1.1 DASH/SRD GPAC/MP4Client [195]

Ozcinar et al. [161] 8K AVC HTTP/1.1 DASH/SRD WebVR Player [211]

Lo et al. [124] 4K HEVC HTTP/1.1 DASH/SRD GPAC/MP4Client [195]

Graf et al. [66] 4K HEVC HTTP/1.1 DASH/SRD WebVR Player [211]

Kim et al. [102] 8K

(4K/4K)

HEVC HTTP/1.1 DASH/SRD -

Nasrabadi et al. [139] 4K HEVC/SHVCHTTP/1.0 - Homebrew

Petrangeli et al. [165] 4K HEVC HTTP/2 DASH/SRD Google/Exoplayer [65]

Niamut et al. [149] 8K - HTTP/1.0 DASH Homebrew

Gaddam et al. [62] 4K H.264 HTTP/1.0 - -

Local 360◦ Video Streaming (Files)

Inoue et al. [82] 6400x1280 H.264/MVC - - -

Kimata et al. [104] 8000x1000 H.264/MVC - - -

Kimata et al. [105] 5000x1000 H.264/MVC - - -

Alface et al. [4] 16K H.264 - - GearVR Player [178]

Anderson et al. [7] 8192x8192 - - - -

Ferworn et al. [58] 1080p - - - -

by the screen displays and video codecs. Based on their observations, they proposed sev-

eral power-saving approaches, e.g., viewport-based streaming and edge-based rendering.

Several other systems further considered tiling for improving the performance of en-

coding or streaming 360◦ videos. Ochi et al. [153, 154] built a 360◦ video streaming

system that streamed high-bitrate tiles to the viewer’s viewports and low-bitrate tiles to
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other parts, for reduced bandwidth consumption. However, the latency of their proposed

streaming system still has room for improvement. Qian et al. [168] presented a streaming

system over cellular networks, which only streams the tiles in the viewport based on head

movement predictions. Xie and Zhang [219] presented an interactive 360◦ streaming sys-

tem over cellular networks. They developed a conservative compression strategy to keep

the quality of the viewport more stable, even when the variation of viewports is high. Be-

sides, their proposed system monitors the buffer occupancy of the uplink for congestion

detection. Once the congestion is detected, the encoding bitrate is adjusted to maintain

the video quality. Schafer et al. [179] developed a 360◦ video capturing and streaming

system. Their system split videos into several sub-videos and performed stitching in the

compressed domain so that the client only needed to decode one stream.

Different from the above systems, several studies split the videos into equal-size tiles

and stored the tile information, such as resolution and position in metadata files [111,118].

Feuvre et al. [111] applied tiling to general 4K videos with unequal tile quality levels to

achieve viewport-aware adaptive streaming. Ozcinar et al. [161] also developed an algo-

rithm to select the representation of each tile to achieve viewport-aware adaptive stream-

ing in their proposed system. Lo et al. [124] built a streaming system and compared

the performance of transmitting all tiles versus visible tiles only. They further studied

the impact of tiling, e.g., coding efficiency and tiling overhead. Graf et al. [66] built a

tiled-streaming system considering different streaming strategies. Kim et al. [102] de-

veloped a streaming system for 360◦ video in virtual spaces. In particular, they adopted

virtual cameras in Unity and Unreal engines. Scenes from 12 virtual cameras were cap-

tured and stitched to generate the 360◦ videos. The videos were then tiled and segmented

for adaptive streaming through CDN (Content Delivery Network). Nasrabadi et al. [139]

exploited Scalable High-efficiency Video Coding (SHVC) to further adaptively stream

360◦ videos with multiple layers. The base-layer of all tiles is prefetched to avoid video

stalls, while the enhancement-layer tiles in viewports are transmitted with the residue

bandwidth. Combined with state-of-the-art network technologies, Petrangeli et al. [165]

leveraged HTTP/2.0 and OpenFlow to reduce latency and avoid network congestion, re-

spectively.

Similar to 360◦ videos, live broadcast events, such as soccer or basketball games, are

often streamed as panorama videos. These videos contain wider horizontal viewing angles

(which may be less than 360◦). Since most live events have a single Region-of-Interest

(RoI), tiles are also used in panorama videos to support zooming [62,82,104,105,149]. In-

oue et al. [82] developed a tiled-streaming system based on Multi-View Coding (MVC) to

support tiles. A rate-quality mapping table was used for determining the transmitted view-

ports to maximize the visual quality under restricted bandwidth. Kimata et al. [104] pro-
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posed an interactive panorama video streaming system allowing viewers to control their

viewports for high-quality videos and sound. Redundant viewports are also adaptively

streamed to guarantee smooth and fast switches of viewports. Some extensions of this

system were proposed in Kimata et al. [105]. They extended the system to support mobile

and multiple devices. In particular, the viewers are allowed to interact, e.g., zoom in/out,

with their hand-held mobile devices while watching high-resolution panorama videos on

larger screens. Niamut et al. [149] proposed an end-to-end panorama streaming system

with acquisition, transmission, and display components. In their system, the scenes are

captured with multiple representations, i.e., resolutions and frame rates. Some analysis,

such as saliency detection and person tracking, is performed for automatic camera se-

lection for serving a larger number of viewers. The videos are encoded with multiple

representations and are streamed to the clients. Their system supports several gesture in-

teractions to control the viewports and the playbacks. For generating virtual views for

individual clients, Gaddam et al. [62] proposed to leverage tiling for quality allocation

and GPUs for rendering acceleration.

The abovementioned 360◦ video streaming systems comprise different subsets of

computation and networking components, from playing local 360◦ video files to stream-

ing 360◦ videos over the Internet. Insights gathered in these studies are beneficial to

engineers who plan to build similar systems, and to researchers who plan to evaluate their

proposed solutions using real testbeds.

2.1.3 General 360 Video Streaming Framework
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Figure 2.1: General 360◦ video streaming systems: (a) pull-based (like HTTP/1.1) and

(b) push-based (like RTP).
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Fig. 2.1 shows two 360◦ video streaming frameworks: (i) pull-based (client-driven)

(Fig. 2.1(a)), which puts the intelligent components at the client side to determine the

requested video segments, and (ii) push-based (server-driven) (Fig. 2.1(b)), which, in

contrast, puts them at the server side to decide which segments to push to the client. We

describe the functions of the individual components in Fig. 2.1 below:

• Video encoder encodes the captured 360◦ videos. It may further support tiling for

partially streaming and rendering to save bandwidth consumption.

• Video segmenter splits the encoded video into segments, where each segment con-

tains a few consecutive video frames and lasts for a few seconds.

• Video storage stores the encoded video on the server, which is used for on-demand

video streaming. It may store several versions of the encoded video at different

quality levels to support adaptive video streaming.

• Video streamer is responsible for sending the encoded video to the client.

• Orientation extractor computes viewer orientations using inputs from HMD sen-

sors or other devices.

• Request generator generates requests of videos or video segments. It is placed at

the client side in pull-based systems and at the server side in push-based systems.

It is usually the core component that makes decisions for optimizing the streaming

system. For example, a bitrate allocation algorithm can be implemented in this

component for generating video segment requests based on network conditions.

• Video receiver receives the video streamed from the server.

• Video decoder is responsible for decoding the encoded videos.

• Video renderer computes the viewports according to the viewer’s orientation. It

may also convert among 360◦ video projection models [49], e.g., equirectangular,

equal-area, and cube.

The interactions among the pull-based components in Fig. 2.1(a) are as follows. At

the server side, the 360◦ camera sends a 360◦ video to the video encoder. It compresses

this video with or without tiling support and sends the encoded video to the video seg-

menter. The video segmenter splits the received video into temporal segments and either:

(i) directly sends the segments to the video streamer for live video streaming or (ii) stores

them in the video storage for on-demand video streaming. At the client side, the orienta-

tion extractor keeps recording the viewer’s orientation, which is computed from the sensor
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readings of the HMD1. The request generator considers the current network condition and

may take the viewer’s orientation as input to generate the requests. For example, the adap-

tive streaming system can request video segments or frames at different quality levels, and

the tiled-video streaming system may further skip some tiles based on the viewer orien-

tations. The video streamer at the server side then streams the encoded videos from the

video segmenter (live video) or from the video storage (on-demand video) to the client.

The video receiver passes the received video to the video decoder. The video decoder

then decodes the encoded video. The video renderer renders the decoded video according

to the viewer’s orientation to the viewer. The push-based components in Fig. 2.1(b) are

similar, except that the request generator is at the server side.

The pull- and push-based systems have diverse pros and cons. The pull-based stream-

ing systems often adopt HTTP/1.1 protocol. This protocol supports dynamic adaptive

streaming using short segments, which are typically a few seconds long and indepen-

dently decodable. This approach is better known as DASH (Dynamic Adaptive Streaming

over HTTP). The pull-based streaming systems are not affected by the Network Address

Translation (NAT) traversal problems. Besides, it is convenient to reuse the WWW infras-

tructure, including servers, caches, and CDNs. In DASH streaming, the media content is

encoded into various versions and stored on the server beforehand to adapt to varying and

dynamic networks. This consumes a large amount of storage space. In contrast, push-

based streaming systems, which often adopt RTP as the transmission protocol, stream the

media content to the clients without waiting for requests. This leads to lower latency com-

pared to pull-based streaming. However, it requires the streaming server to keep track of

the states of a potentially large number of clients. Without a reliable protocol like TCP, the

push-based streaming systems may result in inferior video quality due to network impair-

ments, such as insufficient bandwidth, packet loss, and NAT traversal issues. Based on

the pros and cons described above, we believe that the pull-based streaming systems are

more applicable for presentational video streaming, such as YouTube and Netflix, where

a few seconds of one-way delay is acceptable [2]. In contrast, the push-based systems

are more suitable for conversational video streaming, such as video conferencing, where

ultra-low latency is required for high interactivity. Requiring both high video quality and

ultra-low latency, streaming 360◦ videos over these two types of systems needs additional

optimization tools, such as viewport prediction or resource allocation.

We have introduced the general framework of pull- and push-based 360◦ video stream-

ing systems. Researchers and practitioners may start from the general frameworks and add

specialized components to meet their needs.

1Other input devices are possible when displays other than HMDs are used.
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2.1.4 Tiled 360◦ Videos

High Efficiency Video Coding (HEVC) [156] supports Motion-Constrained Tile Set (MCTS),

where tiles are disjoint rectangular regions that can be independently decoded. Tiles al-

low: (i) parallel decoding for a decoder speedup to cope with high resolutions and (ii)

random decoding of dynamic viewports. Tiles, however, impose constraints on the en-

coding process, which needs to be carefully considered. In particular, MCTS motion

dictates constraint among tiles, which reduces the coding efficiency because motion vec-

tors do not go across the tile boundaries. Therefore, there exists a critical tradeoff between

the coding efficiency and the tiled streaming flexibility, which can be controlled by the

number of tiles. More details on the HEVC standard are given in Sullivan et al. [191],

while the details of the MCTS supports in HEVC can be found in Misra et al. [134]. It is

reported that: (i) HEVC results in a 50% rate cut at similar visual quality [191] compared

with AVC and (ii) tiles achieve up to a 5.5% luminance bitrate reduction [134] compared

with regular slices. Due to their superior coding efficiency, HEVC and its tiling support

are widely used in 360◦ video systems. HEVC standard does not specify the precise

optimization algorithms used at the encoder side. Among existing open-source HEVC

codecs, Kvazaar [204] is developed in C language and provides an option to be optimized

in Assembly. Kvazaar implements various coding tools defined in HEVC, which enable

parallelization on multi-core CPUs and hardware acceleration. It supports three parallel

processing approaches including tiled encoding, and thus can be leveraged by 360◦ video

testbeds.

The MPEG DASH standard includes an amendment on Spatial Representation De-

scription (SRD), which is extended from MPD to provide x-axis, y-axis, width, and height

as attributes to DASH clients. Concolato et al. [35] discuss the latest HEVC and ISO Base

Media File Format (ISOBMFF) standards, which are used for encoding and encapsulating

tiled videos. They demonstrate that a client may merge several tiles into a video stream,

and decode it with a single decoder by combining SRD, HEV, and ISOBMF. The MPEG

group developed the Omnidirectional MediA Format (OMAF) standard for the delivery

and storage of 360◦ videos. Skupin et al. [187] presented the application requirements,

projection formats, video/audio codec, and DASH integration of the OMAF standard.

Several papers [43, 66, 111] share their experience of developing standard-based tiled

360◦ video streaming systems. In particular, D’Acunto et al. [43] used SRD to realize nav-

igable video streaming. They summarized the design choices of the SRD-enabled DASH

player, such as: (i) definitions of representations, and (ii) seamless switches among repre-

sentations. Feuvre and Concolato [111] realized tiled-based adaptive streaming using sev-

eral open-source projects, including Kvazaar [204], MP4Box [194], and MP4Client [195].

They demonstrated how interactive navigation and bitrate adaptation can be achieved us-
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ing DASH and SRD. Furthermore, they presented their implementation supporting di-

verse adaptation policies based on the open-source MP4Client. Graf et al. [66] imple-

mented various evaluation tools to quantify the pros and cons of different encoding and

streaming strategies on tiled-based 360◦ video streaming systems. They also discussed

various options to enable the bandwidth-efficient adaptive streaming of 360◦ videos. In

their evaluation, 6×4 tiles provide the best tradeoff between tiling overhead and band-

width consumption, which confirms a bitrate saving of 40% compared to the baseline

solutions. The aforementioned studies do not consider the diverse viewing probabilities

of individual tiles.

2.2 Delivery: Fixation Prediction

In terms of the fixation prediction problem, we survey the literature in three directions: (i)

2D image/video saliency, (ii) 360◦ image/video saliency, and (iii) fixation/head movement

prediction in HMDs.

2.2.1 2D Image/Video Saliency

Conventional fixation prediction is built on salient object detection, which has been done

on different content types, such as still images [20]. Image saliency can be derived from

low-level features, e.g., contrast, textures, and edges [121, 127]. Several studies have

proposed to detect image saliency based on region-based models, which leverages graph-

based segmentations [54] or linear iterative clustering [3]. Wang et al. [209] analyzed

the image saliency by combining color and contrast with spatial priors. For example, the

saliency maps are aligned to image edges or correlated with color distributions. Given

training samples with ground truth, the learning-based methods are becoming popular

because of their higher accuracy. Liu et al. [122] trained learning-based models using a

binary labeled dataset with low-level features. In addition, deep learning has become the

most popular method to perform saliency detection. For example, the Convolution Neural

Network (CNN) is able to learn from low-level features parallelly, which is suitable for

vision processing. Li and Yu [115] adopted a pre-trained CNN for extracting features in

different scales, and performed regression on the inputs to produce saliency maps. These

studies, however, were designed for 2D conventional images.

In terms of 2D video saliency, Mavlankar and Girod [132] predicted the future viewing

trajectory based on extrapolation and enhanced the performance by analyzing the char-

acteristics of video content, such as optical flow and motion vectors. A growing number

of supervised learning methods are being adopted for fixation detection [6, 27, 148] to
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achieve better feature extraction and prediction accuracy. In particular, Chaabount et

al. [27] predicted video saliency by developing a CNN with residual motion as its main

features. Furthermore, they adopted transfer learning to cope with the lack of large video

datasets. Their results show the positive effectiveness of the transfer learning. Alshawi et

al. [6] analyzed the correlation between the saliency of pixels and their spatial/temporal

neighbors, where the correlation is much affected by the video characteristics. Nguyen et

al. [148] noted a close relationship between image (static) and video (dynamic) saliency.

Based on their observation, they adopted both the information of image saliency (static)

and camera motion to predict video saliency (dynamic).

2.2.2 360◦ Image/Video Saliency

The saliency detection algorithms specifically designed for 360◦ videos have been pro-

posed. Assens et al. [11] developed a deep CNN to predict the scan-paths of 360◦ im-

ages. They trained the prediction network on a public 360◦ image dataset [171], which

consists of 60 360◦ images and 63 participants with the trajectories of both their head

and eye movements. In particular, they performed transfer learning by initializing the

network weights from several 2D image datasets. They further analyzed the prediction

under different sampling strategies, and their results revealed that limiting the distance

between fixations can improve the prediction accuracy. Monroy et al. [136] first mapped

the 360◦ images to six faces of a cubic projection, which reduced the distortion close to

poles compared to the equirectangular projection. Each face is detected by a conventional

saliency detection network with spherical coordinates for locating the face on the sphere.

Finally, six detected saliency faces were combined into a single saliency map for the 360◦

image. Similarly, Cheng et al. [31] also mapped the 360◦ videos into cubic projection

for eliminating the distortion. Some tricks, e.g., wider angle for each face and temporal

model development, were introduced to improve the saliency prediction accuracy. Zhang

et al. [230] developed a spherical CNN with spherical Mean Squared Error (MSE) loss

function, which took the angle to the center of the sphere into consideration. Besides, the

starting position for the viewer to watch the 360◦ video was also considered as an impor-

tant feature in their model. These studies [11, 31, 136, 230] developed and trained neural

networks to predict the saliency of the 360◦ videos. We note that the resulting prediction

algorithms are locked in with projection models, compared to our unified approach. Nev-

ertheless, as a future task, we may integrate their proposed solutions with our proposed

fixation prediction network for a given projection model.
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Table 2.4: Key References on Saliency and Fixation Prediction Algorithms

Literature Approach Considered Features Output

Fan et al. [50,

52]

LSTM Historical sensor data, saliency

maps, and motion maps of frames

Future tile view-

ing probabilities

Nguyen et

al. [145]

LSTM Saliency maps and historical orien-

tation maps of frames

Future saliency

maps

Bai et al. [13] Neural Network Historical orientation Future orienta-

tion

Xu et al. [221] LSTM Historical orientation Future orienta-

tion

Qian et al. [167] Regressor Historical orientation Future orienta-

tion

Xu et al. [223] Regressor Historical orientation Future orienta-

tion

Zhang et

al. [230]

Spherical CNN Spherical video frames Future saliency

maps

Xu et al. [222] CNN+LSTM Historical viewer fixation trajecto-

ries, video frames

Future gaze tra-

jectory

Hou et al. [73] LSTM Historical orientation Future orienta-

tion

Hou et al. [71] LSTM Historical viewed tiles Future viewed

tiles

Wu et al. [214] Spherical CNN Video frames, viewport, and motion Future viewport

Chen et al. [30] CNN+LSTM Video frames and historical orienta-

tion

Future orienta-

tion

Feng et al. [55] CNN+LSTM Video segment and historical orien-

tation

Future orienta-

tion

Vielhaben et

al. [203]

Regressor Historical orientation Future orienta-

tion

Cheng et al. [31] CNN+Convolutional

LSTM

Faces of cubic frames Future saliency

maps

Xu et al. [220] Reinforcement

Learning

Historical viewer orientation and

video frames

Future head-

moving direc-

tions

Feng et al. [56] Bayes prediction Viewer orientation and video

frames

Future tile view-

ing probabilities

Nasrabadi et

al. [140]

Extrapolation Historical and other’s orientation Future orienta-

tion

Ban et al. [12] KNN Historical and other’s orientation Future tile view-

ing probabilities

Xie et al. [217] SVM Historical orientation Viewing behavior

class

2.2.3 Fixation/Head Movement Prediction in HMDs

Our work goes beyond saliency detection to predict viewer fixation for 360◦ video stream-

ing to HMDs. There are a few studies that share a similar goal to ours. Ban et al. [12]
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Table 2.5: Key References on Saliency and Fixation Prediction Algorithms

Literature Approach Classification Considered Features Output

Fan et al. [50,

52]

LSTM No Historical sensor data, saliency

maps, and motion maps of frames

Future tile view-

ing probabilities

Nguyen et

al. [145]

LSTM No Saliency maps and historical orien-

tation maps of frames

Future saliency

maps

Bai et al. [13] Neural Net-

work

No Historical orientation Future orienta-

tion

Xu et al. [221] LSTM No Historical orientation Future orienta-

tion

Qian et al. [167] Regressor No Historical orientation Future orienta-

tion

Xu et al. [223] Regressor No Historical orientation Future orienta-

tion

Zhang et

al. [230]

Spherical

CNN

No Spherical video frames Future saliency

maps

Xu et al. [222] CNN+LSTM No Historical viewer fixation trajecto-

ries, video frames

Future gaze tra-

jectory

Hou et al. [73] LSTM No Historical orientation Future orienta-

tion

Hou et al. [71] LSTM No Historical viewed tiles Future viewed

tiles

Wu et al. [214] Spherical

CNN

No Video frames, viewport, and motion Future viewport

Chen et al. [30] CNN+LSTM No Video frames and historical orienta-

tion

Future orienta-

tion

Feng et al. [55] CNN+LSTM No Video segment and historical orien-

tation

Future orienta-

tion

Vielhaben et

al. [203]

Regressor No Historical orientation Future orienta-

tion

Cheng et al. [31] CNN+Convolutional

LSTM

No Faces of cubic frames Future saliency

maps

Xu et al. [220] Reinforcement

Learning

No Historical viewer orientation and

video frames

Future head-

moving direc-

tions

Feng et al. [56] Bayes predic-

tion

Clustered

by video

content

and viewer

behavior

Viewer orientation and video

frames

Future tile view-

ing probabilities

Nasrabadi et

al. [140]

Extrapolation Clustered

by viewer

behavior

Historical and other’s orientation Future orienta-

tion

Ban et al. [12] KNN Per video Historical and other’s orientation Future tile view-

ing probabilities

Xie et al. [217] SVM Per video Historical orientation Viewing behavior

class
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proposed to predict the viewer’s head movements in three steps. First, an initial prediction

was performed based on the viewer’s previous viewing position using linear regression.

Second, K-Nearest-Neighbors (KNN) were calculated to find the nearest K view points

among all other viewers. This is based on the assumption that that most viewers would

be interested in the same objects/areas in 360◦ videos. Last, the viewport region of the

K nearest view points is calculated to finalize the predicted viewing probability of each

tile. This study is considered as one of our baselines for comparison. Not only consider

the previous viewing positions, Xu et al. [220] further took video content into account.

In particular, they developed the head movement prediction network based on Reinforce-

ment Learning (RL) considering the previous viewer orientation and frame content. Their

network aimed to predict which direction among the eight directions (top, left, bottom,

right, and the direction between each two of the above) the current viewer will move

to. However, their study only predicted the future head moving direction, which may be

insufficient to be applied to tiled streaming systems. Nguyen et al. [145] employed the

same fixation prediction network architecture as Fan et al. [50] that considered both the

orientation and the detected saliency of frames. They made three major changes: (i) they

developed their own image saliency network trained on their own 360◦ video viewing

dataset, (ii) they did not consider the motion map in our work, and (iii) they represented

the orientation data as orientation maps instead of the raw sensor values of yaw, roll, and

pitch used in our work. Several studies [30,55,56,71,73,140,167,203,214,217,221–223]

focusing on the same goals as ours have been published after our work. Table 2.5 summa-

rizes the approach, considered features, and the prediction outputs of each related work.

Our work [50] is the first to leverage both sensor and content features as the inputs to the

neural network.

2.3 Production: Optimal Laddering

In terms of optimal laddering, we survey the literature in the following directions: (i)

viewport-adaptive tiled streaming, (ii) ABR algorithms, and (iii) bitrate allocation and

optimal laddering algorithms

2.3.1 Viewport-Adaptive Tiled Streaming

Several studies proposed to stream the tiles in the viewports at a higher quality, and other

tiles at a lower quality, in order to reduce the bandwidth consumption. For example, Zare

et al. [229] adopted HEVC tiled-streaming and proposed three heuristic schemes for 360◦

video streaming to HMDs. Their experiment results confirmed that their solution utilized
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common patterns of head movements to achieve better coding efficiency. Ju et al. [94]

streamed low-resolution tiles for the whole 360◦ videos along with high-resolution tiles

for the viewports. They also proposed to consider the heatmap of viewers’ attentions and

stream tiles with higher viewing probability using broadcast. Corbillon et al. [38] took di-

verse projection models into consideration, and varied both bitrates and viewports when

encoding 360◦ videos into multiple representations. HMD viewers then requested the

proper presentations via DASH. Duanmu et al. [47] encoded each 360◦ video into a base

and multiple enhancement representations. They adopted separate buffers for different

representations, and gave the highest priority to the base representation for smooth play-

back. The residual bandwidth was then used to stream enhancement representations. The

aforementioned studies only differentiated the quality of tiles in an ad-hoc way without

intelligently allocating resources among tiles.

2.3.2 Adaptive BitRate (ABR) Algorithms

The ABR algorithm [15, 44] is a key client-side component in the delivery phase, which

adaptively selects the representations that minimize the video distortion without congest-

ing the networks. ABR algorithms have been studied for conventional videos [108]. Sev-

eral studies [5,147,161,164,167,216,226] designed ABR algorithms for tiled 360◦ videos.

Ozcinar et al. [161] considered unequal-size tiles. In their algorithm, higher quality level

is selected for the tiles in the viewport. The quality levels of the remaining tiles are grad-

ually reduced as the distance between them and the viewport increases. Xie et al. [216]

formulated the ABR for 360◦ videos into an ILP problem considering the viewing proba-

bility of each tile. Their objective was to minimize the expected video distortion in terms

of MSE and spatial quality variance. Besides, a buffer-based rate control mechanism was

proposed for smooth playback. Alface et al. [5] proposed a greedy algorithm to select

the quality levels according to the ratio between their considered utility function and the

tile size, where the utility function is the estimated quality times the viewing probability.

Their considered viewing probability is predicted from the previous viewport and filtered

by a Gaussian filter, where the standard deviation σ is proportional to the delay.

A few studies [147,164,167] have grouped tiles into a number of classes and assigned

the same quality level to the tiles in the same class. Petrangeli et al. [164] grouped the tiles

into three classes: (i) viewport, (ii) extended area, and (iii) background. Their algorithm

estimated the available bandwidth and selected the highest affordable representations for

viewport, extended area, and background tiles in that order. Similarly, Nguyen et al. [147]

also grouped the tiles into three classes. The size of their extended area is proportional to

the estimated viewport prediction error. Their algorithm then searches all possible quality

levels for the maximal estimated viewing quality under the constraint of the available
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bandwidth. Qian et al. [167] grouped the tiles into four classes. They searched for all

the possible quality levels for each class and selected the one with the highest considered

utility, which aimed for higher viewing quality and fewer stalls. A measurement study

quantitatively compared the above ABR algorithms under various conditions [146].

2.3.3 Bitrate Allocation and Optimal Laddering Algorithms

In addition to the ABR algorithms that selected the representations stored on the stream-

ing server, some studies [28, 36] have proposed algorithms for bitrate allocation that en-

coded and streamed tiles at different bitrates to the clients under the constraint of a given

bandwidth. Corbillon et al. [36] proposed an algorithm to allocate bitrates within a 360◦

video [215]. Their proposed algorithm can be extended for tiled 360◦ videos. In partic-

ular, they classified the tiles into two categories based on the viewport, and assigned an

even bitrate to the tiles in each category. A bitrate gap was introduced to restrict the qual-

ity differences between the two categories to avoid sudden quality changes. Their work

only adopted two quality levels without considering the tile characteristics. Chakareski

et al. [28] studied an RDO problem for streaming tiled 360◦ videos. They took viewing

probability into account and employed convex optimization to solve the bitrate allocation

problem. They did not present the detail of convex optimization nor practical concerns,

such as discrete and limited QP values. In contrast, we give detailed proofs and propose

a rounding algorithm. These studies [28, 36] focused on live bitrate allocation that only

considers the constraint of a target bandwidth. Ozcinar et al. [160] shared a similar goal

to ours. That is, they studied the optimal laddering problem for tiled 360◦ videos. They

formulated the problem into ILP and decided the number of representations for each band-

width class according to its fraction of clients. However, they did not develop efficient

algorithms to solve the problem, which incurs an extremely long running time. More-

over, they ignored the characteristics of each video tile, such as the complexity level and

viewing probability, and did not vary the quality across tiles. In contrast, we propose effi-

cient algorithms and take the diverse characteristics of the tiles into consideration. These

studies [28, 36, 160] are considered as the state-of-the-art algorithms in our evaluations.

2.4 Consumption: QoE Modeling

In terms of QoE modeling, we survey the literature in the following three categories: (i)

QoE measurements, (ii) QoE factors, and (iii) QoE modeling.
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2.4.1 QoE Measurements

QoE measurements on videos have been done in the past decades [96], while QoE mea-

surements on 360◦ videos are attracting increasingly more attention. Upenik et al. [200]

proposed a subjective evaluation testbed for viewing 360◦ images and videos. The testbed

adopted mobile devices for rendering videos, which can be turned into HMDs, like Google

Cardboard. Regal et al. [174] developed the VR player using Unity and integrated a virtual

QoE questionnaire with the VR player. Singla et al. [184] conducted a user study on 360◦

videos with various bitrates. FHD and UHD videos were compared in their study. Bessa

et al. [19] made the QoE comparisons on viewing 2D and 3D (stereoscopic) 360◦ videos.

Their results revealed that watching 3D 360◦ videos delivered similar QoE with 2D ones,

in terms of both immersion and cybersickness. Singla et al. [186] studied the impact of

resolution, bandwidth, and delay on the perceived quality and cybersickness. Upenik et

al. [201] recruited 45 subjects to rate 360◦ images. The correlation between the collected

QoE scores and existing objective metrics, such as Spherical Peak Signal-to-Noise Ratio

(S-PSNR) and Viewport PSNR (V-PSNR), was analyzed. Their results showed that these

metrics have a low correlation with the subjective scores. Orduna et al. [158] focused on

evaluating the correlation between VMAF and the subjective quality of watching 360◦

videos. Their results indicated that VMAF has quite high correlation with the subjective

quality compared to other objective quality metrics, including S-PSNR and V-PSNR.

2.4.2 QoE Factors

Several studies [48, 57, 185, 205] have investigated the key factors, such as bitrate, res-

olution, and video characteristics, that influenced the user experience. Fernandes and

Feiner [57] implemented a testbed that dynamically varies the viewport size in the HMD

during the subjective test. The subjects were asked to traverse through a set of way-points

and to periodically graded the cybersickness level. Their results show that restricting the

viewport size reduced the cybersickness level, unless the viewport size was extremely

small. Singla et al. [185] studied the cybersickness level using different HMDs: Oculus

DK2 and HTC Vive. They recruited 28 subjects, each of whom rated 24 videos with 6

different types of contents, 2 resolutions, and 2 bitrates. Their results showed that HTC

Vive leads to slightly better subjective visual quality compared to Oculus DK2. On the

other hand, both content and resolution imposed higher impacts on user experience than

the HMD model. Bio sensors can also be used to predict the subjective quality in VR

applications. Egan et al. [48] captured the heart rate and electrodermal activity of the sub-

jects when they were watching 360◦ videos. The correlations of these two metrics and the

subjective scores were analyzed and discussed. Their results revealed that HMDs offered
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better subjective quality levels than 2D displays.

Some other studies have investigated the key factors of particular VR applications.

Schatz et al. [180] considered VR-based training applications. They studied how the

rendering styles and scene types affect the subjective scores and subject performance.

Vlahovic et al. [205] studied the impact of locomotion, such as first-person, teleportation,

and gesture-based, in VR applications. They found that the controller-based locomotion

resulted in higher cybersickness levels. In contrast, the teleportation one resulted in the

lowest average cybersickness level and the highest overall QoE. They also pointed out

that reducing the cybersickness level improves the subjective visual quality. Singla et

al. [186] conducted a user study on tiled 360◦ video streaming. They studied the im-

pacts from various factors, such as bandwidth, delay, and resolution. They have also

measured the perceived quality and cybersickness level under different latency types,

such as the tile switching delay and network delay. Their results showed that 47 ms

is the acceptable network delay that does not degrade the quality ratings. These stud-

ies carried out experiments to identify the factors of subjective quality metrics on 360◦

videos [48, 57, 185, 186, 205].

2.4.3 QoE Modeling

Several studies have developed QoE models for conventional videos. Song et al. [189]

used piece-wise linear regression models for predicting the subjective scores of viewing

H.264, H.265, and VP9 encoded videos. Learning-based modeling has also been stud-

ied [10]. Some QoE modeling studies for 360◦ images or videos have been carried out.

Huang et al. [79] built a QoE model for 360◦ images. They used the resolution and com-

pression quality extracted from the Joint Photographic Experts Group (JPEG) to predict

the overall QoE. Hsu et al. [74] developed QoE models of watching 360◦ videos using a

2D monitor with foveated rendering support, which encoded the foveal region at a higher

resolution. They pre-defined (fixed) the viewing path of the 360◦ videos based on the

viewers’ gaze paths in the pilot tests. Xie et al. [218] built a model for the perceptual

impact of the speed of a viewport’s quality updates upon a sudden orientation change.

Yao et al. [225] developed a 360◦ video player supporting various 360◦ video projection

schemes. They used the testbed to collect the MOS scores and built a QoE model with di-

verse Quantization Parameter (QP), projection schemes, and video characteristics. Croci

et al. [41] split each 360◦ video into multiple patches, which have evenly distributed pix-

els on the sphere. The objective quality metrics, e.g., PSNR, Structural Similarity Index

(SSIM) [29], or VMAF [142], have been calculated for these patches, which were then

averaged across all patches. The resulting quality metrics are referred to as VI-PSNR,

VI-SSIM, and VI-VMAF, respectively. Their user study showed that VI-VMAF had the
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highest correlation with the MOS scores of overall QoE. They further extended their met-

rics into weighted variants [42], where the weights were Visual Attention (VA) maps [93]

and the resulting metrics were referred to as VI-VA-metrics, such as VI-VA-PSNR and

VI-VA-VMAF. Their results suggested that VI-VA-VMAF and VI-VA-MS-SSIM are the

two quality metrics with the highest correlation with the overall QoE. Anwar et al. [8]

leveraged Logistic regression to model the overall QoE with content and human factors.

Different from most other studies (including this thesis), they formulated the QoE mod-

eling problem as a classification problem with only two classes: satisfied and unsatisfied,

which may be too coarse-grained. Therefore, their work cannot be compared with ours

and other continuous QoE models [41, 42, 79, 218, 225].

In addition, several studies have built QoE models for cybersickness [101, 103, 112,

162, 169]. For example, Kim et al. [103] used 360◦ scenes generated by a local Unity

engine to study how different factors affect cybersickness. Several other studies [101,

112, 162] have leveraged neural networks for modeling the perceived cybersickness on

360◦ videos. Furthermore, Raake et al. [169] modeled the perceived cybersickness of

each viewing session considering the elapsed time.

Table 2.6: A Comparisons among Ours and Existing Models

QoE Models Overall QoE
QoE Feature QoE Factor Model Type

IQ FG IM CS Content Human Context MOS IS

This Work X X X X X X X X X X

Yao et al. [225] X X X

Croci et al. [41] X X X

Croci et al. [42] X X X X

In this thesis, we build complete QoE models for overall QoE and QoE features of

watching 360◦ videos, and further investigate the dominating factor categories and factors.

Moreover, we build the models for both MOS and IS. In contrast, most existing modeling

studies focused on 360◦ still images [79], cybersickness [101, 103, 112, 162, 169], binary

QoE classification [8], and QoE impacts of viewport adaptation [218], which cannot be

compared with our models. Yao et al. [225], Croci et al. [41], and Croci et al. [42] are

probably the most relevant studies to ours. Table 2.6 summarizes the comparisons among

all the QoE models. In summary, our work has a much wider scope in at least three

dimensions: (i) 30 QoE factors from 3 categories, (ii) overall QoE and 5 QoE features,and

(iii) MOS versus IS models. Other relevant studies [41, 42, 225], however, only consider

a few factors in the first dimension and largely ignore the second and third dimensions.

We use these three QoE models as the baselines when evaluating our overall QoE model

in Sec. 5.3.
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Chapter 3

Delivery Optimization: Fixation

Prediction

In 360◦ videos, HMD viewers only get to see a small viewable region, called the view-

port, of each 360◦ video at any moment. Therefore, streaming whole 360◦ videos wastes

precious bandwidth on many unwatched regions. A better solution is to predict viewer

fixation, which can be quantified by the viewing probability of different regions, and only

transmit the regions with high viewing probability. In particular, we propose to use a RNN

that considers both sensor and content features to predict the viewer fixation, where the

sensor features are extracted from the HMDs and the content features are detected from

the video content via CV algorithms.

(a) (b) (c)

Figure 3.1: A sample image: (a) seen in HMDs; distorted images due to: (b) equirectan-

gular projection and (c) rhombic dodecahedron projection.

However, the content features, such as saliency maps [20] and motion maps [98],

are outputs of CV algorithms, they are vulnerable to distortion attributed to projection

models. Such distortion can be further classified into: (i) shape distortion and (ii) poor

segmentation, which are illustrated in Fig. 3.1. Compared to the image seen in an HMD

(Fig. 3.1(a)), the image from equirectangular projection (Fig. 3.1(b)) suffers from shape

distortion, which is especially severe for objects close to the north and south poles. On the
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other hand, the image from rhombic dodecahedron projection (Fig. 3.1(c)) suffers from

poor segmentation, where an object is cut into smaller pieces in different parts of the pro-

jected image. One solution approach is to adopt CV algorithms specifically designed for

360◦ videos in a given (say equirectangular) projection model. However, such CV algo-

rithms would not work for 360◦ videos in other projection models. Moreover, compared

to CV algorithms designed for 2D images/videos, there are only very few CV algorithms

proposed and trained with 360◦ videos [11,107,119,136]. While the number of these CV

algorithms may increase over time, they will still be outnumbered by the CV algorithms

for 2D images/videos. To overcome such limitations, we systematically generate virtual

viewports ahead of the streaming time. Virtual viewports are carefully chosen simulated

viewports in HMDs, which are projected back to the sphere. Therefore virtual viewports

are not vulnerable to distortion caused by projection models. By sending virtual view-

ports to existing CV algorithms, we improve the quality of their outputs, as well as that

of the subsequent fixation network.

3.1 Overview

We present an overview of the 360◦ video streaming systems, which is optimized in the

rest of this chapter.
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Figure 3.2: Architecture of the proposed 360◦ video streaming server. A tile-based

streaming example is shown.

3.1.1 360◦ Video Streaming Systems

Fig. 3.2 presents our proposed architecture of a 360◦ streaming server [50], in which we

focus on the software components related to fixation prediction. We have identified two

content features: image saliency map [20] and motion map [98] from 360◦ videos; and

a sensor feature: orientation from HMDs. We describe the software components in the

following:
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• Image saliency network is a deep neural network trained to derive the image

saliency map, which shows the parts of the image that attract viewers the most.

• Motion feature detector analyzes the Lucas-Kanade optical flow [126] of consec-

utive frames, because viewers may be attracted by moving objects.

• Orientation extractor derives the viewer orientation data including yaw, pitch, and

roll, from HMD sensors.

• Feature buffer stores the features, including the saliency map, motion map, and

viewer orientation in a sliding window, which are used for fixation prediction.

• Fixation prediction network uses content features (image saliency maps and mo-

tion maps) and sensor features (viewer orientation) as inputs to predict the viewing

probability of different regions of the next n frames.

• Tile rate selector performs rate allocation among video tiles, which are rectan-

gular and independently decodable regions of a video frame. 360◦ video stream-

ing systems may be classified into two classes: tile-based [43, 111, 144, 207] and

transcoder-based [9, 206]. In tile-based systems, the server encodes 360◦ videos

into tiles, while the client dynamically requests tiles at specific bitrates for adapta-

tion. In transcoder-based systems, the server dynamically transcodes the viewport

of each viewer on-the-fly. For the sake of brevity, we assume that tile-based systems

are used, although our solution is also applicable to transcoder-based systems.

The interactions among these components are as follows. The video frames are sent to

the image saliency network and motion feature detector for generating the image saliency

map and the motion map, respectively. Generating these two maps is potentially resource

demanding, and we assume that they are created offline for pre-recorded videos. The

HMD sensor data are transmitted to the orientation extractor to derive the viewer orienta-

tion. The feature buffer maintains a sliding window that stores the latest image saliency

maps, motion maps, and viewer orientations as the inputs of the fixation prediction net-

work. The fixation prediction network predicts the future viewing probability of each tile.

The tile rate selector optimally selects the rates of the encoded video tiles.

3.1.2 Viewport and Modeling

Different HMDs may have different viewport sizes, which need to be systematically de-

rived. We conduct experiments of playing a 360◦ video with artificial grids to viewers, and

collect questionnaires to understand how to model the viewport of commodity HMDs. We

find that the viewport of existing HMDs, including Oculus Rift, HTC Vive, and Samsung

Gear can all be modeled as a circle on sphere. Viewports could be in different shapes on

2D projected planes. For example, a viewport appears as an ellipse on an equirectangular
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Figure 3.3: The model of HMD viewport.

projected plane. Fig. 3.3 presents the viewport model of HMDs. The viewer stands at the

center of the sphere. Let α and β be the yaw and pitch of the HMD viewport center, which

are reported from the sensors equipped by HMDs. Furthermore, we let θ be the diameter

of a viewport in degrees. Therefore, we describe the viewport in the spherical space as

fs = (α, β, θ). The measured θ values are about 100◦ (Oculus Rift), 67◦ (HTC Vive), and

67◦ (Samsung Gear). We use 100◦ in our experiments if not otherwise specified. We note

that the parameters of other HMDs may be derived using our experiment design.

3.2 Fixation Prediction Networks

The core component of our proposed 360◦ streaming server is the fixation prediction

network, which is detailed in this section.

The fixation prediction network is based on an RNN, which is suitable to learn useful

information from a time series of video frames. However, basic RNNs suffer from the

problem of gradient vanishing during back-propagation [133]. This prevents the RNN

from learning long-term dependencies effectively. Hence, we chose to use the LSTM

(Long Short Term Memory) network [70]. LSTM solves the problem by using gates in its

neurons, and learns more long-term dependencies among video frames.

In this chapter, we propose three neural networks: (i) orientation-based, (ii) tile-based,

and (iii) future-aware. The orientation-based network takes the orientation values of the

past frames, which are read from HMD sensors, as the sensor features. The tile-based

network considers the viewing probabilities of tiles, which have already been projected

from the raw orientation values, of the past frames as the sensor features. Both networks

take the saliency and motion maps of the past frames as the content features. Our pre-

liminary study [50] demonstrates the higher prediction accuracy and efficiency of the

orientation-based network compared to the tile-based network. Therefore, we extend the

orientation-based network into the future-aware network in this chapter. The future-aware

network considers the content features of not only the past frames but also future frames.

This is feasible because all the video frames are pre-stored on the server; thus, the content

features can be extracted and saved beforehand.
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3.2.1 Overview
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Figure 3.4: Our proposed fixation prediction networks: (a) orientation-based network, (b)

tile-based network, and (c) future-aware network.

In addition to the future-aware network, we enhance the networks presented in our

previous study [50] in two ways. First, we reduce the feature sampling rate to 1 frame-

per-second (fps). The intuition behind this decision is that the changes of video content

and viewer orientation are typically small over a short time period. Therefore, although

lower sampling rates may impose small negative impacts on prediction accuracy, they

significantly reduce the resource consumption. Second, the proposed networks predict

the viewing probability of each tile within a number of frames instead of just a single

frame. The rationale is that in most practical streaming systems, each client asks for a

few consecutive frames in a request. For example, a DASH client asks for a segment of

video frames in each request. Our pilot experiments show that the two enhancements lead

to: (i) at least three times of training time reduction and (ii) on average 1.4% accuracy

boost, compared to our original networks [50]. We present the three resulting networks

below, while more performance results are given in Sec. 4.6.

3.2.2 Orientation-Based Network

Fig. 3.4(a) presents the orientation-based network. Let Ff be the features of frame f ,

which include the image saliency map, motion map, and viewer orientation. The saliency

maps and motion maps are downsampled to 64x64 to avoid excessive computation loads.

The viewer orientation is the sensor data, which consists of x, y, z, yaw, roll, and pitch,

read from HMD sensors. These features are concatenated and fed into the network. Let m

and n be the number of past frame samples that contribute the features to the network and

the number of the predicted frames, respectively. We let P t
f+1,f+n denote the predicted

viewing probability of tile t within frame samples f + 1 to f + n. That is, if the tile is
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predicted to be viewed for x times within these frames, the predicted viewing probability

of this tile is x
n

. We collectively write the probabilities of all tiles within frame samples

f + 1 to f + n as Pf+1,f+n.

3.2.3 Tile-Based Network

The tile-based network is presented in Fig. 3.4(b). Compared to the orientation-based net-

work, the tile-based network replaces the viewer orientation with the viewing probability

of each tile. More specifically, the probabilities of tiles that are viewed by the viewer are

1’s and the others are 0’s. Similar to the orientation-based network, the saliency maps,

motion maps, and the viewing probability of tiles from past m frames are concatenated

as features and fed into the network to predict the viewing probability of tiles within the

next n frames.

3.2.4 Future-Aware Network

Fig. 3.4(c) presents the proposed future-aware network. It is extended from the orientation-

based network due to its better performance compared to the tile-based network [50]. In

particular, it also takes the future content features into account. That is, the future-aware

network takes the features from Ff−m to Ff+n as inputs to predict the viewing probabili-

ties Pf+1,f+n. The unknown future viewer orientation for Ff+1 to Ff+n is approximated

with the last received viewer orientation, if not otherwise specified, while more sophisti-

cated extrapolation [168] can also be used.

3.3 Datasets and Network Implementations

We collected a 360◦ video dataset, which contains 50 viewers, each of whom watched ten

360◦ videos [123]. In this section, we first summarize the dataset. We next compare the

performance of the proposed fixation prediction networks using the collected dataset.

3.3.1 Dataset

Fig. 3.5(a) presents the design of our testbed [50], which consists of: (i) an Oculus Rift

HMD, (ii) the Oculus Software Development Kit (SDK), (iii) the 360◦ video player (ren-

dering 360◦ videos in HMD and on a mirrored screen), (iv) the sensor logger based on

OpenTrack, and (v) the frame capturer based on GamingAnywhere [78].

When a viewer watches a 360◦ video as shown in Fig. 3.5(b), the rendered video is

captured by the frame capturer and stored to the disk. The viewer’s head movements,
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Figure 3.5: Our testbed for collecting our dataset: (a) testbed architecture and (b) a photo

of a subject performing the experiments.

including position and orientation, are recorded by the sensor logger. Both of them are

timestamped on the same computer. By aligning sensor data and 360◦ videos, we know

where the viewer is watching at any moment.

We downloaded ten 360◦ videos from YouTube, which are in 4K resolution with a

frame rate of 30 fps. The videos have diverse characteristics, e.g., computer-generated

versus natural images, and slow- versus fast-paced. We recruited 50 viewers for dataset

collection. We played all ten videos to each viewer, which resulted in 500 traces in our

dataset. By trace, we refer to a combination of a viewer and a video, in the rest of this

chapter. For more details about the compositions of the viewers and the format of the

datasets, readers are referred to Lo et al. [123].

3.3.2 Network Implementations

We consider the fixation prediction problem on tiles as a multi-label classification problem

and have implemented the neural networks using Scikit-Learn and Keras. The ground

truth of the fixation prediction networks for each tile is the fraction of frames containing

the viewed tiles. This fraction represents the importance of each tile. Using the datasets,

we sample the points within the viewport by projecting the orientation on the sphere to

the equirectangular model. Then, the viewed tiles are those that contain some projected

samples. For a single video frame, each tile is either watched or not, i.e., it has a boolean

viewing probability.

We use the traces from 50 viewers to train the proposed three networks. We randomly

divide the 500 traces [123] into two subsets: 80% for training and 20% for testing. We

reserve 20% of the training set for validation purpose. The networks are trained to min-

imize the logarithmic loss, also known as cross-entropy loss, using Stochastic Gradient

Descent [21] with a learning rate of 10−1. An early-stop mechanism, which stops the

training once the logarithmic loss is smaller than a given value, is adopted to speed up the

33



Table 3.1: The Performance of the Proposed Models with 1-sec Sliding Window

The Orientation-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.93% 0.703 85.79% 0.678

512 2 T 88.41% 0.741 87.03% 0.711

1024 2 T 89.09% 0.760 87.05% 0.732

2048 2 T 88.11% 0.733 86.67% 0.702

The Tile-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 84.80% 0.636 83.65% 0.610

512 2 F 84.68% 0.632 0.147 83.43%

1024 2 F 84.96% 0.636 83.75% 0.608

2048 2 T 85.15% 0.643 83.90% 0.614

The Future-Aware Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 88.09% 0.733 86.77% 0.706

512 2 T 88.99% 0.759 87.62% 0.732

1024 2 T 89.27% 0.767 87.77% 0.737

2048 2 F 85.65% 0.663 84.43% 0.635

network training and avoid over-fitting. We consider the sliding window size of 1 and 4

secs to predict the frames in the upcoming second. To obtain the optimal parameters, we

consider the number of neurons in {256, 512, 1024, 2048}, the number of LSTM layers

in {1, 2, 3}, and the dropout in {True, False}, where the dropout rate is 0.2.

We note that the predicted probability is a real number between 0 and 1, and we use

a threshold ρ to round it to a boolean decision. We refer to ptf ≥ ρ as predicted tiles,

and the actually viewed tiles as viewed tiles. We let ρ = 0.5 if not otherwise specified.

To select the optimal parameters of the three neural networks, we consider two metrics:

(i) accuracy, which is the ratio of correctly classified tiles to the union of predicted and

viewed tiles and (ii) F-score, which is the harmonic mean of the precision and recall,

where the precision and recall are the ratios of correctly predicted tiles to the predicted

and viewed tiles, respectively.

We find that the networks with two LSTM layers generally give better performance,

and thus we report sample 2-layer results with 1- and 4-sec sliding windows in Tables 3.1

and 3.2, respectively. The optimal parameters and results for each network are in bold
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Table 3.2: The Performance of the Proposed Models with 4-sec Sliding Window

The Orientation-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.37% 0.615 83.27% 0.588

512 2 F 87.91% 0.729 86.43% 0.699

1024 2 F 86.90% 0.696 85.27% 0.658

2048 2 F 84.73% 0.634 83.61% 0.606

The Tile-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 84.62% 0.629 83.49% 0.604

512 2 F 84.69% 0.624 83.44% 0.593

1024 2 T 85.00% 0.634 83.73% 0.603

2048 2 F 84.57% 0.623 83.38% 0.594

The Future-Aware Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 84.44% 0.612 83.45% 0.589

512 2 T 88.15% 0.733 86.70% 0.701

1024 2 F 85.27% 0.648 84.18% 0.624

2048 2 F 84.80% 0.636 83.71% 0.610
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fonts. These tables show that the future-aware network has higher accuracy and F-score

for both sliding window sizes. Besides, with the future-aware network, the 1-sec sliding

window performs slightly better than the 4-sec one (accuracy 87.77% > 86.70%), yet

runs 6x faster (69 versus 398 minutes). Hence, we adopt the future-aware network with

the 1-sec sliding window as our fixation prediction network in the rest of the chapter.

(a)

FrontLeft

Top

Bottom

Right Back

(b) (c)

Figure 3.6: Several projection models can be used for 360◦ videos, such as: (a) equirect-

angular, (b) cubic, and (c) rhombic dodecahedron.

(a) (b) (c)

Figure 3.7: Object detection on the sample image with different projection models: (a)

equirectangular, (b) cubic, and (c) rhombic dodecahedron. Only one object is detected.

3.4 Overlapping Virtual Viewports

In this section, we first introduce the projection models and discuss how they negatively

affect the performance of CV algorithms designed and trained for 2D images/videos. We

then propose the overlapping virtual viewport (OVV). We apply OVVs on three existing

CV algorithms and report their performance boosts. We then apply OVV to our proposed

fixation prediction network. Last, to validate the generality of our solution, we evaluate it

using additional videos and viewers.
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3.4.1 Projection Models

There are many projection models proposed for 360◦ videos [37,49] in the literature, and

the commonly seen ones1 are: (i) equirectangular, (ii) cubic, and (iii) rhombic dodecahe-

dron. We present the properties of individual projection models in the following.

Equirectangular. As shown in Fig. 3.6(a), the equirectangular projection projects the

sphere to a cylinder. It introduces large shape distortion at the areas close to poles (see

Fig. 3.1(b)), which may result in redundant data transmission and inferior performance

(for example, accuracy) of the existing CV algorithms.

Cubic. The cubic projection model projects a sphere to a circumscribed cube with six

square faces as shown in Fig. 3.6(b). For each point on the sphere, we first find the closest

face as its corresponding face. Each face adopts 90◦ rectilinear projection, which maps

the sphere surface to a tangent plane, where the points are projected along with the line

from the sphere center to the plane. In contrast to equirectangular, the cubic projection

model preserves the straight lines on each face. Therefore, the cubic projection model

results in no pole distortion, and reduces about 25% of the data size [109]. However, for

lines or objects that span multiple faces, they are unnaturally, or poorly, segmented at the

face boundaries.

Rhombic dodecahedron. The rhombic dodecahedron projection model adopts 12

equal-size spherical rhombuses. Fig. 3.6(c) shows the construction of the rhombic dodec-

ahedron, which is an octahedron with a cube embedded in it. Two of the four corners of

each rhombus are from the cube, while the other two are from the octahedron. We can

project the rhombic dodecahedron to a sphere surface using gnomonic projection, which

is a superset of rectilinear projection that does not limit the degree to 90◦. One way to

project pixels to the rhombic dodecahedron is to used the great circle subdivisions [61].

While the rhombic dodecahedron projection model does not suffer from noticeable dis-

tortion, it incurs higher computational overhead.

For the sake of understanding the distortion level, we use YOLO9000 [173] to perform

object detection on different projection models. Fig. 3.7 shows sample object detection

results with: (i) equirectangular, (ii) cubic, and (iii) rhombic dodecahedron projection

models. This figure shows that only a single object is detected. This can be attributed to

shape distortion and poor segmentation.

1Note that researchers and companies continue proposing new projection models for better coding ef-

ficiency. Most projection models suffer from some shape distortion and/or ill-segmentation, similar to the

representative models presented here.
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Figure 3.8: Examples of the OVV: (a) (ds, dv) = (30◦, 60◦) and (b) (ds, dv) = (45◦, 90◦).

(a) (b) (c)

Figure 3.9: Object detection on sample virtual viewports of OVV: (a) (yaw, pitch) =

(315◦, 90◦), (b) (yaw, pitch) = (0◦, 90◦), and (c) (yaw, pitch) = (90◦, 90◦). More objects

are detected with OVV, compared to Fig. 3.7.

3.4.2 Overlapping Virtual Viewport (OVV)

We propose to leverage OVV to cover the whole sphere space so as to turn CV algorithms

designed and trained for 2D images/videos applicable to 360◦ videos. A virtual viewport

is a square tangent to a point on the sphere surface. OVV is defined by dv and ds, where

dv represents the viewable angle at the equator of each virtual viewport, and ds is the

sampling angle of virtual viewports. Both dv (size) and ds (density) are in the unit of

degrees. Fig. 3.8 illustrates example OVVs with (ds, dv) = (30◦, 60◦) and (ds, dv) =

(45◦, 90◦). In the figure, we only plot two sample virtual viewports for brevity. However,

each intersection point on the sphere surface is the center of a virtual viewport, which

is tangential to the sphere at that point. Therefore, each 360◦ sphere has 2π
ds

π
ds

virtual

viewports.

OVV eliminates the shape distortion and poor segmentation by: (i) extracting virtual
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Figure 3.10: Our proposed OVV improves the performance of the pre-trained CV algo-

rithms: (i) saliency detection, (ii) face detection, and (iii) object detection.

viewports, which are the actual views seen in HMDs, and (ii) oversampling (overlapping)

virtual viewports to increase the chance for CV algorithms to identify, for example, ob-

jects. Fig. 3.9 shows the sample results of detecting objects with OVV, which gives more

recognized objects than the original approach reported in Fig. 3.7.

3.4.3 Validations with Real Computer Vision Algorithms

We consider three representative CV algorithms: (i) saliency detection, (ii) face detection,

and (iii) object detection. In the following, we describe these algorithms and report the

benefits of applying OVV with (ds,dv)=(45◦,90◦) on them. The ten videos used for vali-

dation are from the dataset mentioned above [123], and the ground truth is tagged by our

group.

Saliency detection [20] calculates the attraction level of each image pixel. This can

be done based on analyzing image contrast, detecting objects, and locating outstanding

and meaningful parts of images. We adopt a pre-trained deep multi-level network [40]

that takes low- to high-level features to perform saliency detection with diverse projec-

tion models. To compare the performance of the saliency detecting algorithm on different

projection models, we use true viewports from our traces to quantify the quality of the

resulting saliency maps. For each projection model, we normalize the detected saliency

map so that the sum of the saliency values is 1. Then we sum all the detected saliency

values within the actual viewport at each frame of each projection model, and refer to

it as the saliency scores. For OVV, we perform saliency detection on individual virtual

viewports and normalize the overlapped regions among virtual viewports for fair com-

parisons. Fig. 3.10(a) plots the total saliency scores with 95% confidence intervals under

different projection models. This figure shows that OVV generally has higher saliency

scores than other projection models. Besides, the p-value from the one-way analysis of

variance (ANOVA) test is only 0.012 (≤ 0.05), which shows the statistic significance of
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the performance difference.

Face detection [69] overlays rectangles that contain human faces on images. This

can be done by first extracting features and then performing cascades detection, which is

to check the features with classifiers stage-by-stage. Once the checking process fails at a

stage, it terminates. A face is detected only if all stages are passed. We implement face

detection based on Haar Cascades classifier using OpenCV [24] with a scaleFactor of 1.3

and a minNeighbors of 5. We perform face detection on 3 (out of 10) videos that contain

people. We record the number of correctly detected faces of each projection model and

plot the total number of each video in Fig. 3.10(b). This figure shows that OVV detects

up to 300 more faces compared to other projection models.

Object detection [64] highlights the regions that contain real-world objects, such as

dogs, bicycles, and chairs. We adopt the YOLO9000 network [173], which is trained by

ImageNet [46] and COCO [120] datasets, and is able to recognize more than 9000 objects.

We apply YOLO9000 on the ten videos from the dataset, and generate the annotated

videos with different projection models and OVV. We report the correctly detected results

in Fig. 3.10(c). This figure clearly demonstrates that OVV significantly increases the

number of correctly detected objects. Note that all projection models detect no objects in

videos 6 and 7 since these two videos is of landscapes and 2D games, which have almost

no real-world objects.

In sum, the performance of the existing CV algorithms designed and trained for 2D

images/videos are improved by our proposed OVV, which is a unified approach to apply

them on 360◦ videos. In the next section, we integrate OVV into our proposed fixation

prediction network.

3.4.4 Fixation Prediction with OVV

We perform saliency detection on virtual viewports, and stitch the saliency maps of virtual

viewports into one image for each frame. The stitched saliency maps then replace the

original equirectangular saliency maps as the inputs of the fixation prediction networks.

We consider two different configurations of OVV: (i) (ds, dv)=(30◦, 60◦) and (ii) (ds,

dv)=(45◦, 90◦). We then train the proposed neural network using these two OVV setups,

and report the sample results in Table 3.3. The optimal parameters and results are in bold

font. This table shows that the performance of the future-aware network with OVV is

better when (ds,dv)=(30◦,60◦). Moreover, it outperforms the equirectangular projection

model in terms of accuracy and F-score reported in Table 3.1. Thus, we adopt OVV with

(ds,dv)=(30◦,60◦) as the fixation prediction network in the rest of this chapter.
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Table 3.3: The Performance of the Future-Aware Network with OVV

(ds, dv) = (30◦, 60◦)

Model Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 87.31% 0.714 86.03% 0.686

512 2 F 82.57% 0.602 81.54% 0.582

1024 2 T 89.22% 0.764 87.71% 0.733

2048 2 T 89.72% 0.778 87.93% 0.742

(ds, dv) = (45◦, 90◦)

Model Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.71% 0.702 85.35% 0.674

512 2 T 84.83% 0.647 83.59% 0.620

1024 2 T 88.36% 0.745 86.94% 0.716

2048 2 T 88.63% 0.753 87.09% 0.722

3.4.5 Validation with Additional Videos/Viewers

To understand the generality of our proposed prediction model, we validate our trained

model with additional videos and viewers.

Setup. We perform prediction on five new 360◦ videos downloaded from YouTube

at 3840x1920 resolution and 30 fps. We cut them into the same length of 30 seconds.

Table 3.4 lists the considered videos. We recruit 30 viewers between 19 and 28 years

old. Among them, about 2/3 are males. All viewers are asked to freely watch the five

videos in random order. The viewer orientation is logged when they are watching the

videos. We consider Ban et al. [12], which is introduced in Sec. 2.4, as our baseline,

and call it CUB3602. Because CUB360 employs KNN for prediction, we perform 3-fold

validations on CUB360, where 10 viewers are used as the testing set, and 20 viewers are

used as the KNN inputs. For our prediction network, we use the model derived in the

previous section to predict the viewing probabilities of each tile on all the traces from the

30 viewers viewing the five videos. We note that the comparisons give CUB360 a slight

edge of peeking into the new videos/viewers.

Results. Table 3.5 reports the performance in accuracy and F-score for our proposed

prediction network and CUB360 under different K-nearest viewpoints selection. To be

conservative, we grid-search on the thresholds to round the probabilities to Boolean de-

cisions and report the absolutely optimal solution of CUB360 for each K value. This

2While we also want to consider Nguyen et al. [145] as another baseline, we couldn’t do so because

some of their parameters had not yet been made public at the time of writing.
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Table 3.4: Validation Videos

Video Time Interval Link

Snow Boarding 01:30–02:00 https://goo.gl/2H4RxM

Elephants 00:50–01:20 https://goo.gl/aejCVM

Sharks 00:05–00:35 https://goo.gl/BUEBG9

CERN 01:50–02:20 https://goo.gl/68gDAZ

London 00:40–01:10 https://goo.gl/YRN1kN

Table 3.5: The Performance of Different Prediction Algorithms

Prediction Algorithm Accuracy F-Score

Our 81.8% 63.1%

CUB360

K=0 73.1% 31.0%

K=2 73.0% 53.4%

K=5 73.0% 54.3%

K=10 72.2% 54.6%

table shows that although CUB360 references the K-nearest viewpoints from other view-

ers on the same video, our prediction network still achieves at least 8.7% higher accuracy

without peeking into these traces.

The results demonstrate the generality of our proposed fixation prediction network. In

terms of CUB360, increasing K does not always improve the performance. This is be-

cause other viewers’ fixation may be misleading, since different viewers may have quite

diverse viewing behavior. In contrast, our proposed fixation prediction network is trained

with other 360◦ videos and also takes the current viewer’s past orientation into account.

This makes our prediction algorithm more robust. In addition to CUB360, Nguyen et

al. [145] also propose a head movement prediction network using LSTM, which employs

the same network architecture as our preliminary study [50], while introducing three im-

provements as we detail in Sec. 2.4. While we are not able to compare with their work,

applying their enhancements in our systems would likely boost our performance further.

3.5 Evaluations

In this section, we evaluate the performance of our 360◦ video streaming system with the

future-aware network and OVV. We conduct the evaluations through simulations, because:

(i) the viewer behavior can be repeated for fair comparisons among different algorithms,

and (ii) more traces/subjects can be leveraged at a relatively lower cost.

42



Tiled-Segment Requests

Client

Internet

Server

Request

Handler

Video

Streamer

Request

Generator

Video

Receiver

Video

Player

Viewer 

Trace

Video Packets

Fixation Prediction

Algorithm

Figure 3.11: The streaming server and client in our simulator.
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Figure 3.12: The bandwidth consumption in different networks with different target miss-

ing ratio: (a) τ = 1%. (b) τ = 5%, and (c) τ = 10%.

3.5.1 Implementations

We have implemented two other prediction algorithms using Python: (i) Cur, which uses

the current orientation as the prediction in the next segment and (ii) Dead Reckoning

(DR)3 [168], which computes a weighted moving average of the viewer orientation veloc-

ity for prediction. We have implemented a simulator using C++ based on NS-3 [151] and

the DASH simulator [152]. We modify the simulator to read the real traces of viewing

360◦ videos, which contains sizes of the transmitted tiles. We implement our proposed

fixation prediction network and the other two baseline algorithms in the fixation predic-

tion algorithm as shown in Fig. 3.11. In addition, there are five more components: (i) the

request generator, (ii) the request handler, (iii) the video streamer, (iv) the video receiver,

and (v) the video player. The request generator reads the viewer traces and invokes one

of the prediction algorithms to generate requests. The request handler parses the received

requests. The video streamer encapsulates the tiles into packets and sends them to the

video receiver. After the video player reaches an initial buffering time and receives a suf-

ficient number of segments, the video is played until there is no segment available in the

3There are two variants of DR prediction: based on the past velocity or on both past velocity and

acceleration. We implement the DR algorithm based on the past velocity in our simulations, following a

related work [168].
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receiving buffer. If a segment is not received in time, a rebuffering event is logged and

the player pauses the video until the next segment is received.

1 5 10
Target Missing Ratio (%)

20

40

60

80

100

U
ns

ee
n 

R
at

io
 (

%
)

Figure 3.13: The unseen ratio under different target missing ratios.
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Figure 3.14: The total rebuffering time under: (a) different networks and (ii) different

initial buffering time.

3.5.2 Setup

We use all the traces from the testing set (see Sec. 3.3), 98 traces in total, to drive our sim-

ulations. We encode these videos into 20x10 tiles, where each tile has 192x192 pixels,

with a QP of 28 using Kvazaar [204], and divide them into 1-sec segments using MP4Box.

We assume that the network bottleneck is at the client side; therefore, we repeat the sim-

ulations with three access networks: (i) (fixed) Broadband, (ii) WiFi, and (iii) 4G cellular

network. We consider the average bandwidth (latency) of the above networks in our sim-

ulator as 43.2 (3 ms), 37.1 (10 ms), and 12.7 (40 ms) Mbps, respectively, following white

papers [34, 157]. To accommodate the latency caused by networks and protocols, we run

fixation prediction algorithms a couple of seconds4 ahead of the current playout time.

We consider the following performance metrics:

4Increasing it to 4 seconds or reducing it to 1 second results in similar results.
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Figure 3.15: The total rebuffering time under different available bandwidths. The curves

from Cur and DR overlap.

• Missing ratio. The fraction of unavailable tiles at the client over all tiles that are

watched by the viewer. A higher missing ratio leads to more holes (missing tiles)

in the 360◦ videos.

• Unseen ratio. The fraction of the tiles at the client that are not watched by the

viewer over all transmitted tiles. Higher unseen ratio indicates more wasted network

resources.

• Bandwidth consumption. The consumed bandwidth used to stream the predicted

tiles.

• Peak bandwidth. The peak bandwidth consumption due to streaming the predicted

tiles.

• Video quality. We employ the objective quality metric V-PSNR, which is proposed

for 360◦ videos [227] and adopted by JVET [84]. V-PSNR is essentially the PSNR

value of a viewer’s viewport. We use the ground truth of viewports in the datasets

to calculate V-PSNR values.

• Total rebuffering time. The total rebuffering time throughout each 1-min playout.

Some pilot simulations reveal that the missing ratio is non-trivial for our and the base-

line solutions: more than 15% missing ratio is observed. To be practical, we augment

our solution to ensure sub-τ missing ratio by adjusting ρ, where target missing ratio:

τ ∈ {1%, 5%, 10%}. The default τ is 10% if not otherwise specified. For Cur and DR,

we iteratively add new tiles at the edge of predicted tiles for δCur and δDR times to accom-

modate the inferior missing ratio, respectively. Besides, the missed tiles are assumed to be

concealed by replaying the last received tiles during video playback. In the next section,

we report the simulation results with 95% confidence intervals whenever applicable.
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Table 3.6: Video Quality under Different Prediction Algorithms (V-PSNR in dB)

Missing Ratio 1% 5% 10%

Prediction

Algorithm
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Cur 38.62 42.03 47.58 38.63 42.03 47.58 38.62 42.03 47.58

DR 38.70 42.05 47.64 38.70 42.05 47.64 38.70 42.05 47.64

Our 38.39 42.08 47.89 37.24 41.63 47.27 36.11 41.11 46.66

Table 3.7: Consumed Bandwidth under Different Prediction Algorithms (Mbps)

Missing Ratio 1% 5% 10%

Prediction

Algorithm
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Cur 21.11 23.99 24.42 21.11 23.99 24.42 21.11 23.99 24.42

DR 21.13 24.02 24.23 21.13 24.02 24.23 21.13 24.02 24.23

Our 17.13 21.88 24.10 14.08 18.04 22.23 12.26 15.85 20.48

3.5.3 Results

Our fixation prediction network consumes less network bandwidth at any target

missing ratio. To meet τ ∈ {1%, 5%, 10%}, δCur and δDR are set to 1, which leads to

ρ = {0.008, 0.027, 0.053}, respectively. We plot the bandwidth consumption under dif-

ferent networks with different τ values in Fig. 3.12. In this figure, Cur and DR show high

bandwidth consumption. On the other hand, with properly selected ρ, our fixation predic-

tion network can reduce about 2, 6, and 8 Mbps in bandwidth consumption compared to

Cur and DR in Broadband and WiFi networks. Note that the available bandwidth of the

4G cellular network is too limited, and is used up no matter which algorithm is adopted.

Fig. 3.13 plots the unseen ratio under different target missing ratios τ . This figure

shows that our fixation prediction network reduces the unseen ratio by 5%. The reduction

becomes 10% and 15% when τ = 5% and τ = 10%, respectively. In summary, Figs. 3.12

and 3.13 show that our fixation prediction network consumes less bandwidth due to fewer

unseen tiles.

Our fixation prediction network leads to shorter rebuffering time. We plot the

total rebuffering time under different networks in Fig. 3.14(a). This figure shows that all

considered prediction algorithms lead to no rebuffering event in the Broadband and WiFi

networks. However, the rebuffering events occur in all the considered prediction algo-

rithms under bandwidth-limited 4G cellular networks. It is worth noting that our fixation

prediction network has shorter rebuffering time than other algorithms in 4G cellular net-

works: up to 40 second reduction. Fig. 3.14(b) presents the total rebuffering time under

different initial buffering time in 4G networks. This figure shows that the rebuffering

time is reduced as the initial buffering time increases. However, the total rebuffering time
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Figure 3.16: The relation between video quality and bandwidth consumption observed

under individual traces in WiFi networks.

is still non-negligible to the 60-sec streaming session. This indicates the importance of

rate adaptation for streaming systems. In our future work, we may choose lower bitrates

for the selected tiles that have lower predicted viewing probability to further reduce the

bandwidth consumption.

Our fixation prediction network requires less available bandwidth to avoid re-

buffering events. To understand the minimum available bandwidth required to avoid

rebuffering events without rate adaptation, we conduct simulations under different avail-

able bandwidths and plot the results in Fig. 3.15. This figure shows that our fixation

prediction network gets rid of rebuffering events while the available bandwidth is higher

than 25 Mbps, which is approximately 10 Mbps less than other algorithms. We note that

a survey [157] reports that the mean available bandwidth of 4G cellular networks is less

than 15 Mbps in North America. Hence, we do not consider 4G cellular networks in the

rest of this chapter. The limitation of the current 4G cellular networks are likely to be

lifted in the future, as 4G/5G cellular networks continue to advance.

Our fixation prediction network achieves comparable video quality at lower band-

width consumption. We dig a bit deeper and report the minimum, average, and maximum

of video quality of the considered prediction algorithms in Table 3.6. This table shows

that our fixation prediction network has comparable video quality compared to other al-

gorithms. The minimum, average, and maximum of the consumed bandwidth are given

in Table 3.7, which shows that our algorithm consumes less bandwidth. Combining these

two tables, we observe that, with τ = 1%, our prediction network saves about 9% of the

bandwidth, while achieving similar video quality. In addition, it reduces about 8 Mbps

in bandwidth consumption while only sacrificing less than 1 dB video quality on average

when τ = 10%. Fig. 3.16 plots the video quality of individual traces from all viewers in

WiFi networks. This figure shows that our solution leads to the points located at the left

to the points from other solutions, which confirms the above observations.
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Table 3.8: The Training Time in Minutes

No. Neurons 256 512 1024 2048

Dropout T F T F T F T F

No.

Layers

1 105 109 78 108 120 125 67 103

2 47 50 95 59 50 71 89 83

3 83 105 47 77 119 65 123 69
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Figure 3.17: The prediction time from a sample trace.

Our fixation prediction network has short training and prediction time. We run

the training and prediction process on an Intel 32-core Xeon server with a Nvidia 1080Ti

GPU. We report the training time of each parameter setting in Table 3.8. We note that

some training sessions take less than 1 hour. This may be attributed to the early stop

(see Sec. 3.3) adopted by the training process. Fig. 3.17 plots the prediction time from a

sample trace. This figure shows that the prediction time of the next segment is always less

than 90 ms for this trace. The average and maximum running time for each prediction

across all testing traces are 88.74 ms and 124 ms, respectively, which are relatively short

compared to, for example, 2-sec segments.

Table 3.9: The MOS and Consumed Bandwidth from Three Sample Traces

Trace
MOS Bandwidth (Mbps)

Cur DR Our Cur DR Our

Roller Coaster 3.14 2.86 2.86 24.35 24.33 15.32

Hog Rider 3.43 3.43 3.43 24.18 24.21 13.32

SFR Sport 3.14 3.00 3.29 24.19 24.25 13.71

Average 3.24 3.10 3.20 24.24 24.26 14.12
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Figure 3.18: The missing ratio of our prediction algorithm on the considered random

traces. Roller Coaster, in general, suffers from higher missing ratio.

3.5.4 A Small-Scale User Study

We conduct a user study to understand the correlation between V-PSNR and user experi-

ence. We randomly select three sample user traces (one for each video category) from the

testing set (see Sec. 3.3). The considered videos are: (i) Roller Coaster, (ii) Hog Rider,

and (iii) SFR Sport. We use our prediction algorithm and baseline algorithms to predict

the fixations with a missing ratio of τ < 10%. No error concealment is performed. For

each prediction algorithm, we generate viewport videos from the predicted tiles accord-

ing to the sensor data (yaw, roll, and pitch) from the trace, where the viewports are in

1066×1066 resolution (equivalent to 100◦×100◦). In total, nine (three traces with three

prediction algorithms) viewport videos are generated. We play the viewport videos to

seven subjects, who provide user experience scores in the 1 (worst) -– 5 (best) scale. We

disable the inertial sensors on the HMDs, so that all subjects watch exactly the same view-

port videos following the head movements of the sample user trace. For each pair of the

trace and prediction algorithm, we compute the MOS across the user experience scores

from all subjects.

We report the MOS and consumed bandwidth in Table 3.9. This table shows that,

compared to the baseline algorithms, our solution achieves very similar average MOS for

all sample videos, yet saves about 41% bandwidth on average. This table also reveals that

our prediction algorithm suffers from an inferior MOS score, with Roller Coaster, than the

Cur algorithm. We plot the missing ratio of our algorithm on the considered three traces

over time in Fig. 3.18. This figure shows that our algorithm leads to higher missing ratio

on Roller Coaster compared to the other two traces. A deeper investigation shows that the

higher missing ratio is due to the higher maximum head rotation speed in Roller Coaster

trace. More precisely, it is about 35.37 degree/s in yaw direction, which is higher than

that of other two traces by up to 14 degree/s. In particular, the maximum rotation speed

occurs at 50 s, which is inline with the peak (highlighted with the circle) in Fig. 3.18. We
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cross check the V-PSNR values of Our and Cur algorithms with Roller Coaster: which

are 34.37 and 38.35 dB, respectively. The V-PSNR values are consistent with our MOS

results.

In summary, our preliminary user study results (about 40% bandwidth saving) are

inline with our earlier experiments using V-PSNR. Our user study also reveals that im-

proving the fixation prediction accuracy for even lower missing ratio is important. It

is, however, possible to cope with the imperfect fixation prediction using some innova-

tive networking tools. For example, some studies [224, 226] leverage emerging network

protocols, such as HTTP/2 and QUIC [110], to stream critical tiles over high-priority

concurrent streams, in order to avoid missing tiles (holes).

3.6 Conclusion

360◦ video streaming has become increasingly popular. However, the extremely large file

sizes impose high loads on networks. In this chapter, we propose to leverage both sensor

and content features to predict the viewing probability of each tile in future frames, in

order to reduce the network loads and improve the video quality. Several novel enhance-

ments are proposed to improve the prediction performance, including generating virtual

viewports, considering future content, reducing the feature sampling rate, and training

with larger datasets. We conduct extensive simulations using real traces to quantify the

performance of our proposed solution. The evaluation results show that, compared to

other algorithms, our proposed fixation prediction network achieves comparable video

quality while: (i) saving about 8 Mbps in bandwidth consumption and (ii) cutting the re-

buffering time by 40-sec. Besides, our proposed prediction network estimates tile viewing

probability in almost real-time.

There are some limitations in this work:

• The predicted viewing probabilities are at the tile level. Therefore, the prediction

results are only compatible with fewer tiles (larger resolution). This may be solved

by training the network with the smallest resolution of tile that is generally suitable

for tiled 360◦ video streaming.

• The prediction accuracy degrades as the length of the prediction window increases,

which is faced by all fixation prediction works. This may be solved by adaptively

adjusting the threshold according to the length of the prediction window.
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Chapter 4

Production Optimization: Optimal

Laddering

Although our fixation prediction network in Chapter 3 successfully predicts the tiled seg-

ments that will be viewed by the viewer in the future, the client can only request the rep-

resentations of the tiled segments that are generated at the production phase. Hence, the

optimal laddering problem is crucial to determine the encoding ladder that generates the

representations for maximizing the overall viewing quality of clients without exceeding

the storage limit on the server. Although the optimal laddering problem has been studied

for conventional videos [143, 177], solving the same problem for tiled1 360◦ videos [51]

to HMDs is much more challenging for a couple of reasons. First, the extremely high

resolution of 360◦ videos consumes much more storage space than conventional videos.

Second, the optimal ladders may be different among tiles of the same video. This is

because each tile may have different complexity levels and viewing probabilities. For ex-

ample, the tiles that are frequently viewed (e.g., the main foreground objects) may need to

have higher quality levels than those tiles that are rarely viewed (e.g., straight up/down).

In this chapter, we study the optimal laddering problem for tiled 360◦ videos to HMDs

in the production phase. This is different from the majority of the prior work on designing

ABR algorithms for tiled 360◦ videos [5, 147, 161, 164, 167, 216, 226], where the viewing

quality of each client in the delivery phase is maximized under a given encoding ladder.

To the best of our knowledge, Ozcinar et al. [160] is the only work that also computes the

encoding ladder for 360◦ videos. However, their solution allocates an even bitrate to all

tiles and assumes that all tiles have the same complexity level and viewing probability. In

contrast, we consider a more general setup, which consists of the following:

1The modern HEVC codecs [134] spatially divide a video into smaller rectangular subvideos, referred

to as tiles, which can be independently streamed and decoded. Tiles are essential for 360◦ video streaming,

in which HMD viewers only watch small portions of the whole 360◦ videos at any moment.
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• Video model, which maps the encoding configurations (i.e., QP in this chapter) to

expected video distortion levels and bitrates. The video model captures the com-

plexity levels of individual tiles of each video.

• Viewing probability, which quantifies the chance of each tile being viewed by HMD

viewers. The viewing probability can be estimated from historical data of other

HMD viewers or computed using fixation prediction algorithms [50, 52]. We take

the former approach in this chapter if not otherwise specified.

• Client distribution, which represents the fraction of clients with different amounts

of available bandwidth. The clients with the same available bandwidth are consid-

ered in the same bandwidth class in our problem.

Fig. 4.1 shows an illustrative example of our optimal laddering problem, in which we al-

locate more resources to the tiles with higher complexity levels and viewing probabilities

(e.g., with smaller QP values) and to the representations being requested by more clients

(e.g., with larger storage space). The eventual goal is to maximize the overall viewing

quality in the delivery phase.
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Figure 4.1: An illustrative example of the optimal laddering problem.

To solve the optimal laddering problem, we leverage the divide-and-conquer approach

to decompose the problem into two subproblems: (i) per-class optimization and (ii) global

optimization. The per-class optimization problem focuses on the optimization for each

class with a given available bandwidth. We formulate this problem into a convex opti-

mization problem [23] considering video models and viewing probability. We solve it
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using a suite of mathematics tools, such as Lagrangian multiplier and rounding, in the

Rate-Distortion Optimization (RDO) fashion [192]. However, the complex video models

result in non-negligible computation overhead. Thus, we also propose a more efficient

greedy algorithm that iteratively sets the encoding configurations of individual tiles. For

the global optimization, the goal is to adjust the solution from the per-class optimiza-

tion to meet the overall storage limit. In this problem, the client bandwidth distribution is

considered when optimizing the overall viewing quality across all clients at the given stor-

age limit. We have also proposed two algorithms for global optimization. One of them

runs more efficiently and the other one offers better video quality. We have conducted

experiments on a real testbed to evaluate our proposed algorithms, compared to the state-

of-the-art algorithms. We then recommend a combination of our proposed algorithms to

efficiently solve the optimal laddering problem while achieving high viewing quality.

4.1 System Overview
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Figure 4.2: System overview of our considered 360◦ video streaming system.

Fig. 4.2 details our considered streaming system for tiled 360◦ videos. The compo-

nents are introduced below.

• Encoding ladder optimizer determines the optimal encoding ladder under the stor-

age limit. The resulting ladder is then used for encoding the tiled-segments.

• Tiled-segment encoder on the production server compresses and splits the videos

into tiled-segments. Each tiled-segment is a tile across multiple consecutive video

frames. Tiled-segments are the basic streaming units that can be independently

encoded and decoded.

• Video database on the streaming server stores the encoded tiled-segments follow-

ing the encoding ladder. The video database also stores the MPD (Media Presen-

tation Description) files, which provide the meta-data of the representations to the

clients.

• MPD parser on the client parses the MPD files from the server to get the mapping

between representations and URLs.
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• Tiled-segment handler on the client sends the requests and receives the incoming

tiled-segments. It also implements ABR algorithms for selecting the tiled-segments.

• Tiled-segment decoder on the client decodes the received tiled-segments for the

HMD viewers.

The interactions among these components are as follows. At the production server, raw

360◦ videos are encoded and segmented into tiled-segments according to the encoding

ladder computed by the encoding ladder optimizer. These tiled-segments and the MPD

files are stored in the video database on the streaming server. In each streaming session,

the MPD parser parses the MPD file for the meta-data of the tiled-segments. The tiled-

segment handler then adaptively requests videos from the streaming server. The streamed

tiled-segments are decoded by the tiled-segment decoder for the HMD viewers. Among

the above components, the encoding ladder optimizer (shaded block in Fig. 4.2) is the

core component studied in this chapter, which will be detailed in the remaining sections.

4.2 Optimal Laddering Problem

In this section, we first describe our research problem, which is followed by the system

models and problem formulation. Table 4.1 summarizes the symbols used in this chapter.

4.2.1 Problem Statement

Our research problem can be described as follows. Given a 360◦ video server with a

storage limit of S, each 360◦ video is divided into T segments, where each segment is

further divided into N tiles. We classify the clients into C classes based on their available

bandwidth bc. A class c client has a probability of fv,c to watch video v. In particular,

fv,c = wv
v × wb

c. wv
v denotes the video popularity and wb

c denotes the fraction of clients

at bandwidth class c, where
∑V

v=1 w
v
v = 1 and

∑C

c=1 w
b
c = 1. Let n denote the tile

number and q denote the encoding QP2. The goal of the encoding ladder optimizer is to

make two sets of decisions to minimize the overall viewing distortion. First, the tiles

and their representations stored on the streaming server need to be determined. These

are captured by the Boolean variables yv,t,n,q ∈ {0, 1}, where v denotes the video, t

denotes the segment number, n denotes the tile number, and q denotes the encoding QP.

yv,t,n,q = 1 if and only if video v’s tiled-segment (t, n) has a representation with QP q

stored on the streaming server. Second, the tiles and their representations that are planned

2We focus on controlling QP for rate control, while other parameters may be used as well. For example,

studies in the literature propose to employ the Lagrangian multiplier λ [113, 114, 210] instead of QP to

control the video quality for higher rate control accuracy.
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Table 4.1: Symbol Table

Symbol Description

V Number of videos

C Number of bandwidth classes

T Number of segments

N Number of tiles

Q Maximum of available QP values

S Storage limit on server

fv,c
Probability of client in bandwidth class c watching

video v (client distribution)

pv,t,n

= pφ

Viewing probability of tile n at segment t for

video v

an Area scaling factor of tile n

xv,t,n,c,q

= xφ,c,q

Whether tile n with QP q at segment t is selected

to be transmitted in bandwidth class c watching video v

yv,t,n,q

= yφ,q

Whether tile n with QP q at segment t watching video v

is selected to be stored on the server

Dv,t,n

= Dφ

Maximum distortion of tile n at segment t of

video v

dv,t,n(q)

= dφ(q)

Distortion of tile n with QP q at segment t of

video v (distortion model)

rv,t,n(q)

= rφ(q)

Bitrate of tile n with QP q at segment t of

video v (bitrate model)

bc Available bandwidth of bandwidth class c

to be streamed to the clients need to be determined. These are captured by the Boolean

variables xv,t,n,c,q ∈ {0, 1}, where xv,t,n,c,q = 1 if and only if the representation with QP

q of tiled-segment (t, n) is streamed to class c clients who watch video v. We use φ to

represent (v, t, n) and Φ = {(v, t, n)|v ∈ [1, V ], t ∈ [1, T ], n ∈ [1, N ]} to denote all

possible 3-tuples in the remaining chapter for brevity. For example, we interchangeably

write yv,t,n,q and yφ,q as well as xv,t,n,c,q and xφ,c,q if they do not cause any ambiguity.

Table 4.2: The Adj. R2 of the Video Models for the Considered Videos

Video
Mega

Coaster

Roller

Coaster

Shark

Shipwreck

Hog

Rider

Chariot

Race

SFR

Sport

MSE 0.99 0.99 0.99 0.99 0.99 0.93

Bitrate 0.99 0.99 0.99 0.99 0.99 0.99

4.2.2 Video Models

We let dφ(q) and rφ(q) be the distortion and bitrate models, which are functions of QPs.

The video models allow us to estimate the viewing quality and consumed bandwidth when
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solving the optimal laddering problem. To understand the properties of the models, we

divide videos from a public dataset [123] into 6×4 tiles and encode them multiple times

with different QPs in {1, 8, 14, 20, 26, 32, 38, 44, 51} using Kvazaar [204]. The MSE3

and bitrate of each tile under these QPs are measured. We then use the measured results

to estimate the model parameters. Several possible functions can be adopted for the

models, such as linear, power, and exponential functions. Our pilot tests indicate that the

linear function has the worst modeling performance. In contrast, the distortion and bitrate

functions can be well modeled by the power and exponential functions, respectively. Our

findings are inline with other empirical models [28] with only minor differences. Specifi-

cally, we write these two models as:

dφ(q) = αd
φq

βd
φ + γd

φ; (4.1)

rφ(q) = αr
φe

βr
φ
q. (4.2)

In the models, αd
φ, βd

φ, γd
φ, αr

φ, and βr
φ are model parameters. We fit the distortion and

bitrate models for individual tiled-segments. We plot the MSE and bitrate of a sample

tiled-segment from Mega Coaster in Figs. 4.3(a) and 4.3(b) under different QPs. These

figures reveal that Eqs. (4.1) and (4.2) are reasonably accurate, as the curves closely follow

the samples. We also encode the tiled-segment with several additional QPs to evaluate the

accuracy of the resulting models. We mark these additional samples in the figures with

circles, which are also close to the model curves. We notice that figures from video models

of other tiled-segments are similar, and are left out due to the limited space. The average

adjusted R2 of the distortion and the bitrate models are reported in Table 4.2. This table

confirms the accuracy of our video models. The power and exponential models are both

convex functions. This property is utilized by our solution proposed later.

4.2.3 Problem Formulation

The optimal laddering problem is quite hard to solve. We give the proof of the following

lemma in Appendix 4.8.

Lemma 1. The optimal laddering problem is NP-hard.

We formulate the optimal laddering problem into an Integer Linear Programming
(ILP) problem. The decision variables of our formulation are xφ,c,q and yφ,q. When pro-
jecting tiles of the 2D reconstructed videos to the 3D sphere for generating the viewports,

3 Instead of 360◦ video quality metrics, we use the MSE of individual tiles to quantify the distortion of

the video. This is because our problem is to determine the QP values of individual tiles, i.e., at the tile level,

while 360◦ video quality metrics are at the video level. Nonetheless, we employ 360◦ specific metrics,

e.g., V-VMAF, to quantify the overall video quality in our evaluations. We note that, in addition to MSE,

other quality metrics at the tile-level may be adopted, such as PSNR or QoE models [226].
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Figure 4.3: Sample video models: (a) MSE over QP (dφ(q)) and (b) bitrate over QP

(rφ(q)).

different sphere areas are covered by each tile (mainly due to different latitudes). To ac-
count for this, we let an be the area scaling factor of tile n, which is defined as the ratio
of the area of tile n to that of the whole 3D sphere. Concretely, we let An be the area of
tile n on the sphere, where 1 ≤ n ≤ N . We then write the scaling factor an as An∑N

i=1 Ai
.

A larger an value indicates that tile n affects the resulting viewports more. Note that
without incurring ambiguity, we interchangeably write aφ and an; we define aφ = an,
where φ = (v, t, n) as a is different only when n changes. Similarly, we let fφ,c = fv,c,
where φ = (v, t, n). With the notations defined so far, we write our problem as:

min
C∑

c=1

∑

φ∈Φ

fφ,cpφaφ

Q∑

q=1

dφ(q)xφ,c,q (4.3a)

st :
N∑

n=1

Q∑

q=1

rv,t,n(q)xv,t,n,c,q ≤ bc c ∈ [1, C], v ∈ [1, V ], t ∈ [1, T ]; (4.3b)

∑

φ∈Φ

Q∑

q=1

rφ(q)yφ,q ≤ S; (4.3c)

xφ,c,q ≤ yφ,q c ∈ [1, C], q ∈ [1, Q], φ ∈ Φ; (4.3d)

Q∑

q=1

xφ,c,q = 1 c ∈ [1, C], φ ∈ Φ; (4.3e)

xφ,c,q ∈ {0, 1} c ∈ [1, C], q ∈ [1, Q], φ ∈ Φ; (4.3f)

yφ,q ∈ {0, 1} q ∈ [1, Q], φ ∈ Φ. (4.3g)

The objective function in Eq. (4.3a) minimizes the expected overall distortion in weighted-

MSE4 [125], where the tile weights depend on: (i) viewing probability (pφ) and area

scaling factor (aφ) across all tiles and (ii) the probability of clients in different classes

watching different videos (fφ,c). Eq. (4.3b) makes sure that the total streamed bitrate to

each client class c does not exceed the available bandwidth bc. Eq. (4.3c) constrains the

consumed storage space within the storage limit S on the server. Eq. (4.3d) indicates that

clients only select the tiles offered by the server. Besides, each client only selects one

4The overall distortion in our formulation is a video-level quality metric, which is essentially a weighted

sum of the quality of all the tiles.
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representation for each tile as enforced by Eq. (4.3e).

4.3 Problem Decomposition

The optimal laddering problem in Eqs. (4.3a)–(4.3g) is fairly complicated because of the

complex interplay between the bandwidth and storage constraints. More specifically, the

best solution that satisfies all the bandwidth constraints may exceed the storage limit,

while restricting the storage space for each class causes a huge number of permutations

on storage space assignments across videos. Hence, we opt for the divide-and-conquer

approach, as illustrated in Fig. 4.4. In particular, we decompose the optimal laddering

problem into the following two subproblems.

• Per-class optimization problem optimizes the per-class solution under the band-

width constraint of each class. It takes the video models and viewing probability

of video v and bandwidth constraint of class c as the inputs. It then determines the

best QP values for tiled-segment (t, n). The output for class c of video v contains

the Boolean values {x∗
v,t,n,c,q(= x∗

φ,c,q)|∀t, n, q}, which are collectively denoted as

X∗
v,c.

• Global optimization problem combines and adjusts all per-class solutions into a

global solution under the storage limit. It takes the video models, viewing proba-

bility, client distribution, and the storage limit of all videos as the inputs. It then

adjusts X∗
v,c of each class c to fit all tiled-segments into the storage limit. When the

storage limit is loose, all X∗
v,c solutions from the per-class optimization problems

may be directly accepted. The output of the global optimization problem contains

the revised X∗
v,c for all v and c, which is collectively written as X∗. Moreover, the

output also specifies the optimal QP values for stored tiled-segment (t, n) of video

v as {y∗v,t,n,q(= y∗φ,q)|∀v, t, n, q}, which is collectively written as Y∗. Y∗ is essen-

tially the optimal encoding ladder. It is not hard to see that Y∗ is a function of X∗;

that is, y∗v,t,n,q = 1 if and only if
∑C

c=1 x
∗
v,t,n,c,q ≥ 1, ∀v, t, n, q.

We solve the per-class optimization problem for each class with a bandwidth constraint

in Sec. 4.4. We solve the global optimization problem with the storage limit in Sec. 4.5.

4.4 Per-Class Optimization

We first give the formulation, which is followed by two algorithms.
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Figure 4.4: The overview of our divide-and-conquer approach.

4.4.1 Per-Class Formulation

Let P (v, c) be the subproblem of bandwidth class c watching video v, where the storage

limit is ignored. That is, this subproblem only considers the constraints in Eqs. (4.3a)–

(4.3g) that are related to xv,t,n,c,q. We formally formulate the problem as:

P (v, c) : min

T∑

t=1

N∑

n=1

pv,t,nan

Q∑

q=1

dv,t,n(q)xv,t,n,c,q (4.4a)

st :

N∑

n=1

Q∑

q=1

rv,t,n(q)xv,t,n,c,q ≤ bc t ∈ [1, T ]; (4.4b)

Q∑

q=1

xv,t,n,c,q = 1 t ∈ [1, T ], n ∈ [1, N ]; (4.4c)

xv,t,n,c,q = {0, 1} t ∈ [1, T ], n ∈ [1, N ],q ∈ [1, Q]. (4.4d)

Eq. (4.4a) minimizes the expected distortion for the clients in bandwidth class c who

watch video v. Eq. (4.4b) constrains the consumed bitrate within the available bandwidth

bc. Eq. (4.4c) ensures that only one representation is selected.

We next propose two algorithms to solve the formulation in Eqs. (4.4a)–(4.4d): (i) Per-

Class Lagrangian-Based Algorithm (PC-LBA), which leverages the convexity of video

models to get the solution, and (ii) Per-Class Greedy-Based Algorithm (PC-GBA), which

runs more efficiently. Their performance will be compared in Sec. 4.6.
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4.4.2 Lagrangian-Based Algorithm: PC-LBA

PC-LBA consists of two steps: (i) a QP optimizer, which employs the Lagrangian multi-

plier [17] to find the optimal QPs as real numbers, and (ii) the optimal rounding algorithm,

which solves an ILP formulation to optimally round the QPs to integers supported by the

encoder.

QP optimizer. To adopt the Lagrangian approach, we transform the discrete decision

variables xv,t,n,c,q into continuous decision variables κv,t,n,c. We let κv,t,n,c represent the

QP value of tiled-segment (t, n) of video v streamed to class c clients. κv,t,n,c is a real

number in the range of [κmin, κmax], where κmin and κmax are the QP bounds from the

video encoder. With κv,t,n,c, the transformed formulation has fewer decision variables and

gets rid of Eq (4.4c). Moreover, we observe that the decisions on different segments are

independent. Hence, we write each P (v, c) into a series of transformed P ′(v, t, c) for all

t ∈ [1, T ] as:

P ′(v, t, c) = min

N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan (4.5a)

st :

N∑

n=1

rv,t,n(κv,t,n,c) ≤ bc; (4.5b)

κv,t,n,c ∈ [κmin, κmax]. (4.5c)

In this formulation, Eqs. (4.5a) and (4.5b) account for the expected distortion and con-

sumed bitrate for clients in class c watching segment t of video v. The following two

lemmas show that the transformed formulation in Eqs. (4.5a)–(4.5c) can be solved effi-

ciently. The proofs are given in Appendix 4.8 to maintain the flow of the chapter.

Lemma 2. When the power function in Eq. (4.1) is adopted as the distortion model, the

objective function in Eq. (4.5a) is convex.

Lemma 3. When the exponential function in Eq. (4.2) is adopted as the bitrate model, the

constraint in Eq. (4.5b) is convex.

We write {κv,t,1,c, κv,t,2,c, · · · , κv,t,N,c} as Kv,t,c in the following for the sake of pre-

sentation. Combining Lemmas 2 and 3, we know that our optimization problem is a

convex programming problem, which can be solved using the Lagrangian multiplier as

follows. We first introduce a Lagrangian multiplier µ ∈ R
+, and rewrite our (constrained)

convex programming problem into an unconstrained optimization problem:

min L(Kv,t,c, µ) =

N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan

+ µ(
N∑

n=1

rv,t,n(κv,t,n,c)− bc)

(4.6)

Consider Eq. (4.6) as the primal Lagrangian problem; the Lagrangian dual function g
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minimizes the Lagrangian value over Kv,t,c:

g(µ) = inf
Kv,t,c

(Kv,t,c, µ) = inf
Kv,t,c

(

N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan

+ µ(

N∑

n=1

rv,t,n(κv,t,n,c)− bc)).

(4.7)

Lemma 4. The Lagrangian dual function (Eq. (4.7)) constitutes a lower bound for the

objective value of any feasible solution to the Lagrangian primal problem (Eq. (4.6)). In

fact, because the strong duality holds here, the optimal solution of the Lagrangian dual

problem is also the optimal solution of the original (primal) problem.

To solve the Lagrangian dual problem, we first calculate the partial derivative w.r.t.

each κv,t,n,c ∈ Kv,t,c:

∂L

∂κv,t,n,c

=(αd
v,t,nβ

d
v,t,nκ

βd
v,t,n−1

v,t,n,c )pv,t,nan

+ µαr
v,t,nβ

r
v,t,ne

βr
v,t,nκv,t,n,c = 0.

(4.8)

Then, we utilize the Lambert W function [39] to represent each κv,t,n,c using µ:

κv,t,n,c =
1− βd

v,t,n

βr
v,t,n

W (
βr
v,t,n

1− βd
v,t,n

e

− ln

µαr
v,t,nβr

v,t,n

−αd
v,t,n

βd
v,t,n

pv,t,nan

1−βd
v,t,n ). (4.9)

Last, we substitute κv,t,n,c into Eq. (4.7) to derive the optimal µ and the corresponding

Kv,t,c. Notice that, if some optimal solution κv,t,n,c ∈ Kv,t,c falls outside of [κmin, κmax],

the QP optimizer caps κv,t,n,c at κmin or κmax. It then recalculates Kv,t,c until all QP values

fall in the practical range of [κmin, κmax].

1: X
∗
v,c ← ∅

2: for t← 1 to T do

3: // QP optimizer

4: Kv,t,c ← Solved with Eqs. (4.7) and (4.9)

5: while ∃κv,t,n,c ∈ Kv,t,c, where κv,t,n,c /∈ [κmin, κmax] do

6: Set the out-of-range κv,t,n,c to the closest border

7: Kv,t,c ← Solved with Eqs. (4.7) and (4.9)

8: // Optimal rounding algorithm

9: Solve Eqs. (4.10a)–(4.10d) for K∗
v,t,c

10: Transform K
∗
v,t,c to X

∗
v,t,c

11: X
∗
v,c ← X

∗
v,c ∪X

∗
v,t,c

12: return X
∗
v,c

Figure 4.5: The pseudocode of the PC-LBA algorithm.

Optimal rounding algorithm. Next, we round the real number QPs in Kv,t,c into

integer QPs for the video encoder. We let K′
v,t,c be a subset of Kv,t,c containing tiles in

Kv,t,c with non-integer optimal QP values. Our problem is to determine whether to round
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each κv,t,n,c in K′
v,t,c up or down to minimize the resulting distortion without consuming

excessive bandwidth. For n ∈ [1,
∣∣K′

v,t,c

∣∣], we define the decision variable zv,t,n,c,0 = 1 if

κv,t,n,c is rounded down, and zv,t,n,c,0 = 0 otherwise. Similarly, we define zv,t,n,c,1 = 1 if

κv,t,n,c is rounded up and zv,t,n,c,1 = 0 otherwise. The optimal rounding problem can then

be written as:

min

|K′

v,t,c|∑

n=1

zv,t,n,c,0di(⌊κ
′
v,t,n,c⌋)+zv,t,n,c,1dv,t,n(⌈κ

′
v,t,n,c⌉) (4.10a)

st :

|K′

v,t,c|∑

n=1

zv,t,n,c,0ri(⌊κ
′
v,t,n,c⌋)+zv,t,n,c,1ri(⌈κ

′
v,t,n,c⌉)

≤

|K′

v,t,c|∑

n=1

rv,t,n(κ
′
v,t,n,c); (4.10b)

zv,t,n,c,0 + zv,t,n,c,1 = 1 n ∈ [1, |K′
v,t,c|]; (4.10c)

zv,t,n,c,0, zv,t,n,c,1 ∈ {0, 1} n ∈ [1, |K′
v,t,c|]; (4.10d)

In this formulation, Eq. (4.10a) minimizes the additional distortion due to rounding,

while Eq. (4.10b) makes sure that the bitrate does not exceed the bandwidth constraint.

Eq. (4.3g) ensures that each QP value is either rounded down or up, but not both. The

formulation can be optimally solved for K∗
v,t,c using existing solvers, like CPLEX [81]

and GLPK [129]. Last, we transform the optimal K∗
v,t,c back to X∗

v,t,c = {x∗
v,t,n,c,q|q ∈

[1, Q], n ∈ [1, N ]} of the original problem.
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Figure 4.6: An illustrative example of PC-GBA with several iterations.

Pseudocode. Fig. 4.5 presents the pseudocode of our PC-LBA. Lines 4–7 repeatedly

solve Eqs. (4.7) and (4.9) until there is no out-of-range κv,t,n,c ∈ Kv,t,c. Line 9 rounds

the real QP values into integers. Line 10 transforms the QP set Kv,t,c to the binary set

Xv,t,c. Line 11 collects the solution for each segment. Line 12 returns the optimal solution
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1: X
∗
v,c ← ∅

2: for t← 1 to T do

3: Set κv,t,n,c ∈ Kv,t,c as κmax, ∀i = 1, 2, . . . , N

4: B′ = bc −
∑N

n=1
rv,t,n(κv,t,n,c)

5: while B′ > 0 do

6: //Tile Selector

7: Θ← {θv,t,n,c|n = 1, 2, . . . , N}

8: n∗ ← argmaxΘ

9: //Status Tracker

10: B′ = B′ − (rv,t,n∗(κv,t,n∗,c − 1)− rv,t,n∗(κv,t,n∗,c))

11: κv,t,n∗,c = κv,t,n∗,c − 1

12: Transform K
∗
v,t,c to X

∗
v,t,c

13: X
∗
v,c ← X

∗
v,c ∪X

∗
v,t,c

14: return X
∗
v,c

Figure 4.7: The pseudocode of the PC-GBA algorithm.

x∗
v,t,n,c,q ∈ X∗

v,c for clients in bandwidth class c watching video v. The following lemma

analyzes the complexity of PC-LBA.

Lemma 5. The PC-LBA algorithm runs in time O(T2N) with space complexity of O(N).

4.4.3 Greedy-based Algorithm: PC-GBA

PC-LBA may suffer from higher computational complexity due to the ILP formulation of

optimal rounding5. Therefore, we also propose a more efficient greedy algorithm to solve

the problem with discrete QPs. Our greedy algorithm contains two components: (i) status

tracker and (ii) tile selector. The status tracker keeps track of the current QP selected

for each tile, their accumulated bitrate, and the remaining bandwidth. The tile selector

selects the tile with the highest coding efficiency to allocate more bitrate by reducing its

QP. The status tracker then updates the accumulated bitrate and the remaining bandwidth.

The above steps iterate until there is no remaining bandwidth or all tiles are coded at the

smallest QP values.

The crux of the greedy algorithm is the definition of the coding efficiency θv,t,n,c when

allocating the additional bitrate to tiled-segment (t, n) of video v. We let κv,t,n,c be the

current selected QP for tiled-segment (t, n) of v streamed to class c clients. We then define

θv,t,n,c as:
[dv,t,n(κv,t,n,c − 1)− dv,t,n(κv,t,n,c)]pv,t,nan

rv,t,n(κv,t,n,c − 1)− rv,t,n(κv,t,n,c)
, (4.11)

where pv,t,n is the viewing probability and an is the area scaling factor. θv,t,n,c is essentially

the slope of the rate-distortion curves at κv,t,n,c. Fig. 4.6 shows an illustrative example of

5Notice that when optimality is not a major concern, much simpler rounding algorithms, such as round-

ing down, can be adopted for lower computation complexity.
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the proposed PC-GBA streaming a video with three tiles. The current QPs are marked

with solid dots, which are selected from all QP options marked with circles. Besides, the

next candidate QPs of each tile are represented by squares. In this figure, after iteration

m, the tile selector chooses tile three to allocate more bandwidth since it has the steepest

slope. Note that if all tiles have the same coding efficiency, we use the weights pv,t,nan

and then the QPs to break the ties. After all the QP values are determined, we transform

κ∗
v,t,n,c ∈ K∗

v,t,c to binary indicators x∗
v,t,n,c,q ∈ X∗

v,t,c.

Pseudocode. Fig. 4.7 presents the pseudocode of our PC-GBA algorithm that deter-

mines the QPs for segments. Lines 3–4 initialize the QP of each tile at the maximum QP

and the remaining bandwidth. The while loop between lines 5–11 iteratively allocates

more bitrate to the tile with the highest coding efficiency selected in line 8. Lines 10–11

update the status through the status tracker, including the QP value of the selected tile

and the remaining bandwidth. Line 12 transforms the determined QP set Kv,t,c to binary

set Xv,t,c. Line 13 collects the solution for each segment. Line 14 returns the optimal

solution x∗
v,t,n,c,q ∈ X∗

v,c for clients in bandwidth class c of video v.

Lemma 6. The PC-GBA algorithm runs in time O(TN(logN)Q) with space complexity

of O(N).

4.5 Global Optimization for the Optimal Ladders

We propose two greedy algorithms to solve the global optimization problem. The first

algorithm directly solves the problem and considers all possible storage space allocation

across multiple videos, which we refer to as the Global InTeR-video Algorithm (GL-

ITRA). The second algorithm simplifies the problem by: (i) equally dividing the storage

space among all videos and (ii) assuming that the video popularity is uniformly distributed

across all videos. We refer to this algorithm as the GLobal InTrA-video Algorithm (GL-

ITAA). We present these two algorithms below and compare their performance in Sec. 4.6.

GL-ITRA Algorithm. We propose a greedy algorithm to adjust the per-class solu-

tions X∗
v,c for minimizing the expected distortion while meeting both the client bandwidth

constraints and the overall server storage limit. First, yv,t,n,q is initialized as 1 if and only

if
∑C

c=1 xv,t,n,c,q ≥ 1, where v ∈ [1, V ], t ∈ [1, T ], n ∈ [1, N ],and q ∈ [1, Q]; yv,t,n,q is

set to be 0, otherwise. We introduce a constant system parameter δ to denote the step

size of QP adjustments. We then compute the weight of each tile considering the client

distribution as ǫv,t,n,c,q =

∑V
v=1

∑C
c=1

fv,c · [dv,t,n(q + δ)− dv,t,n(q)]pv,t,nanxv,t,n,c,q

[rv,t,n(q)− rv,t,n(q + δ)(1− yv,t,n,q+δ)]yv,t,n,q
. (4.12)
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ǫv,t,n,c,q is the ratio between the weighted distortion gain and the storage reduction if the

QP value of tiled-segment (t, n) of v increases6. In particular, dv,t,n(q + δ) − dv,t,n(q)

is the distortion gain, while
∑V

v=1

∑C

c=1 fv,c and pv,t,nav,t,n are the weights. rv,t,n(q) −

rv,t,n(q+δ)(1−yv,t,n,q+δ) denotes the reduced storage space, while (1−yv,t,n,q+δ) indicates

whether tiled-segment (t, n) of v has already been chosen to be streamed. That is, if

yv,t,n,q+δ = 1, then the reduced storage space is rv,t,n(q); otherwise the reduced storage

space is rv,t,n(q) − rv,t,n(q + δ). The algorithm iteratively increases the QP of the tile

having the lowest ǫv,t,n,c,q by step size δ until the storage limit S is not exceeded.

1: Initialize Y
∗ = {yv,t,n,q = 0}

2: // Per-class optimization

3: X∗ = {X∗
v,c|∀v, c} ← PC-LBA or PC-GBA

4: for v ← 1 to V , t← 1 to T , n← 1 to N ,q ← 1 to Q do

5: if
∑C

c=1
xv,t,n,c,q ≥ 1 then

6: yv,t,n,q ← 1

7: S′ ←
∑V

v=1

∑T
t=1

∑T
n=1

∑Q
q=1

rv,t,n(q)yv,t,n,q

8: // Global optimization

9: while S′ > S do

10: E← {ǫv,t,n,c,q|v ∈ [1, V ], t ∈ [1, T ], n ∈ [1, N ], c ∈ [1, C], q ∈ [1, Q]} using Eq. (4.12)

11: (v∗, t∗, n∗, c∗, q∗)← argminE

12: xv∗,t∗,n∗,c∗,q∗ ← 0

13: xv∗,t∗,n∗,c∗,q∗+δ ← 1

14: Update yv∗,t∗,n∗,q∗ , yv∗,t∗,n∗,q∗+δ, and S′

15: return X
∗,Y∗

Figure 4.8: The pseudocode of the proposed GL-ITRA algorithm.

Pseudocode. Fig. 4.8 shows the pseudocode of the proposed GL-ITRA algorithm.

Lines 1–3 initialize Y∗ and compile X∗ using the PC-LBA or PC-GBA algorithms. Lines

4–6 set yv,t,n,q according to xv,t,n,c,q. Line 7 initializes the current storage size S ′. Lines

9–14 greedily select the tile to adjust its QP value according to Eq. (4.12) iteratively until

the required storage space S ′ fits the storage limit S. Lines 12–14 update X∗ and Y∗, and

the current required storage space. Line 15 returns the decisions X∗ and Y∗.

Lemma 7. The GL-ITRA algorithm runs in time O(V TNC(log V TNC)Q
δ
) with space

complexity of O(V TNC).

GL-ITAA Algorithm. We propose a simplified greedy algorithm for lower time and

space complexity. In particular, we assume that the storage space is uniformly assigned

6ǫv,t,n,c,q is undefined when yv,t,n,q = 0, which is not an issue because the term is never considered in

the algorithm.
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to all videos and the probabilities of videos (wv
v) are equal. The global optimization

problems of individual videos are then decoupled and can be independently solved.

7: Sv ←
S
V
, ∀v = 1, 2, · · · , V

8: for v ← 1 to V do

9: S′ ←
∑T

t=1

∑T
n=1

∑Q
q=1

rv,t,n(q)yv,t,n,q

10: while S′ > Sv do

11: E← {ǫv,t,n,c,q|t ∈ [1, T ], n ∈ [1, N ], c ∈ [1, C], q ∈ [1, Q]} using Eq. (4.12)

12: (t∗, n∗, c∗, q∗)← argminE

13: xv,t∗,n∗,c∗,q∗ ← 0

14: xv,t∗,n∗,c∗,q∗+δ ← 1

15: Update yv,t∗,n∗,q∗ , yv,t∗,n∗,q∗+δ, and S′

16: return X
∗,Y∗

Figure 4.9: The pseudocode of the proposed GL-ITAA algorithm. Note that lines 1–6 are

identical to those in Fig. 4.8 and thus are omitted.

Pseudocode. The pseudocode of GL-ITAA differs from GL-ITRA (in Fig. 4.8) only

from line 7, which is presented in Fig. 10. Line 7 initializes the storage limit Sv for each

video v. Lines 8–15 greedily adjust the QP values of the selected tiles for each video

v. Line 16 returns the X∗ and Y∗ aggregated from the decision of each video. Because

the optimization problems of individual videos can be independently solved, its time and

space complexities are O(V TNC(log TNC)Q
δ
) and O(TNC).

4.6 Evaluations

Table 4.3: The Comparisons among Ours and Relevant Algorithms

Method Phase Problem Objective Constrains
Inputs Tile

Qualities

per Segment

Solution

ApproachVideo

Model

Viewing

Prob.

Client

Dist.

Our Algorithms Production
Optimal

laddering

Viewed distortion

minimization

Bandwidth,

storage space
X X X Multiple

Lagrangian, ILP,

and Greedy

Ozcinar et al. [160]

(ISM)
Production

Optimal

laddering

Overall distortion &

cost minimization

Bandwidth,

storage space,

min. bitrate gap

X X Single ILP

Chakareski et al. [28]

(ICC)
Delivery Per-class

Viewed distortion

minimization
Bandwidth X X Multiple

Convex

Optimization

Corbillon et al. [36]

(MM)
Delivery Per-class

Viewed quality

maximization

Bandwidth,

max. bitrate gap
X Multiple Heuristic

We compare our proposed algorithms against the state-of-the-art ones through exten-

sive experiments in this section.
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4.6.1 Implementations

Table 4.3 summarizes our algorithms and the state-of-the-art algorithms. In this table,

Ozcinar et al. [160] and our algorithms solve the optimal laddering problem in the pro-

duction phase, while other algorithms only solve the per-class optimization problem in the

delivery phase. Furthermore, the per-class optimization algorithms (Corbillon et al. [36]

and Chakareski et al. [28]) do not consider the client distribution. In addition, Corbil-

lon et al. [36] assume that all tiles have the same complexity levels and do not take video

models into account. Besides, the other optimal laddering algorithm (Ozcinar et al. [160])

does not consider the viewing probability of each tile. Compared to the abovementioned

algorithms [28,36,160], our algorithms are the only ones that consider all three features:

video models, viewing probability, and client distribution.

We have implemented our proposed algorithms and three state-of-the-art algorithms [28,

36,160] for evaluations and comparisons. Note that we use Python for implementations as

much as we can. Certain optimization problems, however, can be efficiently solved with

specialized solvers that are not written in Python. For example, cvx [67] and CPLEX [81]

are tailored for solving convex optimization and ILP problems, respectively. Similarly,

MATLAB [131] supports optimization problems with symbolic variables. We opt to call

these specialized solvers from Python rather than reimplementing them, in order to under-

stand the performance achieved by real-life implementations. In particular, we use MAT-

LAB [131] and CPLEX [81] to implement PC-LBA’s QP optimizer and optimal rounding

algorithm, respectively. We present the detailed implementations of the state-of-the-art

algorithms in the following.

• Per-class optimization algorithms:

– Chakareski et al. [28] (ICC) formulate the tile quality selection problem into

an ILP problem and propose to solve it using convex optimization. We use

cvx [67] to implement this algorithm.

– Corbillon et al. [36] (MM) propose a heuristic algorithm for bitrate allo-

cation within a 360◦ video [215]. Their algorithm can be extended for tiled

videos by classifying tiles into foreground and background tiles. Their clas-

sification [215] is based on the ground truth of the user viewport, which is

impractical because of the network latency. Therefore, we use 25 percentile

of viewing probability as the threshold for the classification7. A 3.5 ratio of

maximum bitrate gap between the maximum surface bitrate and minimum

surface bitrate is set following the recommendation in their paper. Each tile is

7We also tried 50 and 75 percentile and observed similar results, which are left out for clarity.
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allocated the bitrate proportional to the area scaling factor an. We use Python

to implement this algorithm.

• Optimal laddering algorithms:

– Ozcinar et al. [160] (ISM) formulate the optimal laddering problem into an

ILP problem without proposing any efficient algorithms. In addition to the

storage limit, they also consider different resolutions and introduce a 1.2 ratio

of minimum bitrate gap between any two adjacent representations. We use

CPLEX to implement this algorithm.

We adopt the same video models in Sec. 4.2.2 for all algorithms for fair comparisons.

4.6.2 Setup

Parameters, traces, and videos. Several system parameters are varied in our experi-

ments. We fit the bandwidth CDF curve following Cisco’s forecast on 2019 fixed broad-

band bandwidth in North America [33]. If not otherwise specified, we select the band-

width classes in {3.12, 4.68, 7.02, 10.52, 15.78, 23.67, 35.51, 53.28, 79.91, 119.87}

Mbps, which is geometric progression with 1.5 times that covers the bandwidth range of

the bandwidth CDF curve. Besides, we adopt the smallest step size of 1 for optimal over-

all distortion. Such fine-grained step size results in slightly longer running time, which

however is insignificant (up to 7% in our experiments) compared to the video encoding

time. We randomly select 10 users from the 50 users in a public dataset [123] to evaluate

the performance of all algorithms. The remaining 40 users are used to derive the viewing

probability for fair comparisons. Each selected user watches six 1-min videos. The videos

are classified into three categories:(i) Computer-Generated, Fast-Paced (CG-FP), (ii) Nat-

ural Image, FP (NI-FP), and (iii) NI, Slow-Paced (NI-SP). Two videos are selected from

each video category at a resolution of 3840×1920 with 6×4 tiles; 6×4 tiles have been

shown to achieve the best tradeoff between viewport flexibility and bitrate overhead [66],

but other numbers of tiles can also be used with our proposed solutions. The considered

encoding QPs are in [1,51] if not otherwise specified. Besides, we take the number of

views of the considered videos on YouTube as the video popularity in the evaluation.

For example, the most popular Hog Rider and Mega Coaster account for the two highest

ratios, which are about 38.69% and 32.36%, respectively.

For conservative comparisons, we let ISM take additional resolutions in {2560×1280,

1920×960} into consideration. Because the production server has limited memory, the

ISM algorithm can only consider a QP step of 5 in [1,51] without exceeding a memory

consumption of 12 GB. Besides, the ISM algorithm tends to terminate after many days,
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and we set a practical time limit of 2 hours for each video, which is more than 3 times the

average running time of our algorithms.
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Figure 4.10: The overview of our evaluation testbed.

Testbed. We built a real streaming testbed following the one implemented in Yen et

al. [226]. The testbed is illustrated in Fig. 4.10. We set up two Intel i7 workstations with

16 GB RAM running Linux. One of them contains both the production and streaming

servers and the other one runs the client. The two workstations are directly connected to

each other with a GigE network cable. We employ tc [16] in Linux to throttle the network

bandwidth. On the server, we adopt Kvazaar [204] as the tiled segment encoder to encode

the videos. We use H2O [45] as the HTTP server to store the representations following

the decisions from the encoding ladder optimizer. On the client, we use a Python-based

DASH client, AStream [95] as the 360◦ video player. Besides, the status, such as through-

put and stalls, and the received representations are logged for further analysis.

We have implemented an ABR algorithm [164] designed for 360◦ video streaming in

the player8. Our implemented ABR algorithm performs viewport prediction based on the

user’s previous orientations. The scene is split into three parts: (i) viewport, which is the

predicted user’s viewport, (ii) extended area, which is 30◦ outside the predicted viewport,

and (iii) background, which is the remaining tiles of the scene. The ABR algorithm

first allocates the lowest representation to each part, then allocates the highest affordable

representation to the viewport. The residual bandwidth is allocated to the extended area,

followed by the background. To accommodate some background traffic, we instruct the

ABR algorithm to set the available bandwidth at 70% of the measured throughput.

We evaluate the results using the following metrics:

• Viewing quality. We consider V-PSNR [228], V-SSIM, and V-VMAF, which es-

sentially are the PSNR [116], SSIM [29], and VMAF [142] in the HMD viewports.

The computation of V-VMAF is similar to that in Ozcinar et al. [159]. Because

V-SSIM and V-VMAF are not pixel-wise metrics, we cut each circle viewport9 into

8Other ABR algorithms in the literature can be adopted in our work as well.
9Our HMD (Oculus DK2) is measured to have a circle viewport [50].
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its inscribed square when computing them. We believe the negative impacts of re-

moving small areas close to the viewport borders are insignificant as they are far

away from the viewport center.

• Bandwidth utilization. The ratio between the streamed bitrate to the total band-

width.

• Number of stalls. The total number of stalls of the algorithms throughout each

1-min playout.

• Running time. The consumed time of the algorithms for determining the encoding

ladder.

• MPD overhead. The ratio between the size of the MPD file (meta-data) and the

total streamed data in each streaming session.

In the following sections, we first evaluate the per-class optimization algorithms in

terms of distortion and viewing quality. After that, we conduct extensive experiments on

the testbed to evaluate the performance of optimal laddering algorithms, which solve the

global optimization problem. This is followed by a summary of our key findings. The

results are reported with a 95% confidence interval plotted as an error bar.
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Figure 4.11: Expected distortion for different bandwidths: (a) CG-FP, (b) NI-FP, and (c)

NI-SP.

4.6.3 Per-Class Optimization Results

Our proposed PC-LBA and PC-GBA algorithms effectively offer lower expected dis-

tortion. Fig. 4.11 plots the expected distortion under different bandwidth levels for dif-

ferent video categories, which is computed with Eq. (4.4a). This figure shows that our

proposed algorithms effectively reduce the expected distortion compared to other state-

of-the-art algorithms. ICC sometimes (around 1
3

of the time) fails to find the solutions
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Figure 4.12: The viewing quality for different bandwidths: (a) V-PSNR, (b) V-SSIM, and

(c) V-VMAF.

CG-FP NI-FP NI-SP
0

20

40

60

80

100

Figure 4.13: The view-

ing quality of different

video categories.

Table 4.4: Maximum

and Average of Qual-

ity Improvement in V-

VMAF Compared to

State-of-the-Art Algo-

rithms

PC-LBA

State-of-the-Art Avg. Max.

ICC 22.57 50.19

MM 1.55 24.82

PC-GBA

State-of-the-Art Avg. Max.

ICC 23.85 52.17

MM 2.83 26.35

Table 4.5: The Average Per-

Segment Running Time of

PC-LBA and PC-GBA

Algorithm PC-LBA PC-GBA

Component
QP

Optimizer

Optimal

Rounding

Algorithm

Total Total

Time (s) 73.8315 44.6170 118.4485 0.1074

using cvx, and thus results in the highest expected distortion across all videos. In con-

trast, our PC-LBA algorithm is a customized algorithm solving a convex programming

problem for low distortion. The greedy PC-GBA algorithm also achieves comparable

distortion to that of the PC-LBA algorithm. MM is a heuristic algorithm that results in

slightly higher distortion compared to our algorithms. Across different video categories,

videos in NI-SP result in lower expected distortion in general. This is because NI-SP

videos contain simpler scenes and slower movements compared to other videos, which

lead to higher coding efficiency.

Our proposed algorithms outperform others more in viewing quality at lower

bandwidth. We plot the viewing quality of all videos in the user’s viewport in Fig. 4.12.

All three quality metrics demonstrate the same trend: our proposed algorithms deliver

higher viewing quality than others in most bandwidth classes, especially at lower band-

widths. We emphasize that the performance of low bandwidth classes is more crucial, as

clients in these classes are more vulnerable to inferior viewing experience. Because three

viewing quality metrics show similar trends, we only report the quality in V-VMAF in the
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Figure 4.14: The bandwidth utilization across 10 users watching a sample video at storage

limit S=1200 MB: (a) over time and (b) CDF.
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Figure 4.15: CDF of

viewing quality across

different viewers and

videos.
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quality under different

storage limits.
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Figure 4.17: The MOS

scores under different

storage limits.

rest of the chapter.

We next plot the overall viewing quality of different video categories in Fig. 4.13.

This figure shows the merits of our algorithms, over ICC and MM algorithms. It also

shows that the videos from NI-SP have higher viewing quality for all algorithms, which

is consistent with Fig. 4.11. We report the average and maximum improvements of our

algorithms over the state-of-the-art algorithms in Table 4.4. This table illustrates that our

PC-LBA averagely outperforms ICC and MM by 22.57 and 1.55 in V-VMAF. Moreover,

PC-GBA outperforms ICC and MM by 23.85 and 2.83. In fact, the improvements of PC-

GBA are as high as 52.17 and 26.35. From the figures, we observe that MM achieves

reasonably good viewing quality. However, it only supports a single video and a single

bandwidth class. In contrast, we also study the optimal laddering problem that takes client

distribution and storage limit into consideration, which will be evaluated in Sec. 4.6.4.

PC-GBA achieves even better performance than PC-LBA. Our evaluation results

show that PC-GBA offers better viewing quality than PC-LBA (Figs. 4.11–4.13). That

is, simultaneously limiting multiple out-of-range QPs into the practical range seriously

degrades the viewing quality. In contrast, PC-GBA iteratively and gradually adjusts the
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Figure 4.19: The view-

ing quality of GL-ITRA

and GL-ITAA.

Table 4.6: The Ratio of

the Meta-Data in DASH

for Our Proposed Algo-

rithm

Storage Limit Meta-Data Video Data

Unlimited 0.112% 99.888%

1200 MB 0.115% 99.885%

1000 MB 0.118% 99.882%

800 MB 0.123% 99.877%

600 MB 0.133% 99.867%

400 MB 0.152% 99.848%

QP values in a discrete manner, which finds better discrete solutions. We report their

average computing time for each segment in Table 4.5. This table shows that PC-GBA

runs faster, which is due to the much higher complexity of the Lagrangian multiplier

approach in PC-LBA. Because of the better performance of PC-GBA compared to PC-

LBA in terms of both viewing quality and computing time, we adopt PC-GBA as the

per-class optimization algorithm in the rest of this chapter.

4.6.4 Optimal Laddering Results

We use our real testbed to evaluate our optimal laddering algorithms compared to the

ISM algorithm. We throttle the network bandwidth of users following the distribution

in Cisco’s report [33]. Note that the ISM algorithm does not take video popularity into

consideration, and thus we only compared it against GL-ITAA, where the storage space

limit is evenly divided among all videos.

Our testbed effectively performs adaptive streaming over the network. Fig. 4.14(a)

plots the bandwidth utilization across 10 users watching a sample video over time. This

figure reveals that our testbed effectively runs the ABR algorithm at the client side, which

achieves around 60% of bandwidth utilization after 4 seconds. Besides, Fig. 4.14(b) plots

the CDF of the bandwidth utilization indicating that most of the bandwidth utilization is

about 65%, which is quite close to the target 70% of the available bandwidth. Throughout

the experiments, we observe no stall events.

Our proposed GL-ITAA algorithm outperforms the state-of-the-art algorithm.

We then conduct experiments to evaluate the performance under different storage limits.

Fig. 4.15 plots the CDF of the bandwidth utilization achieved by GL-ITAA across 10

users watching 6 videos under different storage limits. This figure shows that the smaller
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storage limits result in lower bitrates of some representations, which in turn lead to lower

bandwidth utilization. This demonstrates the effectiveness of our GL-ITAA algorithm.

We next compare the overall viewing quality with the ISM algorithm. Fig. 4.16 plots

the viewing quality under different storage limits. This figure shows that our proposed

GL-ITAA algorithm outperforms the ISM algorithm under all considered storage limits.

Moreover, our algorithm outperforms the ISM algorithm by larger margins as the storage

limit decreases. In particular, our GL-ITAA algorithm averagely outperforms the state-

of-the-art ISM algorithm by 43.14 in V-VMAF when the storage limit is as low as 400

MB per video. This indicates that our GL-ITAA algorithm scales well under different

storage limits. This can be attributed to the fact that our GL-ITAA algorithm effectively

reduces the required storage by cutting the bitrate allocated to the less important tiles that

are rarely viewed.

To confirm that our proposed algorithm outperforms ISM in terms of QoE, we have

conducted a user study to quantify the real user experience. We randomly selected a

user trace watching 6 videos and generated the viewport videos using the trace. We then

recruited 12 subjects to watch these viewport videos in a random order and give overall

quality scores from the [1,5] scale. Fig. 5.8 plots the MOS with 95% confidence intervals

from different algorithms under 400 and 800 MB storage limits. In this figure, GL-ITAA

outperforms ISM across all storage limits. Besides, the p-value from the ANOVA test

is 0.0029 (< 0.05), which shows the statistical significance. As an example, GL-ITAA

outperforms ISM by more than 2 points (out of a range of 4 points) in MOS at 400 MB

storage limit. The above observations are consistent with our earlier observations on

Fig. 4.16, which are made in V-VMAF. That is, we found that V-VMAF closely follows

the user experience derived from time-consuming and expensive user studies. Hence, we

use V-VMAF as the quality metric in the rest of this chapter.

We then consider C ∈ {3, 5, 10}, where the considered bandwidths are {3.12, 10.52,

35.52} Mbps and {3.12, 7.02, 15.78, 35.51, 79.91} Mbps for C = 3 and 5, respectively.

We report the results across all videos and 10 users with storage limit S = 600 MB per

video in Fig. 4.18. This figure shows the good scalability for our algorithm on different

numbers of bandwidth classes. In particular, our GL-ITAA algorithm averagely outper-

forms the ISM algorithm by 8.2 in V-VMAF for different numbers of bandwidth classes.

In summary, our GL-ITAA algorithm delivers higher viewing quality under various con-

ditions. Next, we conducted experiments to see whether GL-ITRA can further improve

the viewing quality.

GL-ITAA runs more efficiently while offering similar viewing quality compared

to GL-ITRA. Last, we introduce diverse video popularity and compare the performance

of GL-ITAA and GL-ITRA. In this experiment, we let each user watch 1 of the 6 con-
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sidered videos according to the video popularity. Fig. 4.19 plots the viewing quality of

both the GL-ITRA and GL-ITAA under different storage limits. This figure shows that

the GL-ITRA and GL-ITAA achieve almost the same viewing quality regardless of the

storage limits. This is because both algorithms effectively reduce the resource allocated

to the tiles with lower viewing probability. However, the running time of the GL-ITRA

is at least an order of magnitude longer than the GL-ITAA, while GL-ITAA averagely

spends 39 minutes across different storage limits for each video. Moreover, it is suit-

able in practical usage scenarios, where new videos are gradually added to the streaming

servers without: (i) recomputing the optimal encoding ladders and (ii) re-encoding the

new representations of the existing videos. Last, GL-ITAA is easier to be parallelized and

thus is more scalable. Hence, we recommend GL-ITAA for solving the optimal laddering

problem.

Our proposed algorithms incur small meta-data overhead. Last, we measure the

overhead of our proposed algorithms. In particular, our adopted per-tile-per-segment

video models occupy averagely 53.33 KB storage space per 1-min long video. This is

equivalent to about 0.013% overhead at 400 MB storage limit. We give the average ratio

between the size of the meta-data and the total steamed data under different storage limits

in Table 4.6. This table shows that the meta-data overhead increases as the storage limit

decreases, but it never exceeds 0.2% of the total data size.

4.6.5 Summary of the Key Findings

The following summarizes the findings of the evaluation results.

• Per-class optimization. Our PC-LBA and PC-GBA algorithms optimize the view-

ing quality of the clients in the same bandwidth class. Our evaluation results show

that PC-LBA and PC-GBA outperform ICC and MM by up to 52.17 and 26.35 in

V-VMAF, respectively. We recommend PC-GBA for per-class optimization for its

higher viewing quality and shorter running time.

• Global optimization under assumptions. Our GL-ITAA algorithm solves a sim-

plified global optimization problem for optimal laddering. The goal is to optimize

the overall viewing quality of the clients, where each video has a pre-determined

storage limit. Our evaluation results show that GL-ITAA outperforms ISM by up

to 43.14 in V-VMAF when the storage limit is 400 MB per video. Moreover, our

GL-ITAA delivers better viewing quality and runs faster than ISM. Our GL-ITAA

scales well in terms of both storage limits and number of bandwidth classes.

• Global optimization. Our GL-ITRA algorithm solves the most general optimal

laddering problem, which jointly optimizes the overall viewing quality of the clients
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across multiple videos. To the best of our knowledge, none of the existing work in

the literature addresses the same problem. While our results show that both GL-

ITRA and GL-ITAA achieve high viewing quality, GL-ITAA runs much faster than

GL-ITRA.

In summary, we recommend GL-ITAA and PC-GBA for solving the optimal laddering

problem, which has not been rigorously solved in the literature.

4.7 Discussions

Next, we discuss the performance gap of our algorithms. We also consider an alternate

objective function for better fairness among clients.

4.7.1 Comparisons with the Optimal Solution

We compare our proposed algorithms to the optimal solution (OPT), where OPT directly

solves the ILP problem in Eq. (4.3). We implement OPT using CPLEX. Because OPT

may take a prohibitively long time to complete, we only consider smaller problems. In

particular, we consider C = 3, where the bandwidths are {3.12, 10.52, 35.52}Mbps. We

let T = 15, where each video plays for 15 seconds.
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Figure 4.20: The video quality under different storage limits: (a) expected distortion and

(b) V-VMAF.

We first vary the storage limits S = {40, 50, 60} MB to compare our proposed GL-

ITAA against OPT algorithms. We compute the average performance across all 6 videos

and report it along with 95% confidence intervals. Figs. 4.20(a) and 4.20(b) plot the

expected distortion and V-VMAF under different storage limits, respectively. These fig-

ures show that V-VMAF generally follows the trends of the expected distortion. Besides,

GL-ITAA and OPT result in extremely close expected distortion and video quality. In par-

ticular, the gaps between GL-ITAA and OPT are less than 1.5 in V-VMAF at most when
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Figure 4.21: The video quality under different video categories: (a) expected distortion

and (b) V-VMAF.

Table 4.7: The Ratio of The Running Time of GL-ITAA to OPT

Storage

Limit

Mega

Coaster

Roller

Coaster

Shark

Shipwreck

Hog

Rider

Chariot

Race

SFR

Sport
Average

60 MB 6.10% 0.09% 0.60% 1.70% 5.21% 5.75% 3.24%

50 MB 3.61% 0.21% 0.58% 3.12% 7.28% 8.09% 3.83%

40 MB 4.62% 0.43% 0.06% 5.47% 4.00% 11.73% 4.39%

the storage limit is 40 MB. We further plot the results under different video categories

in Fig. 4.21. This figure is consistent with the observations from Fig. 4.20: GL-ITAA

achieves comparable video quality with OPT. Moreover, this figure indicates that videos

from CG-FP have inferior video qualities in both the expected distortion and V-VMAF

compared to other video categories. This may be attributed to the high texture complexity

of the videos from CG-FP. However, the gap between GL-ITAA and OPT remains less

than 3 in V-VMAF. Table 4.7 reports the ratio of the running time of GL-ITAA to that of

OPT with different storage limits. This table shows the merits of our proposed algorithm:

It achieves at least 97% of the viewing quality while consuming at most 11.73% of the

running time compared to OPT. Note that as the problem size increases, the running time

difference between GL-ITAA and OPT increases exponentially.

4.7.2 Fairness

In addition to minimizing the overall viewing distortion over a broad range of client

classes, we discuss the fairness problem in this section. In particular, we consider the

following two approaches for better fairness.

• Max-min fairness [18] is an objective to maximize the minimum allocated resource

for any client class. In particular, it is achieved when any feasible allocation results

in the resource decrease from other client classes with equal or smaller allocation.
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• Jain’s fairness index [91] is an index to rate the fairness of a set of values as

J(f1, f2, · · · , fN) =
(
∑N

n=1 fn)
2

N
∑N

n=1 f
2
n

= 1
1+ν̂f

2 , where ν̂f is the coefficient of variation.

We apply the max-min fairness and Jain’s fairness index to the distortion term of our for-

mulation. We discuss the applicability of our algorithms to solve the revised formulations

in the following.

1) Max-min Fairness

To apply the max-min fairness to our formulation in Eq. (4.3), we change the objective

function Eq. (4.3a):

min max
1≤c≤C,1≤v≤V

Dv,c, (4.13)

where Dv,c =
∑V

v=1

∑C

c=1 fv,c
∑T

t=1

∑N

n=1 pv,t,nan
∑Q

q=1 dv,t,n(q)xv,t,n,c,q. This revised

objective minimizes the maximum distortion perceived by each client class c watching

video v, where 1 ≤ c ≤ C and 1 ≤ v ≤ V . We apply our divide-and-conquer ap-

proach on the revised formulation. Note that the revised formulation can be split into the

same subproblems as out per-class optimization in Eq. (4.4), which minimizes the view-

ing distortion of each client class c watching video v under the bandwidth constraint bc. In

particular, the bandwidth of each class c is restricted to bc, thus the minimum achievable

distortion is restricted through the per-class optimization. Hence, our revised formulation

can be solved by both the original PC-LBA and PC-GBA in the per-class optimization

stage. Then, we slightly change the global optimization algorithms for the revised objec-

tive function Eq. (4.13) as follows. The revised global optimization algorithms iteratively

increase the QP of the tile having the lowest ǫv,t,n,c,q, where (v, c) = argminDv,c, by a

step size δ until the consumed storage space is lower than the storage limit S. By doing

so, our proposed revised global optimization algorithm tries not to increase the objective

function value max1≤c≤C,1≤v≤V Dv,c given by the per-class optimization algorithm while

meeting the storage limit.

Fig. 4.22 shows the pseudo code of the algorithm revised from GL-ITRA to apply

the max-min fairness. Lines 1–3 initialize Y ∗ and compile X∗ using the PC-LBA or PC-

GBA algorithms. Lines 4–6 set yv,t,n,q according to xv,t,n,c,q. Line 7 initializes the current

storage size S ′. Lines 9–15 greedily select the tile to adjust its QP value iteratively until

the required storage space S ′ reaches the storage limit S. In particular, line 10 determines

the v∗ and c∗ for the quality fairness among client classes watching different videos. Lines

13–15 update X∗ and Y ∗, and the current required storage space. Line 16 returns the

decisions X∗ and Y ∗.
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1: Initialize Y
∗ = {yv,t,n,q = 0}

2: // Per-class optimization

3: X∗ = {X∗
v,c|∀v, c} ← PC-LBA or PC-GBA

4: for v ← 1 to V , t← 1 to T , n← 1 to N ,q ← 1 to Q do

5: if
∑C

c=1
xv,t,n,c,q ≥ 1 then

6: yv,t,n,q ← 1

7: S′ ←
∑V

v=1

∑T
t=1

∑T
n=1

∑Q
q=1

rv,t,n(q)yv,t,n,q

8: // Global optimization

9: while S′ > S do

10: (v∗, c∗)← argmin1≤v≤V,1≤c≤C Dv,c

11: Ev∗,c∗ ← {ǫv∗,t,n,c∗,q|t ∈ [1, T ], n ∈ [1, N ], q ∈ [1, Q]} using Eq. (4.12)

12: (t∗, n∗, q∗)← argminEv∗,c∗

13: xv∗,t∗,n∗,c∗,q∗ ← 0

14: xv∗,t∗,n∗,c∗,q∗+δ ← 1

15: Update yv∗,t∗,n∗,q∗ , yv∗,t∗,n∗,q∗+δ, and S′

16: return X
∗,Y∗

Figure 4.22: The pseudocode of the revised GL-ITRA algorithm for max-min fairness.

2) Jain’s Fariness Index

To apply the Jain’s fairness index to our formulation in Eq. (4.3), we change the objective

function Eq. (4.3a) to:

max
(
∑V

v=1

∑C

c=1Dv,c)
2

V
∑V

v=1 C
∑C

c=1D
2
v,c

= max
1

1 + ν̂D
2 , (4.14)

where ν̂D is the coefficient of variation of the set of Dv,c. This revised objective maxi-

mizes the Jain’s fairness index for the perceived distortion of each client class c watching

video v, where 1 ≤ c ≤ C and 1 ≤ v ≤ V . We apply our divide-and-conquer approach on

the revised formulation. The revised formulation can also be split into the same subprob-

lems as our per-class optimization in Eq. (4.4), which minimizes the viewing distortion

of each client class c watching video v under the bandwidth constraint bc. Hence, our

revised formulation can be solved by both the original PC-LBA and PC-GBA in the per-

class optimization stage. Then, we slightly change the global optimization algorithm for

the revised objective function in Eq. (4.14). In particular, our revised global optimiza-

tion algorithm iteratively increases the QP of the tile having the lowest ǫv,t,n,c,q, where

(v, c) = argminDv,c, by a step size δ until the consumed storage space is lower than the

storage limit S. By doing so, the revised global optimization algorithm always slightly

increases the distortion of the class with the lowest distortion. This makes ν̂D monotoni-

cally decreasing if and only if ν̂δ ≤ ν̂D, where ν̂δ is the resulting coefficient of variation

after increasing the QP value of the selected tiled segment by δ. The pseudo code of the
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revised algorithm applying Jain’s fairness index is basically the same as the one applying

max-min fairness, which is given in Fig. 4.22.

4.8 Proofs of Lemmas

Lemma 1. The optimal laddering problem is NP-hard.

The optimal laddering problem can be reduced from the NP-hard Multiple Knapsack

Problem (MKP). The MKP problem puts as many objects as possible into multiple knap-

sacks with various capacities to maximize the total value. If we let V = 1, T = 1, and

S = ∞, we can map knapsacks to each class’s available bandwidth and objects to tiled-

segments without the storage limit. The value and the weight of each tiled-segment are

the reciprocal of expected distortion ( 1
dv,t,npv,t,nan

) and bitrate (rv,t,n), respectively. In this

way, we reduce the MKP problem to our optimal laddering problem in polynomial time.

Lemma 2. When the power function in Eq. (4.1) is adopted as the distortion model, the

objective function in Eq. (4.5a) is convex.

Proof. Note that a multivariate function is convex if it is twice differentiable and its
Hessian matrix is positive semidefinite. We observe that αd

v,t,n ≥ 0, βd
v,t,n ≥ 1, and

γd
v,t,n ≥ 0. We verify the second derivative of the objective function (Eq. (4.5a))

∂ED
v,t,c

∂2κv,t,n,c

as:
αd
v,t,nβ

d
v,t,n(β

d
v,t,n − 1)κ

βd
v,t,n−2

v,t,n,c pv,t,nan, ∀n ∈ [1, N ] (4.15)

The sphere area an is positive constant and viewing probability pv,t,n are non-negative

constant. This shows that the objective function is second differentiable and
∂ED

v,t,c

∂2κv,t,n,c
≥ 0

according to the range of αd
v,t,n and βd

v,t,n. We then verify the Hessian matrix of the
expected distortion:

HD =




∂ED
v,t,c

∂2κv,t,1,c

∂ED
v,t,c

∂κv,t,1,c∂κv,t,2,c
· · ·

∂ED
v,t,c

∂κv,t,1,c∂κv,t,N,c

∂ED
v,t,c

∂κv,t,2,c∂κv,t,1,c

∂ED
v,t,c

∂2κv,t,2,c
· · ·

∂ED
v,t,c

∂κv,t,2,c∂κv,t,N,c

· · · · · · · · · · · ·

∂ED
v,t,c

∂κv,t,N,c∂κv,t,1,c

∂ED
v,t,c

∂κv,t,N,c∂κv,t,2,c
· · ·

∂ED
v,t,c

∂2κv,t,N,c




=




∂ED
v,t,c

∂2κv,t,1,c
0 · · · 0

0
∂ED

v,t,c

∂2κv,t,2,c
· · · 0

· · · · · · · · · · · ·

0 0 · · ·
∂ED

v,t,c

∂2κv,t,N,c
.




(4.16)

We know that if the eigenvalues of a Hermitian matrix are non-negative, then the

Hessian matrix is positive semidefinite. Let λD be the eigenvalue of HD. Let y be a

non-zero vector. According to the property of eigenvalue:

HDy − λDy = 0; (4.17a)

(HD − λDI)(y) = 0. (4.17b)
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Note that y is a non-zero vector, which indicates that HD − λDI = 0:

H
D

− λDI =

























∂ED
v,t,c

∂2κv,t,1,c
− λD 0 · · · 0

0
∂ED

v,t,c

∂2κv,t,2,c
− λD · · · 0

· · · · · · · · · · · ·

0 0 · · ·
∂ED

v,t,c

∂2κv,t,N,c
− λD

























(4.18a)

(
∂ED

v,t,c

∂2κv,t,1,c

− λD)(
∂ED

v,t,c

∂2κv,t,2,c

− λD) · · · (
∂ED

v,t,c

∂2κv,t,N,c

− λD) = 0 (4.18b)

λD =
∂ED

v,t,c

∂2κv,t,1,c

,
∂ED

v,t,c

∂2κv,t,2,c

, · · · ,
∂ED

v,t,c

∂2κv,t,N,c

. (4.18c)

Since
∂ED

v,t,c

∂2κv,t,n,c
= ∂dv,t,n

∂2κv,t,n,c
pv,t,nan ≥ 0, the eigenvalue of HD are non-negative values and

HD is then proved to be positive semidefinite. This shows that our objective function

(Eq. (4.5a)) is a convex function.

Lemma 3. When the exponential function in Eq. (4.2) is adopted as the bitrate model, the

constraint in Eq. (4.5b) is convex.

Proof. Similar to Lemma 2, we first verify the second derivative for each κn in

Eq. (4.5b):
∂ER

v,t,c

∂2κv,t,n,c

= αr
v,t,n(β

r
v,t,n)

2eβ
r
v,t,nκv,t,n,c , ∀n ∈ [1, N ]. (4.19)

Eq. (4.19) shows that the constraint function is second differentiable and
∂ER

v,t,c

∂κ2
v,t,n,c

≥ 0

according to the range of αr
v,t,n and βr

v,t,n, where αr
v,t,n ≥ 0 and βr

v,t,n ≤ 0. We then verify
the Hessian matrix of the constraint:

HR =




∂ER
v,t,c

∂2κv,t,1,c

∂ER
v,t,c

∂κv,t,1,c∂κv,t,2,c
· · ·

∂ER
v,t,c

∂κv,t,1,c∂κv,t,N,c

∂ER
v,t,c

∂κv,t,2,c∂κv,t,1,c

∂ER
v,t,c

∂2κv,t,2,c
· · ·

∂ER
v,t,c

∂κv,t,2,c∂κv,t,N,c

· · · · · · · · · · · ·

∂ER
v,t,c

∂κv,t,N,c∂κv,t,1,c

∂ER
v,t,c

∂κv,t,N,c∂κv,t,2,c
· · ·

∂ER
v,t,c

∂2κv,t,N,c




=




∂ER
v,t,c

∂2κv,t,1,c
0 · · · 0

0
∂ER

v,t,c

∂2κv,t,2,c
· · · 0

· · · · · · · · · · · ·

0 0 · · ·
∂ER

v,t,c

∂2κv,t,N,c
.




(4.20)

Let λR be the eigenvalue of HR. We can then derive λR as:

λR =
∂ER

v,t,c

∂2κv,t,1,c

,
∂ER

v,t,c

∂2κv,t,2,c

, · · · ,
∂ER

v,t,c

∂2κv,t,N,c

. (4.21)

Thus, we found that the eigenvalue of HR is non-negative since
∂ER

v,t,c

∂2κv,t,n,c
is non-negative

values. This shows that the constraint function is a convex function as well.

Lemma 4. The Lagrangian dual function (Eq. (4.7)) constitutes a lower bound for the

objective value of any feasible solution to the Lagrangian primal problem (Eq. (4.6)). In

fact, because the strong duality holds here, the optimal solution of the Lagrangian dual

problem is also the optimal solution of the original problem.
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Proof. Let K∗
p be the optimal solution set for the primal problem. For any µ ≥ 0:

g(µ) ≥ K∗
p (4.22)

Suppose K̃p = { ˜κv,t,1,c, ˜κv,t,2,c, · · · , ˜κv,t,N,c} is a feasible solution for Eq. (4.6)). Then,

we have

µ(
N∑

n=1

rv,t,n( ˜κv,t,n,c)− bv,c)) ≤ 0. (4.23)

Eq. (4.23) shows the introduction of non-positive constraint. Therefore,

L(K̃, µ) =

N∑

n=1

dv,t,n( ˜κv,t,n,c)pv,t,nsx + µ(

N∑

n=1

rv,t,n( ˜κv,t,n,c)− bv,c)

≤
N∑

n=1

dv,t,n( ˜κv,t,n,c)pv,t,nan.

(4.24)

Then, we can have g(µ) =

inf
K
Lc(K, µ) ≤ Lc(K̃, µ) ≤

N∑

n=1

dv,t,n( ˜κv,t,n,c)pv,t,nan (4.25)

Finding the best lower bound leads to the following optimization problem:

max g(µ) (4.26a)

st : µ ≥ 0. (4.26b)

We denote the optimal solution set of the Lagrangian dual problem as K∗
d. Then we hold

the following inequality:

K∗
d ≤ K∗

p. (4.27)

To hold the equality of Eq. (4.27), which indicates the optimal solution set of the dual

problem is also the optimal solution set of the primal problem, we verify the strong duality.

Since the primal problem is a convex problem, the equality condition holds if it satisfies

Slater’s condition: there exists a feasible K̃ = { ˜κv,t,1,c, ˜κv,t,2,c, · · · , ˜κv,t,N,c} such that:

µ(
N∑

n=1

rv,t,n( ˜κv,t,n,c)− bv,c) ≤ 0. (4.28)

holds. Let r−1
v,t,n be the inverse function of the rv,t,n function, which takes bitrate as input

and outputs the corresponding QP. Let r′v,t,n = bv,c
N+α

, ∀i, where α ≥ 0. Then, the set

K = {r−1
v,t,1(r

′
v,t,n), r

−1
v,t,2(r

′
v,t,n), · · · , r

−1
v,t,N(r

′
v,t,n)} is a feasible solution that holds the in-

equality. Therefore, we can solve the original distortion minimization problem by solving

its Lagrangian dual problem (Eq. (4.7)).

Lemma 5. The PC-LBA algorithm runs in time O(T2N) with space complexity of O(N).
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Proof. The dominating time complexity occurs in lines 4 and 9: (i) line 4 solves

Lagrangian equations using Newton’s Method with O(IN3), where I is the iteration times

in Newton’s Method, and (ii) line 9 solves the ILP in O(2N). With T segments, the time

complexity of the PC-LBA algorithm is T × O(IN3 + 2N) = O(T2N). In addition, the

space complexity is O(N), as each of the N tiles records the selected QP value.

Lemma 6. The PC-GBA runs in time O(TN(logN)Q) with space complexity of O(N).

Proof. The dominating time complexity occurs in lines 5–11: (i) the while-loop starts

from line 5 iterates NQ times in the worst case and (ii) lines 7–8 update θv,t,n,c values and

find out the maximum from them, which can be managed by a max heap with O(logN)

time complexity. Accumulated with T segments, the time complexity of PC-GBA is T ×

O(N(logN)Q) = O(TN(logN)Q). Besides, the space complexity is N tiles recording

the selected QP resulting in O(N) for each segment.

Lemma 7. The GL-ITRA runs in time O(V TNC(log V TNC)Q
δ
) with space complexity

of O(V TNC).

Proof. The dominating time complexity occurs in lines 9–14: (i) the while-loop starts

from line 9 iterates V TNC Q

δ
times in the worst case and (ii) lines 10–11 update ǫv,t,n,c,q

values and find out the minimum from them, which can be managed by a min heap with

O(log (V TNC)) complexity. Collectively, the time complexity of the GL-ITRA algo-

rithm is O(V TNC(log V TNC)Q
δ
). Besides, the dominating space complexity consists

of V TNC QP values, which leads to O(V TNC).

4.9 Conclusion

We study the optimal laddering problem for tiled 360◦ video streaming to HMD view-

ers. We consider video models, viewing probability, and client distribution to maximize

the client viewing quality. We formulate the problem into an ILP problem and take a

divide-and-conquer approach to solve the problem. In particular, we decompose it into:

(i) per-class optimization for each bandwidth class and (ii) global optimization for the

overall client viewing quality optimization. We have proposed two algorithms for each of

the per-class optimization and global optimization problems. We have performed both an-

alytical analysis and conducted experiments on a real testbed to quantify the performance

of our algorithms compared to three state-of-the-art algorithms. We then recommend a

combination of the proposed algorithms to solve the optimal laddering problem, which

are the PC-GBA and GL-ITAA algorithms. The evaluation results show that our rec-

ommended algorithms outperform state-of-the-art algorithms by up to 52.17 and 26.35
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in V-VMAF in per-class optimization problem and by up to 43.14 in global optimiza-

tion problem. Moreover, our recommended algorithms scale well under different storage

limits and run efficiently.

There are some limitations in this work:

• The selection of some parameters should be systematically done. For example, the

considered bandwidth classes can be adaptively determined for further maximizing

the client viewing quality.

• The considered tiling scheme is fixed, where the tiles are of equal size. How-

ever, different content may have higher compression efficiency with different tiling

schemes, which can be intelligently determined.
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Chapter 5

Consumption Optimization: QoE

Modeling
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Figure 5.1: The overall QoE is a functions of QoE features and QoE factors. The symbols

used in this figure are detailed in Sec. 5.1.1.

After solving the resource allocation problem at both the production and delivery

phases, the key to developing a QoE-optimized 360◦ video streaming system is to de-

rive the QoE models. While there have been user studies conducted with 360◦ videos [19,

57, 74, 184, 201] and tiled 360◦ videos [186], modeling the QoE for watching tiled 360◦

videos has not been thoroughly addressed. Hence, in this chapter, we tackle the problem

of developing the QoE models for tiled 360◦ videos watched with HMDs. The compo-

sitions of the overall QoE [135, 202] are fairly complex, as illustrated in Fig. 5.1. The

overall QoE is the comprehensive user experience perceived by subjects. The QoE fea-

tures1 are nameable user experience aspects that may contribute to the overall QoE, such

as the perceived Image Quality (IQ) and CyberSickness (CS) level. The overall QoE and

1The QoE features are also known as the Key Quality Indicators (KQIs) perceived by the users in some

work in the literature, such as Varela et al. [202].
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QoE features can be considered as a function of multiple QoE factors [175], where the

QoE factors (I1, I2, · · · in Fig. 5.1) are primitive and measurable metrics. These QoE

factors can be classified into four categories [22]: (i) content factors, which determine

the reconstructed content quality, such as the encoding bitrate, (ii) human factors, which

capture human characteristics, such as his/her historical motion sickness frequency, (iii)

context factors, which describe the user’s environments or interactions [97, 138, 170],

such as head rotation speed, and (iv) system factors, which are related to hardware or ap-

plications, such as the video player. More complete lists of QoE features and factors are

introduced in Sec. 5.1.

Modeling the QoE of watching tiled 360◦ videos using HMDs is quite difficult be-

cause:

• Different from conventional videos, the behavior of individual viewers watching

360◦ videos could be quite different. This makes the viewing regions totally dif-

ferent among individual viewers, even for the same video. More precisely, the un-

controlled environments of user studies make viewer feedback collection and user

experience modeling more challenging.

• There are plenty of QoE factors contributing to the QoE features and overall QoE.

The dominating QoE factors affecting: (i) overall QoE and (ii) QoE features of

watching tiled 360◦ videos are still unknown. Hence, it is quite challenging to

model the relationship among the overall QoE, QoE features, and QoE factors.

To address these challenges, we first identified the potential QoE features and factors

that may affect the user experience of watching tiled 360◦ videos. Then, we designed and

conducted a user study to collect and investigate the QoE scores with the considered QoE

factors and features. We then derived the models for overall QoE and QoE features in

terms of both MOS and IS. Here, MOS [181] refers to the average quality scores of a set

of subjects rating an experience of watching tiled 360◦ videos using HMDs. In contrast,

IS refers to the quality scores given by each subject on his/her own experience, which is

reported to be more difficult to model [103]. Last, the dominating factor category and

factor of individual models are identified through our in-depth analysis. In this chapter,

we have built 5 (1 overall QoE + 4 QoE features2.) × 2 (MOS and IS) = 10 QoE models.

In contrast, existing studies [41, 42, 225] focus on a single MOS model (overall QoE),

which is only one-tenth of our outcomes. Besides, most studies only consider the content

factors [41, 225]. Croci et al. [42] further consider the quality metrics in the viewer’s

viewport, which are some context factors. Different from their work [41, 42, 225], we

consider comprehensive sets of content and context factors, including quality variance

2One of the QoE features cannot be modeled, which is detailed in Sec. 5.3.2
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and head rotation speed. More importantly, our work further incorporates human factors,

which, to the best of our knowledge, have never been considered in the literature.

5.1 QoE of 360◦ Tiled Videos Streamed to HMDs

We introduce the lists of QoE features and factors in this section. We note that while we

try to make the lists as complete as we can, readers certainly may come up with additional

QoE features and factors. This is not a concern, as our proposed user study design and

modeling approach are also applicable to other lists of QoE features and factors.

5.1.1 QoE Features

Table 5.1: Questionnaire of Overall QoE and QoE Features in Our User Study

Acronym Question
Lowest

Score (1)

Highest

Score (9)
Ref.

OQ How would you rate the overall quality? Awful Excellent -

IQ How would you rate the image quality? Awful Excellent [100]

FG
How would you rate the fragmentation

level?
None Severe [135, 197]

IM How would you rate the immersion level? Awful Excellent [193]

CS
How would you rate the perceived

cybersickness level?
None Severe [99, 193]

AT How would you rate the attractiveness level?
Not

Attractive
Attractive [22]

We identify possible QoE features of watching tiled 360◦ videos with HMDs by sur-

veying the QoE literature of conventional and 360◦ videos. Table 5.1 summarizes all of

the QoE features. Each QoE feature is associated with a question in the questionnaire

used for our user study. The first question is the Overall QoE (OQ) of watching the 360◦

videos. We describe the considered QoE features in the following:

• Image Quality (IQ) is the visual clarity level of video frames.

• FraGmentation (FG) is the level of artifacts due to coding and tiling. We noticed

that the blocking artifacts caused by tiling are known in the literature [208], and are

often mentioned by our subjects.

• IMmersion (IM) is the perceived level of being physically present in the video.

• CyberSickness (CS) is the experienced cybersickness level when watching the

video, which may result in dizziness and nausea.
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• ATtractiveness (AT) is the level of the video content attracting the subject. We

ask the subjects to focus on the attractiveness from the video content instead of the

video quality. Each subject only rates each video once.

We note that lower FG and CS scores indicate better user experience, while higher scores

of all other QoE features and overall QoE indicate better user experience.

5.1.2 QoE Factors

Table 5.2: The Considered QoE Factors

Cat. Factor Definition Intuition

C
o
n
te

n
t

Bitrate The total encoding bitrate Different encoding bitrates cause differ-

ent levels of distortion

Complexity SI/TI quantify the spatial/temporal com-

plexity [87]

Scene complexity captures the video

characteristics

Motion The sum of the optical flow [126] from

pixels of two adjacent frames

Higher motion level may cause more cy-

bersickness

Video Quality Average PSNR/SSIM/VMAF Objective metrics capture the distortion

level

Video Quality

Variance

Standard deviation (std.) of

PSNR/SSIM/VMAF among video

tiles

Quality variance among tiles may lead to

unpleasant artifacts

H
u
m

an

Gender The gender of the subject Female subjects may be more vulnerable

to cybersickness [185]

Historical Mo-

tion Sickness

The motion sickness frequency and level

in the past

Subjects who suffer from more motion

sickness may be more vulnerable to mo-

tion sickness

Avg.

Head/Gaze

Rotation Speed

The head/gaze rotation speed (in yaw and

pitch) of a subject

The rotation speed may influence a sub-

ject’s sensitivity to content

C
o
n
te

x
t

Head/Gaze Ro-

tation Speed

The head/gaze rotation speed (in yaw and

pitch)

The rotation speed may influence a sub-

ject’s sensitivity to content

Gaze Complex-

ity

TI/SI weighted by the fraction of the gaze

region

The complexity of the gaze region may

influence the perception

Gaze Motion Optical flow weighted by the fraction of

the gaze region

The motion level of the gaze region may

influence the perception

Gaze Video

Quality

PSNR/SSIM/VMAF weighted by the

fraction of the gaze region

Objective metrics capture the distortion

level of the gaze region

Gaze Quality

Variance

Std. of PSNR/SSIM/VMAF among the

tiles in the gaze region

Different tile qualities in the gaze region

may cause an unpleasant experience

We pick and summarize some crucial QoE factors of watching tiled 360◦ videos in

the content, human, and context categories3 in Table 5.2. Some content factors are fairly

3We focus on a 360◦ video streaming system implemented by us, which runs on a given hardware

platform to make the size of our user study manageable.
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popular in the literature, such as video complexity in Temporal Information (TI) and Spa-

tial Information (SI) [87], and the video quality in PSNR, SSIM [29], and VMAF [142].

In addition to the content factors, the human and context factors capture the difference

among individual subjects and behaviors, respectively. For the human factors, the his-

torical motion sickness experience may be used to predict whether the subject perceived

cybersickness easily. Following the literature [97, 138, 170, 175], we classify the interac-

tions between content and subjects, such as the head/gaze rotation speed or the content

within the gaze region, into context factors. In particular, different head/gaze rotation

speeds may cause different degrees of sensitivity to the watched content. Here, gaze re-

gion refers to a small region surrounding the subject’s gaze; we adopt a gaze region of

30◦×30◦ [212, 213] throughout the chapter. Alternate gaze region, e.g., defined by gaze

exploring probability [172], can also be adopted. Note that, because each subject watches

totally different content, we define several gaze factors (such as gaze PSNR) as weighted

sums of factors (such as PSNR), where the weights are the fractions of tiles within the

gaze region. To capture the negative impacts of tiling, gaze quality variance accounts for

the tile quality variance in the gaze region.

5.2 A User Study

To the best of our knowledge, there is no public dataset on the relation among overall

QoE, QoE features, and QoE factors for watching tiled 360◦ videos in HMDs. Hence, we

conducted our own user study in this section.

5.2.1 Testbed

We developed a 360◦ video player for the latest eye-tracking enabled HTC Vive Pro

Eye [77]. Fig. 5.2(a) shows a photo of a subject using the testbed. Fig. 5.2(b) illustrates

the testbed architecture. The key entity of the testbed is the tiled 360◦ video player, which

is developed using Unity [198] with SteamVR plugin [199] and SRanipal SDK [76] for

the HMDs and eye-tracking supports, respectively. When subjects watch 360◦ videos, the

360◦ video player saves both the eye gazes and head orientations in log files for further

analysis. Fig. 5.2(c) shows our sample log files.

5.2.2 Dataset and Subjects

We selected six production-quality 360◦ videos provided by Joint Video Exploration Team

(JVET) [85] for the user study. These videos are summarized in Table 5.3. We transcoded

all test videos to 4K (3840×1920) resolution at 30 frame-per-second (fps) and reprojected
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Figure 5.2: Our testbed for the user study: (a) a photo of a subject using our testbed, (b)

the testbed architecture, and (c) the sample log files.

Table 5.3: The Considered Test Videos from JVET

Class Video Resolution Frame Rate Duration

Fixed

Camera

SkateboardTrick (ST) 8192×4096 60 fps 10 sec

Harbor (HB) 8192×4096 30 fps 10 sec

PoleVault (PV) 3840×1920 30 fps 10 sec

Moving

Camera

Landing (LD) 6144×3072 30 fps 10 sec

Balboa (BB) 6144×3072 60 fps 10 sec

BranCastle (BC) 6144×3072 30 fps 10 sec

them into the equi-angular cubic projection4 using 360lib [84] for a uniform pixel density.

Fig. 5.3 plots the complexity of the test videos, where the SI ranges from 36 to 66 and the

TI [87] ranges from 2 to 27. This figure shows that our selected test videos have diverse

characteristics. We increased the video playout length from 10 to 20 seconds by reversely

playing each video after reaching its end. We encoded each video into 12×8 tiles [134]

with 1-sec segments using Kvazaar [204] at six video bitrates: 1, 3, 6, 9, 12, and 15 Mbps5

resulting in 6 Hypothetical Reference Circuits [90]. Thus, there are 36 (6×6) Processed

Video Sequences [88] referred to as test videos in the rest of the chapter for each subject.

We opted not to vary the bitrates across the tiles in each processed video sequence for

two reasons: (i) diverse tile quality is known to dramatically degrade the QoE [208] and

(ii) too many test videos would lead to fatigue of the subjects [89]. Note that although

we use the same tile bitrates in each test video, the impacts from the Motion-Constrained

4We use an open-source shader [196] to support the equi-angular projection in Unity.
5We stop at 15 Mbps because the PSNR values of videos barely increase after that.
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Tile Sets (MCTS) features employed by the tile codecs is captured and investigated in our

user study. We recruited 24 subjects, and 13 of them are males. The subjects are between

19 and 30 years old6. Table 5.4 reports the demography of the subjects. In total, we spent

nine days conducting the user study and collected 864 questionnaires.

30 40 50 60 70
0

10

20

30

Figure 5.3: Our considered

videos have scattered SI and TI

values.

Table 5.4: The Demography of Subjects

Gender Male: 58%, Female: 42%

Age Range: [19,30], Standard Deviation: 2.78

HMD Experience Never: 4%, Seldom: 79%, Medium: 17%

Vision Correction Glasses: 13%, Contacts: 75%, None: 12%

Education High School: 37%, Bachelor: 42%, Master: 21%

: 1 : 1!
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Figure 5.4: Overview of the user study for each sub-

ject. S and J represent the stimulation and judgment

phases.

5.2.3 Procedure

Our user study follows the recommendations of ITU-T 910 [88]. We employed a rating

scale of [1,9] for higher discriminative power [88]. Before the user study, each subject

needed to pass a vision test (20/25 in Snellen chart) and watch a random 360◦ video to

familiarize himself/herself with our system. This was followed by the calibration of our

eye-tracker. After that, subjects started the user study with the Absolute Category Rating

(ACR) procedure. Fig. 5.4 illustrates the process of the user study for each subject, which

consists of 36 rounds in total. Each round contains a stimulation and a judgement phases.

We randomly played a test video at each stimulation phase and asked subjects to rate the

overall QoE and QoE features of the 360◦ video in the judgement phase. In the stimulation

phase, subjects sat on swivel chairs when watching the 360◦ videos and they could freely

rotate their heads and bodies. The list of questions used in the judgment phase is given in

Table 5.1. Besides, the scores were asked and recorded by an assistant, so that subjects

did not need to remove the HMD to complete the questionnaire. The user study took each

subject 50 minutes to complete. Each subject had a 5-min break after completing half of

the test videos.

6Older people are reported to have more severe perceived sickness using HMDs [68] and thus are likely

not to watch 360◦ videos using HMDs. Hence, we did not include older people as our subjects.
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(a) (b) (c)

Figure 5.5: Sample video frames from three sample videos and their gaze-level viewing

heat maps from all subjects: (a) Landing (LD), (b) PoleVault (PV), and (c) BranCastle

(BC). The sample video frames are in equirectangular projection for the sake of presenta-

tion.

5.2.4 Viewing Behaviors and Video Classification

Fig. 5.5 shows the sample frames and their corresponding gaze-level viewing heat maps,

where a visual angle of 3◦ centered at each gaze point is used to compensate for the

tracking error. In these figures, viewers’ gaze levels are normalized to [0, 1]. The higher

values indicate higher viewing frequency and vice versa. Fig. 5.5(a) shows that most

subjects watched Landing staring ahead. Based on the inputs of the open question in the

questionnaire, this can be attributed to two reasons. Some subjects were immersed in the

virtual world like they were really paragliding. Others were afraid that rotating their heads

may make them even dizzier. Fig. 5.5(b) shows that when watching video PoleVault, most

gazes lie on the mattress. This is because most subjects tend to track the athlete in the

video and the athlete spends a long time on the mattress after his attempt. Fig. 5.5(c)

shows that the viewing directions when watching BranCastle are rather dispersed. This is

because there is no main object or target in the video for the subjects to track or observe,

which makes them tend to explore around the whole video. Fig. 5.5 reveals that the 360◦

video content affects the overall viewing behavior.

Fig. 5.6 plots the subject rotation speed on each video at both gaze- and head-level.

This figure shows that the subjects tended to move their eye gazes faster than their head.

Moreover, the rotation speed at both levels was inline with our observations, as shown

in Fig. 5.5: the subjects watching LD and PV have lower rotation speed and less diverse

gaze. Based on the observations, we classified these videos according to camera moving

directions, Fixed Camera (FC) and Moving Camera (MV), and attention properties, Fixed
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Figure 5.6: The average ro-

tation speed of subjects under

different videos.
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Figure 5.7: The classifications

of videos according to camera

and attention properties.

Attention (FA) and Moving Attention (MA). Fig. 5.7 illustrates the video classifications,

where the videos with lower rotation speed in Fig. 5.6 are classified into FA. In MC

class, the closer to the right, the higher camera moving speed is the video. Similarly, the

closer to the bottom, the higher attention moving speed is the video, which can be seen in

Fig. 5.6.

5.2.5 The Overall QoE and QoE Features

We normalized the opinion scores within each subject using Z-scores, which work as

follows. Let mu,s be the s-th rating score from subject u. The corresponding Z-score

zu,s is written as zu,s = mu,s−m̄u

σu
, where m̄u and σu denote the mean and standard de-

viation of all subject u’s rating scores [25]. We consider the scores outside of [-3, 3] as

outliers [182]. After normalization, we map the Z-score m′
u,s back to [1,9] using the equa-

tion: m′
u,s = 9×(zu,s+3)/6. We plot the resulting MOS of overall QoE and the considered

QoE features over different encoding bitrates in Figs. 5.8(a)–5.8(e) with 95% confidence

intervals. Fig. 5.8(f) shows the attractive levels of individual videos. Fig. 5.8(a) shows

that the overall QoE in MOS scores improve by 50% when the bitrate is increased from 1

to 15 Mbps. Besides, the OQ, IQ, and IM (Figs. 5.8(a), 5.8(b), and 5.8(d)) are increasing

functions on the bitrate. In contrast, the FG (Fig. 5.8(c)) is a decreasing function on the

bitrate. For the CS (Fig. 5.8(e)), we see that it is influenced more by the video content

rather than by the bitrate. Cross-referencing Fig. 5.3 reveals that the CS increases for

videos with higher TI. This is because the subjects usually suffer from higher CS level if

they are not aware of the moving direction of the video camera in advance [103]. An in-

teresting finding is that AT also affects the overall QoE. For example, video ST has higher

IQ, lower FG, and even lower CS compared to video LD. However, the overall QoE of ST

and LD are mostly overlapping and sometimes, LD even outperforms ST (e.g., at 1 and

15 Mbps). This may be attributed to the higher attractive level of video LD.
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Figure 5.8: The MOS scores at different bitrates: (a) Overall QoE, (b) IQ, (c) FG, (d) IM,

(e) CS, and from different videos: (f) AT.

5.2.6 Diverse QoE Models

We built the MOS models for the overall QoE and QoE features other than AT. This is

because we only collect AT rating per video. We built models for both the MOS and IS

scores with different sets of factors: (i) all factors, (ii) a dominating factor category, and

(iii) a single dominating factor. The dominating factor (category) is the factor (category)

that affects the modeling performance the most. We refer to these models as OQT
L, IQT

L,

FGT
L, IMT

L , and CST
L for the overall QoE, IQ, FG, IM, and CS, respectively, where

T ∈ {M, I} for the MOS or IS scores and L ∈ {A,C, F} to indicate the factor sets of

all factors (A), the dominating factor category (C), and the dominating factor (F ). The

models with different factor sets can be used in different 360◦ video streaming scenarios.

For example, the systems with limited resources are more suitable to adopt the models

with fewer factors, such as the models with only a single dominating factor. In contrast,

when collecting more factors is feasible, models with all factors generally lead to better

performance.

5.3 MOS Modeling

In this section, we apply multiple regressors to model the MOS scores for the overall QoE

and QoE features.
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5.3.1 Regressor Selection

We consider the following widely-adopted regressors:

• Linear regressor [59] employs a few parameters and is less vulnerable to overfit-

ting.

• Random forest regressor [117] is an ensemble method consisting of multiple de-

cision trees. It is good at processing a large amount of inputs and is efficient on

learning. It comes with a few hyper-parameters. For example, the maximum num-

ber of features restricts the number of features considered at each branch split of

the decision trees.

• Gradient boosting regressor [60] is also an ensemble method which employs

stage-wise learning. It reduces the complexity of each decision tree to avoid over-

fitting by, for example, adding costs to complex tree structures.

• Support-vector regressor [14] finds the hyperplane for predicting the data distri-

bution, where a tolerance level ǫ is specified as a hyper-parameter. Higher ǫ values

may lead to higher training loss, while lower ǫ values may increase the probability

of overfitting.

Table 5.5: Performance of Regressors: Sample Results from OQM
A

Regressor Hyper-Parameters
Training Set Validation Set

PLCC SROCC PLCC SROCC

Linear - 0.9925 0.9823 0.9518 0.9175

Random

Forest

Max No.

Features

No.

Estimators

Max

Depth 0.9686 0.9501 0.9215 0.8541

30 200 8

Gradient

Boosting

Max No.

Features

No.

Estimators

Learning

Rate 0.9934 0.9761 0.9451 0.8962

5 100 0.01

Support

Vector

Tolerance

Level

Max

Iterations
Penalty

0.9880 0.9730 0.9350 0.9021

0.05 20 10

We implemented the considered regressors using Scikit-Learn [163]. We used the

dataset collected from the user study (Sec. 5.2) to derive and evaluate models. We split

the dataset by subjects, where the training set and testing set accounted for samples from

70% and 30% of subjects, respectively. Besides, 20% of the training set was used as the

validation set for a 5-fold cross validation. We opted to isolate the training and testing

datasets on subjects (instead of videos) to be closer to the real usage scenarios, where the

number of viewers is much larger than the number of videos. Take the Video-on-Demand

(VoD) scenario as an example; a single video will be viewed by tens of thousands, if nor
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more, customers. Hence, the MOS or IS scores of a customer watching the current video

can be predicted using the models derived from the inputs from other customers who have

watched the same video. In VoD scenarios, prior inputs of a viewer when watching other

videos could be used to predict his/her future QoE, which is not done in this work since

inputs from different subjects are isolated. Alleviating this constraint will further improve

the performance of our QoE models.

We grid search on the best hyper-parameters of individual regressors using the valida-

tion set. In particular, we compute PLCC and Spearman Rank Order Correlation Coeffi-

cient (SROCC) [190] to evaluate the correlation between the MOS scores from our models

and the subjects. Table 5.5 gives the sample results for the OQM
A from each regressor. The

italic font indicates the best results among different regressors. The results show that the

linear regressor achieves the highest PLCC and SROCC scores. We therefore adopt it as

our regressor for all models in the rest of this chapter.

5.3.2 Derived Model Performance

In this section, we evaluate our models using the testing set. Besides, we compare the

performance with the state-of-the-art QoE models, which are listed below.

• Yao et al. [225] developed a QoE model for 360◦ videos considering QP, SI, and TI.

• VI-VMAF [41] is the state-of-the-art objective quality metric designed for 360◦

videos, which is reported to offer better correlation with the overall QoE for watch-

ing 360◦ videos. We used their binary tool with the best parameters they reported

in their paper to calculate the VI-VMAF values.

• VI-VA-VMAF [42] is an extension of VI-VMAF, which employs the visual atten-

tion map [93] as the weights when computing the final values. The visual attention

map is generated using the subject’s gazes.

For fair comparisons, we used MATLAB [131] to (re)train the above models using our

training set. Among them, VI-VMAF [41] and VI-VA-VMAF [42] adopt a complicated

logistic function [86] without specifying how to select the starting points. Hence, we

repeated each training 10 times with random starting points and chose the best parameters

that lead to the highest adjusted R2 value. We make the following observations.

Our derived MOS models achieve high correlation. We first consider all content,

human, and context factors for MOS modeling. Fig. 5.9 plots the predicted versus col-

lected MOS scores for OQM
A . This figure shows that the predicted MOS scores from

OQM
A closely follow the collected MOS scores. We also observe similar trends on other

QoE features; figures are omitted for brevity. We plot the CDF of the Absolute Errors
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Figure 5.9: The pre-

dicted versus collected

MOS scores of the over-

all QoE.
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Figure 5.10: The CDF

curves of the AE for the

MOS scores. We zoom

into [0,1.5], where the

range is [1,8].

Table 5.6: Performance of De-

rived MOS Models with All Fac-

tors

Model PLCC SROCC MAE RMSE

OQM
A 0.988 0.971 0.180 0.218

IQM
A 0.989 0.977 0.165 0.208

FGM
A 0.980 0.975 0.233 0.277

IMM
A 0.944 0.889 0.342 0.422

CSM
A 0.908 0.902 0.293 0.389
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Figure 5.11: The performance ratio achieved by our derived MOS models using factors

from the dominating category: (a) PLCC and (b) SROCC.

(AE) of each predicted MOS scores compared to the collected ones in Fig. 5.10. This

figure shows that the maximum AE is about 1, which is relatively small compared to the

maximal QoE score of 9. For completeness, we report the PLCC, SROCC, Mean Abso-

lute Error (MAE), and Root Mean Square Error (RMSE) of our derived MOS models in

Table 5.6. Among them, higher PLCC and SROCC indicate better model performance.

In contrast, lower MAE and RMSE indicate better model performance. This table shows

that our models perform quite well. For example, our derived model for the overall QoE

achieves 0.988 and 0.971 in PLCC and SROCC, respectively. In terms of the QoE fea-

tures, our derived models lead to 0.908 to 0.989 in PLCC and 0.889 to 0.977 in SROCC.

Besides, the MAE (RMSE) of the overall QoE and QoE features is always below 0.342

(0.422).

Content category dominates the factor categories. We investigated the most rep-

resentative factor category of our derived models as follows. We iteratively identified

the category with the least influence, and removed that factor category. The last fac-
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Figure 5.12: The performance ratio achieved by our derived MOS models using the dom-

inating factor: (a) PLCC and (b) SROCC.

tor category is the dominating category. Fig 5.11 plots the performance ratio between

MOS models with factors in the dominating category and all categories, where the per-

formance ratio is the performance normalized to the one achieved by the model with all

factors. This figure shows that the models with the dominating categories achieve > 98%

of performance ratio in both PLCC and SROCC. Furthermore, the dominating category

is content, except for FG. In contrast, FG depends more on context factors, e.g., what

subjects see in their gaze regions.

Video quality dominates the factors. We zoom into the dominating factor within

the dominating category, and compute the performance ratio between MOS models with

the dominating factor and all factors. Fig. 5.12 plots the performance ratio, and the an-

notations indicate the dominating factors. This figure shows that the video quality is the

dominating factor for most models. In particular, (gaze) VMAF is the dominating factor

of the models for the overall QoE, IQ, and FG, which achieves > 97% performance ratio

in both PLCC and SROCC. Besides, the model for CS is dominated by the optical flow,

which also has > 97% performance ratio in both PLCC and SROCC. With a dominating

factor (PSNR), our model for IM only achieves ∼ 82% performance ratio. This indicates

that immersive experience requires more factors for better modeling performance. Cross-

referencing Fig. 5.11, a QoE model with all content factors is more suitable for the IM:

99% versus 82%.

Comparing the state-of-the-art objective quality metrics and QoE models. Fig. 5.13

plots the predicted versus collected MOS scores of our overall QoE model, compared

to the state-of-the-art objective quality metrics [41, 42] and model [225]. This figure

clearly shows that OQM
A achieves high linear correlation with the collected MOS scores.

Among other metrics and models, Yao et al. [225] leads to the most deviated results. VI-

VMAF [41] and VI-VA-VMAF [42] result in similar deviation levels, which are between

Yao et al. [225] and OQM
A . Fig. 5.14 further plots the sample performance ratios among
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our derived models for the overall QoE (OQM
A , OQM

C , and OQM
F ) and the state-of-the-art

metrics and models, where our model with all factors (OQM
A ) is used for normalization.

This figure shows that Yao et al. [225] achieve the worst performance in terms of both

PLCC and SROCC. On the other hand, the performance ratios of VI-VMAF fall be-

tween our model using the dominating factor (OQM
F ) and the dominating factor category

(OQM
C ) in terms of both PLCC and SROCC. VI-VA-VMAF is, however, slightly inferior

to VI-VMAF, although the difference is extremely small. Based on these observations,

we recommend OQM
A as the QoE model if additional human and context factors can be

acquired. Otherwise, OQM
C is recommended for the overall QoE if all content factors are

available. If only a single factor is considered, OQM
F and VI-VMAF can be considered;

between them VI-VMAF achieves a slightly higher performance ratio (∼0.5%). Last, we

emphasize that we can only compare the other metrics [41, 42] and model [225] in the

literature against the overall QoE models for MOS scores. This is because their studies

do not build QoE models for other QoE features (IQ, FG, IM CS). Indeed, the current

chapter is, to the best of our knowledge, the first comprehensive study trying to model a

wide spectrum of QoE features, as summarized in Table 5.1

2 3 4 5 6
1

3

5

7
OQM

A

2 3 4 5 6
1

3

5

7
Yao et al. [226]

2 3 4 5 6
1

3

5

7
VI-VMAF [44]

2 3 4 5 6
Collected MOS Scores

1

3

5

7
VI-VA-VMAF [45]

Figure 5.13: The predicted versus col-

lected MOS scores for the overall QoE.
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Figure 5.14: The performance ra-

tio comparisons among our mod-

els, VI-VA-VMAF, VI-VMAF,

and Yao et al. for overall QoE.

5.4 IS Modeling

In this section, we use the linear regressor to model the IS scores for the overall QoE and

QoE features using the same setting in Sec. 5.3. We describe the modeling performance

and observations in this section. Furthermore, because this work is the very first attempt to

build IS models for 360◦ tiled videos, we cannot compare our IS models against existing

ones in the literature.
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Figure 5.15: The pre-

dicted versus collected

IS scores of the overall

QoE.
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Figure 5.16: The CDF

curves of the AE for the

IS scores. We zoom into

[0,4], where the range is

[1,8].

Table 5.7: Performance of De-

rived IS Models with All Factors

Model PLCC SROCC MAE RMSE

OQI
A 0.915 0.868 0.472 0.604

IQI
A 0.896 0.847 0.532 0.667

FGI
A 0.883 0.868 0.565 0.704

IMI
A 0.801 0.725 0.696 0.899

CSI
A 0.579 0.594 0.862 1.165

OQI
C

IQI
C

FGI
C

IMI
C

CSI
C

0

20

40

60

80

100

(a)

OQI
C

IQI
C

FGI
C

IMI
C

CSI
C

0

20

40

60

80

100

(b)

Figure 5.17: The performance ratio achieved by our derived IS models using factors from

the dominating category: (a) PLCC and (b) SROCC.

Our derived IS models perform well on the overall QoE and most QoE features.

We first consider all content, human, and context factors for the IS modeling (e.g., OQI
A).

We plot the predicted versus collected IS scores of overall QoE in Fig. 5.15. Compared

to Fig. 5.9, this figure shows that the linear correlation between our predicted and col-

lected IS scores is slightly weaker than that for MOS scores. This is intuitive because IS

scores involve individual differences from the subjects and thus are more challenging to

model [103]. We further plot the CDF curves of the AE of each predicted IS score com-

pared to the collected one in Fig. 5.16. This figure demonstrates a similar trend as seen in

Fig. 5.15: the AE of IS modeling is slightly worse than that of MOS modeling, compared

to Fig. 5.10. Furthermore, CS leads to higher AE compared to others. Table 5.7 reports

the modeling performance of our derived IS models with all the considered factors. This

table shows that with all QoE factors, our derived model for overall QoE achieves 0.915

and 0.868 in PLCC and SROCC, respectively. Besides, our derived models lead to >

0.80 on PLCC for most QoE features, except CS. The gap (cf. Table 5.6) between the

predicted MOS and IS scores for CS may be attributed to diverse: (i) personality and (ii)
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Figure 5.18: The performance ratio achieved by our derived IS models using the domi-

nating factor: (a) PLCC and (b) SROCC.

prior experience, which impose nontrivial impacts on CS. This indicates that more human

factors should be included for modeling IS scores for cybersickness. For example, the

sleeping quality or the sense of balance may affect the perceived CS level. Adding more

factors for IS modeling of CS is left as our future work.

The investigation on the dominating factor (category) for IS modeling shows a

similar trend to MOS modeling. We then investigated the dominating factor category

of IS models. We plotted the performance ratio achieved by our derived models between

using the dominating factor category and using all factors in Fig. 5.17. This figure shows

the same trend as the MOS models (cf. Fig. 5.11): the content factors dominate, except

for FG. In particular, the context factors dominate the IS models for FG. The performance

ratio achieved by the dominating factor category is quite high: > 99% for both PLCC and

SROCC. Fig. 5.18 further plots the performance ratio of our derived IS models between

using the dominating factor and using all factors. This figure also shows similar results

as MOS models (cf. Fig. 5.12): (i) (gaze) VMAF dominates the IS models for the overall

QoE, IQ, and FG (ii) the optical flow is the dominating factor for CS, and (iii) IM requires

at least all content factors to achieve acceptable modeling performance.

5.5 Conclusions

In this chapter, we compile a wide spectrum of QoE features and QoE factors that may

affect the overall QoE of watching tiled 360◦ videos using HMDs. We design and conduct

a user study for collecting the dataset of the overall QoE, QoE features, and QoE factors.

We then derive the models for the overall QoE and QoE features using the considered

QoE factors in terms of both MOS and IS scores. Our key findings are:

• Our derived models for overall QoE perform very well and achieve 0.99 and 0.97

in PLCC and SROCC, respectively. Although modeling IS is harder, our derived
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models also perform well with most QoE features, except CS. For example, our

derived IS model for the overall QoE achieves 0.92 and 0.87 in PLCC and SROCC,

respectively.

• This chapter is the first work that considers comprehensive QoE factors spanning

over the content, human, and context categories. Our modeling results reveal that

content factors dominate the factor categories for the overall QoE, and most QoE

features. The only exception is FG, which is affected more by the context factors.

• (Gaze) VMAF is the dominating factor for the overall QoE and most of the QoE

features (IQ, and FG). This can be attributed to the fact that VMAF was trained

with the subjective scores in Netflix’s dataset [141]. VI-VMAF and VI-VA-VMAF

further improve VMAF, because they are tailored for 360◦ videos.

• IM cannot be well modeled using a single dominating factor, and requires all con-

tent factors for reasonable modeling performance.

This chapter is the first study that models: (i) not only overall QoE but also multiple

QoE features and (ii) not only MOS scores but also IS scores. Several of our findings

are, therefore, novel and have not been raised in the literature. To the best of our knowl-

edge, all existing work can be seen as a subset of our work. We have made the collected

dataset and derived models public [150], which will stimulate more studies in the growing

research area.

There are some limitations in this work that should be noted as follows:

• There is a nontrivial performance gap, (∼ 0.30 in PLCC/SROCC) between the MOS

and IS models for CS. This indicates that CS is strongly subject-dependent, which is

intuitive. The gap may be reduced by considering more human and context factors,

such as the physical conditions and mental states of subjects.

• We observe that AT affects the overall QoE. Hence, the models can be enhanced by

additional surveys on subjects’ preferences. This can also be approximated with the

historical logs in real deployments, e.g., by analyzing the watched videos of each

subject.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Emerging VR applications are growing in popularity because of the increasing availability

of 360◦ videos and commodity HMDs. Streaming 360◦ videos to HMDs is, however,

very challenging due to large video sizes, stringent real-time requirements, and complex

human visual systems. In this thesis, we address these problems by optimizing the three

critical phases of 360◦ video streaming to HMDs: (i) delivery, (ii) production, and (iii)

consumption phases. In particular, we optimize the resource allocation in the first two

phases and investigate the perceived QoE in the last phase.

In our first work, we avoided wasting resources on the unwatched part of 360◦ videos

by predicting the viewer’s future viewport. In particular, we leverage both sensor and

content data to train a neural network for viewer fixation prediction, which predict the

viewing probability of each tile. Several novel enhancements are proposed to improve the

prediction accuracy, including generating virtual viewports, considering future content,

and reducing the feature sampling rate. Our trace-driven simulation shows that our pro-

posed fixation prediction network saves up to 41% of network bandwidth while achieving

comparable video quality and lower rebuffering time compared to the current practices.

After optimizing the resource allocation in the delivery phase, we move to the earlier

phase. In particular, we optimize the encoding ladder in the production phase, where the

encoding ladder is used to determine the representations of individual tiled segments to

be encoded and stored on the streaming servers. We formulate the problem into an ILP

problem considering video models, viewing probability, and client distribution to maxi-

mize the client viewing quality. A divide-and-conquer approach is proposed to solve the

formulated problem. Besides, mathematical optimization, e.g., convex optimization us-

ing Lagrangian multiplier, is applied to optimally solve the subproblems. Our experiment

results demonstrate that our proposed algorithms result in better viewing quality and have
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better scalability under different storage limits compared to the state-of-the-art algorithm.

After optimizing the first two phases in system perspective, we then move to inves-

tigating the perceived QoE from the user perspective in the consumption phase. We de-

signed and conducted a user study to investigate the complex relationship among the

overall QoE, QoE features, and QoE factors on watching tiled 360◦ videos using HMDs.

In particular, we considered 5 QoE features and 30 QoE factors from content, human, and

context categories. We analyzed the viewing behaviors and modeled the overall QoE and

various QoE features using the considered QoE factors. The dominating factor categories

and factors were identified for the overall QoE and QoE features. Several observations are

made based on our investigation. For example, content factors dominate the overall QoE

and most QoE features. Besides, the cybersickness requires more human factors for better

modeling performance. The proposed optimization and investigation in the three critical

phases help achieve a QoE-driven optimized 360◦ video streaming to HMDs system.

6.2 Future Work

In the current work, we have optimized the three critical phases of 360◦ video streaming

to HMDs, which are investigated from systems to users. Although our work focuses on

360◦ video streaming in VoD scenarios, the proposed studies can be extended for various

scenarios. This will also enable the exploration of further immersive applications in the

future. We discuss the opportunities below.

6.2.1 Live 360◦ Video Streaming

Our current work mainly focuses on the VoD scenario, where the content is encoded and

stored on the streaming servers in the production phase. The content features are, thus,

available to be exploited in our proposed optimization algorithms in different phases.

For example, the saliency maps and motion maps are detected and stored on the stream-

ing server in the production phase for the fixation prediction during the delivery phase.

However, in live 360◦ video streaming, the content features are not available beforehand

because the conteniss directly captured, encoded, and streamed to the clients in real-time.

To apply our proposed algorithms to live video streaming, the extraction and analysis of

content features need to be accelerated. For example, a real-time saliency detection [231]

using contour information can be adopted for the fixation prediction networks. Another

possible way is to eliminate the dependencies of the real content. For example, the video

prediction network [183] can be exploited to predict the future video frames for content

feature extraction and analysis. With the content features being available, Real-Time Pro-
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tocol (RTP) can be adopted for low latency streaming, where the per-class optimization

in our proposed optimal laddering algorithms can be directly exploited to determine the

live bitrate.

6.2.2 6DoF Content Streaming

360◦ videos only support 3DoF interaction models, where the viewport is determined

only by the viewer’s head orientation assuming the viewer does not change his/her posi-

tion. That is, the viewport would not reflect the position changes when the viewer walks

around or moves close to certain objects. This obviously degrades the perceived immer-

sive experience. 6DoF interaction models address the above limitations by rendering the

viewport depending on the viewer’s position when he/she walks. To support 6DoF con-

tent, there are several representations, which can be classified into two classes: (i) video-

and (ii) volumetric-based representations. The video-based representations leverage the

highly optimized 2D compression algorithms while the volumetric-based representations

employ specialized data structure for compressions. Streaming such 6DoF content, how-

ever, is challenging because of the even larger amount of data size and more complex

reconstruction process compared to 3DoF content (360◦ videos). This indicates that the

problems faced by 360◦ video streaming also occur in 6DoF content streaming and be-

come even more severe. Hence, it is essential to investigate the pros and cons of different

representations for 6DoF content and develop suitable solutions, where the solutions can

be completely designed for 6DoF content or extended from the solutions for 360◦ videos.

For example, semantic features based on 3D object detection may be leveraged to improve

the performance of fixation prediction in 6DoF content. In addition, the perceived QoE

for 6DoF content adaptive streaming, such as density-based point cloud and image-based

view synthesis, requires further investigation.

6.2.3 VR Gaming with Multiple Observers

6DoF streaming content expands the possibilities of various future immersive applica-

tions, including VR gaming. For popular computer game tournaments, the game scenes

are also streamed to non-gamers, which are referred to as observers. The observers watch

live game streaming to learn the skills from elite gamers and the story lines of games.

To support observers in VR gaming, a naive approach is to render the gamer’s viewport

to the observers throughout the live streaming. However, this makes the VR features to-

tally useless because there is no freedom of changing viewports anymore. Hence, the

support of multiple free-viewpoint observers of VR gaming should be studied to real-

ize an innovative way to observe live gaming streaming with better user-driven viewing
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quality. Cloud gaming [78] can be leveraged to lower the hardware requirements of the

VR gamers and observers. However, offloading the computation resources onto the cloud

may increase the latency. To overcome this, Mobile Edge Computing (MEC) servers may

be used to replace cloud servers for reducing the latency. This is because MEC servers

are closer to the VR gamers and observers, so as to prevent the traffic congestion in the

core network. However, a high density of observers or unbalanced resource requirements

in some regions may overload the edge servers, which will lead to inferior performance.

Assigning game observers to the best possible edge servers is no easy task because it re-

quires considering the dynamic environments [80], latency-sensitive characteristics [72],

and interplay among multiple servers/clients [106]. Hence, an algorithm to efficiently

assign edge servers to the cloud VR gamers and observers is required to minimize their

perceived latency .

6.2.4 Movie Creation for XR Content

The development of 360◦ videos also stimulates the development of the 360◦ movie indus-

try. 360◦ movies not only share immersive experience to others as 360◦ videos. Instead,

there are story lines in 360◦ movies. Delivering the story lines via 360◦ movies is, how-

ever, challenging, because the audience is allowed to freely change his/her viewport. That

is, the audience may miss important scenes or hints in the movies for understanding and

following the story. Besides, any scene cuts or transitions in 360◦ movies may cause cy-

bersickness that degrade the immersive experience. Hence, a trade-off between the story

presented by the director and the immersive experience perceived by the audience needs

to be made. We believe that a more comprehensive user study investigating the factors

that may affect the user experience of watching 360◦ movies need to be designed and con-

ducted. In particular, the factors that may help attract viewer’s gazes and the transition

effects that may cause the least cybersickness are essential to be identified. The investi-

gation can be exploited to provide presentation or transition recommendations to movie

directors according to the characteristics of the stories and the concerns of the perceived

cybersickness.
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