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中中中文文文摘摘摘要要要

在智慧場域中，隨著串流監視影像技術的興起，許多創新的分析應

用也應運而生，其中包含了各式各樣能將純影像轉化為對使用者來說

具有意義的結果。除了即時的串流服務，這些監視影像也被保存在存

儲伺服器中，以提供未來使用者隨選式、自定義的分析請求。不同於

現有專注於最大化影片品質的隨選式影音串流服務，監視影像存儲伺

服器需要面對的是：在有限的空間和運算資源下決定並最大化儲存影

片的資訊含量，同時還要替未來新進的影片預留空間。在本論文中，

我們設計、實作、優化、並評估了一個多級特徵驅動存儲系統，該系

統能提供各種規模的智慧場域使用，如智慧校園、建築、社區或城

市。我們專注於此系統的設計和實作，並且解決了兩個核心的問題：

（一）有效率地捕捉新進影片的資訊含量（二）聰明地決定影片保存

的品質。我們首先採取近似分析的方式推算出影片的資訊含量，並使

得伺服器免於過載的問題。此近似分析的算法基於多級特徵（語意及

視覺特徵）正式定義所謂的「資訊量」。接著，我們根據此量化的數

值決定最佳降採樣的方法和影片的目標保存品質，目的在於最大化存

儲系統中的的總資訊量。我們嚴格地制定上述兩個研究問題並以數學

方法將其轉化為最佳化問題。對此兩個問題，我們分別給出了最佳、

近似、和高效共六個算法。除了一系列優化的算法，我們也利用清華

大學的物聯網測試平台中的影片評估我們提出的系統。此平台包含了

八支裝有各式感測器的智慧路燈，其中四支裝了監視錄影機，並且所

有捕捉的影片都會送回至機房做儲存和分析。在實驗階段，我們以實

際的影片評估我們提出的演算法的效能，而我們提出的解決方案在多

方面都勝過了目前業界的做法，例如：（一）在捕捉資訊量上，達成

了和最佳解僅有7%的差距（二）在一週的實驗後存下了近三倍的影片

數量（三）減少平均58%的請求誤差（四）能在100毫秒內做出決定所

有影片保存的品質（五）不超出系統可負荷的儲存空間（六）能適應

各種規模的儲存空間。
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Abstract

Surveillance videos in smart environments have become commodities
nowadays, which enable many novel applications, including various video
analytics that turn videos into semantic results. In addition to live feeds, the
surveillance videos may be saved in a storage server for on-demand user-
defined queries in the future. Different from on-demand video streaming
servers whose design objective is to maximize the user-perceived video qual-
ity, a surveillance video storage server has limited space and must retain as
much information as possible, while reserving sufficient space for incoming
videos. In this thesis, we design, implement, optimize, and evaluate a multi-
level feature driven storage server for diverse-scale smart environments, for
example buildings, campuses, communities, and cities. We focus on the de-
sign and implementation of the storage server and solve two key research
problems in it, namely: (i) efficiently determining the information amount of
incoming videos and (ii) intelligently deciding the qualities of videos to be
kept. In particular, we first analyze the videos to derive approximate informa-
tion amount without overloading our storage server. This is done by formally
defining the information amount based on multi-level (semantic and visual)
features of videos. We then leverage the information amounts to determine
the optimal downsampling approach and target quality level of videos to save
storage space, while preserving as much information amount as possible. We
rigorously formulate the above two research problems into mathematical op-
timization problems, and propose optimal, approximate, and efficient algo-
rithms to solve them. Besides the suite of optimization algorithms, we also
implement our proposed system on a smart campus testbed at NTHU, Taiwan,
which consists of eight smart street lamps. The street lamps are equipped with
a wide spectrum of sensors, network devices, analytics servers, and a stor-
age server. We compare the performance of our proposed algorithms against
the current practices using real surveillance videos from our smart campus
testbed. Our efficient algorithms outperform the current practices in multi-
ple dimensions, meaning we: (i) achieve a mere 7% approximation gap on
captured information amount compared to the optimal solutions, (ii) save al-
most 3 times more clips after a week, (iii) achieve 58% less per-query error
on average, (iv) always terminate in less than 100 ms, (v) do not consume
excessive storage space, and (vi) scale well with larger storage spaces.
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Chapter 1

Introduction

Increasingly more surveillance cameras are being deployed in smart environments, such

as cities, home, and workspaces, for enhanced security. Due to the broad applications

of surveillance cameras and mature techniques like artificial intelligence, the global mar-

ket of surveillance cameras is constantly growing. For instance, the surveillance camera

market of the smart home sector will reach $9.7 billion by 2023, while the market share

including other sectors is even larger. More and more cameras in smart environments offer

novel and diverse analytics applications, such as object detection and tracking [12, 25, 95],

face recognition [52, 71], health monitoring [70, 76], and traffic management [46, 58, 74].

Nowadays, the cameras upload surveillance video clips to data centers for storage and an-

alytics [20, 40, 72]. Doing so, however, may lead to high operational cost and network

congestion because each surveillance camera produces a traffic stream at several Mbps.

On top of that, many of these video clips are never queried by end users throughout their

life-cycles. Therefore, a better way to manage the video clips is to store them on a storage

server in an edge network, as illustrated in Fig. 1.1. The edge network interconnects mul-

tiple nearby Internet-of-Things (IoT) devices, including surveillance cameras, and con-

nects to the Internet via a gateway through an access network. By not uploading all the

video clips to the cloud, the traffic load on the access network is reduced. When users need

to query/analyze the surveillance videos, they instruct nearby analytics servers, which in

turn request for corresponding video clips from the storage server. These analytics servers

could be: (i) stationary at base stations, serving close-by smartphones and laptops or (ii)

mobile in police cars, fire trucks, and ambulances, serving end users in them.

Keeping surveillance video clips at a storage server, however, may quickly fill up its

disk. For example, storing 1 Mbps video clips from 10 surveillance cameras for merely

a week consumes 1.4 TB disk space, but surveillance video clips are typically archived

for much longer than a week. When the storage space of the edge server is used up,

we have to get rid of some video clips to make room for incoming ones. A naive way

1
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Figure 1.1: A sample IoT edge network, consisting of cameras (and other sensors), a
gateway, a storage server, and several analytics servers.

to do this is to delete the oldest video clips. Doing so, however, may lead to too much

information loss, because video clips from different cameras at different times contain

different amounts of information. In fact, video clips that contain some useful information

are better downsampled (in temporal, spatial, fidelity, or other aspects) instead of being

completely deleted. The downsampled video clips can still be queried/analyzed for useful

analytics results in the future.

The resulting information amount from analytics queries depends on the end-user

needs and the surveillance video content. Different video clips contain diverse amounts

of information, which can be characterized by the semantic and visual features. The se-

mantic features are high level, which directly reflect the user-intended queries, e.g., the

business owners pay more attention to the number of pass-by pedestrians at the intersec-

tions, while the police department cares whether there are illegally parked or speeding

cars. The visual features are low level, e.g., color distributions and dominated edges,

which are more general across queries with heterogeneous analytics. Fig. 1.2 illustrates

sample semantic and visual features. Among these features, the semantic ones better fit

the user queries as long as the analytics are known. In contrast, the visual features are

more general for unknown analytics in future user queries, but may not be exactly aligned

with the actual analytics. Hence, we consider both semantic and visual features, striving

to get the best out of them both.

In this thesis, we design, implement, and optimize a storage server for saving the

surveillance video clips. The goal is to retain video clips with the highest information

2
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Figure 1.2: Sample features: (a) semantic and (b) visual ones.

amounts and selectively downsample the stored video clips to make room for future ones.

This is, however, no easy task for the following reasons:

• Challenge #1: Different video clips contain diverse information amounts, which

depend on the dynamic query demands of video analytics from end users.

• Challenge #2: Different downsampling approaches lead to diverse amounts of in-

formation loss.

• Challenge #3: Quantifying the information amount requires executing video ana-

lytics and downsampling video clips requires video transcoding. Both video analyt-

ics and downsampling are computationally intensive and thus need to be carefully

scheduled.

We address the above three challenges as follows. We first define the information

amount to systematically guide the decisions made on our storage server. We then em-

ploy multiple downsampling approaches to free up the storage space. We study two key

optimization problems of our proposed storage server. The first problem is selecting a

3



sampling length of each video clip to analyze, in order to approximate the actual infor-

mation amount without overloading the storage server. The second problem is choosing

the downsampling approaches and quality levels for individual video clips to preserve as

much information as possible, while making enough room for incoming video clips. For

each of the optimization problems, we first give its optimal and approximation algorithms

with analysis. For better efficiency and practicality, we also propose heuristic algorithms

for both research problems. Our experiments reveal that our heuristic algorithms: (i)

reach 58% less per-query error on average, (ii) save nearly 2.78 times more clips after

a week, (iii) make decisions in real time (less than 100 ms), (iv) lead to only 7% less

information amount gap than the optimal solutions, (v) control the used space within the

allowed range, and (vi) scale to larger storage spaces.

1.1 Contributions

In this thesis, we rigorously study the aforementioned challenges. We design, implement,

and optimize a multi-level feature-driven storage server for surveillance. Considering the

real problem occuring in smart environments, we propose six algorithms and give their

corresponding complexities. The algorithms with different bounds aim to adapt to the

change of resource conditions. We collect twelve days of evaluation videos from our real

testbed on our campus. Specifically, we made the following contributions in this thesis:

• We propose a storage sever to retain information amount under the constraints of

space and computation power.

• We decide the sampling lengths for analytics and quality levels for preservation.

• We give optimal and approximate algorithms for analysis, and heuristic algorithms

for better efficiency and practicality.

• We evaluate the performance of the system in the real world testbed.

1.2 Organizations

This thesis is organized as followed: we first give an introduction and point out the chal-

lenges to build the edge storage server in Chapter 1; the background of Internet-of-Things,

smart environments, cloud computing, cloud-to-thing continuum, and machine learning

enabled analytics in Chapter 2; the related work of the video storage server, video down-

sampling/analytics, and video summarization in Chapter 3; we define information amount

4



to quantify the importance of surveillance videos in Chapter 4; system design and archi-

tecture of our storage server and the functionality of each component in Chapter 5; for-

mulations targeting the optimization problem to determine the sampling lengths, which

are for analyzing videos, in Chapter 6; formulations targeting the optimization problem

to determine the quality levels of videos, which are for video preservation in the edge

server, in Chapter 7; system and testbed implementation are detailed in Chapter 8; set up

and extensive experiments to evaluate the performance of our storage server in Chapter 9;

and a conclusion of our contributions and future works in Chapter 10.

5



Chapter 2

Background

2.1 Internet-of-Things

Internet-of-Things is the concept of ”things” connecting to networks and interact with

each other without human intervention. The things communicate or collect data wire-

lessly via smart sensors. By leveraging these data, people have built various life-assisted

applications in the field of transportion, healthcare, housekeeping, etc. The idea of IoT

was firstly proposed by Kevin Ashton in 1999 [3], while the refered field only ranged from

the identifiable object with radio-frequency identification technology (RFID). In later, IoT

had been more generally defined with respect to the standards, protocols, interface, and

integration of networks [48, 55]. Also, the International Telecommunication Union (ITU)

discussed the potential of products, markets, challenges, and implications of IoT [45]. We

illustrate the evolvement of IoT as several phases in the Fig.2.1, which is organized by

Li et al [53]. The initial stage is the passive identification applied on warehouse man-

agement or door access control. After the emergence of wireless technology, the IoT

applications are enabled with wireless sensory networks (WSNs), RFID, near field com-

munication (NFC), barcodes, low energy communications, and cloud computing. It has

been more widely used on ambient and autonomous control at the different usage scenar-

ios [10, 83, 92]. In the mid-2010s, as the technology of mobile devices and 4G networks

became mature, more computational tasks are brought to smaller and more portable de-

vices like smart phones, raspberry Pi, and drone. These smart ”things” are capable of

conducting more complex tasks collaboratively under the acceptable latency. In recent

years, IoT sensors are deployed is shown in smart cities, campuses, or buildings. The

sensor data collected from these devices are not only used for monitoring, but also to gen-

erate predictions for analysis, combined with machine learning. In the past decades, ma-

chine to machine (M2M) communication has been implemented through the low energy

of bluetooth [34], Zigbee [73], Wifi [38], and long range of SigFox [91], LoRa [89, 91],

6
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Figure 2.1: Evolution of the Internet-of-Things [53].

and Ingenu random phase multiple access (RPMA) [42]. However, these solutions are

still not perfect for all the M2M scenarios. Because of the rapid development of 5G

networks [77], the requirements of enhanced mobile broadband (eMBB), ultra-reliable

and low latency communications (uRLLC), and Massive Machine Type Communications

(mMTC) proposed by International Mobile Communications (IMT) will be achieved in

the near future. With the corresponding benefits, more comprehensive services are real-

ized: eMBB enhances the downlink/uplink speed to the level of 10Gbps, multiple VR/AR

streaming can be viewed no matter where we are; uRLLC ensures restricted latency and

reliability (thus the needs of remote surge, self-driving, or precise industrial control are

guaranteed); The characteristics of mMTC connects components at million levels. To

sum up, 5G networks address most of existing challenges of IoT.

2.2 Smart Environments

A smart environment is a combination of invisible sensor, actuators, and computational

elements. The components are generally embedded seamlessly in normal objects and are

connected to each other. A sample smart environment is illustrated in Fig. 2.2. Through

the network of these smart components, we are capable of monitoring and controlling

environmental factors such as energy, pollution, grean area, and traffic flow. We can

make the environment adapt to dynamic events in the real world [4, 17]. Based on the
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Figure 2.2: Sample smart environment with various sensors.

knowledge in the specified area, the citizen or end users are offered a more convenient,

energy-saving, intelligent life model. To build smart environments, we need to deploy,

collect, and analyze data from ubiquitous IoT sensors. We take smart meters as an ex-

ample. Smart meters can measure and communicate residential electricity consumption

through the Internet. The energy consumption can be tracked by both the end user and

power supply company. As a result, more efficient and effective electricity services, cus-

tomized tariffs [44], and demand response programs [61] are achieved in the context of

smart grid. We can view the real time data log by website on mobile phone applica-

tions. Further more, to analyze these consumption information automatically, Weiss et

al. [93] propose a better-tailor feedback scheme which breaks down the consumption in

an appliance-specific manner.

Another example is the smart city. Generally speaking, the biggest issue in the smart

city is the problem of traffic congestion. According to the report from U.S. Census Bu-

reau [16], an American spend 27.1 minutes on one-way commuting averagely, which is

20 minutes more than a decades ago. As roadmaps in cities become more mature, how-

ever, the traffic gets worse because the majority of people want to move during the same

time (rush hour). The traffic signs fail to efficiently control the priority of road users. The

priority of private cars, buses, motorcycles, bikes, and pedestrians require to be changed

dynamically based on the condition on road. Thus, by installing the sensors on the traffic

light [28, 46], we are able know how many cars are on road with object detection algo-

rithms. By analyzing the results, the intervals of traffic signs can be adjusted at different

times in a day. Not limited to traffic, there are a couple of applications that can be real-

ized in a smart city like bus route scheduling [2], pollution and energy monitoring [80],

healthcare [18], etc.
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2.3 Cloud Computing

With the evolution of computing services, what users need has transformed into com-

moditized models of service that deliver in the same manner as traditional utilities. Cloud

computing is based on this concept to provide people easy access, scalable, elastic IT ser-

vice around the world. As defined by the from National Institute of Standard and Tech-

nology (NIST) [65], cloud computing enables ubiquitous and on-demand network access

to shared pools of configurable computing resources, which allows users to rapidly pro-

vision their service with minimal effort. NIST characterizes the cloud computing model

with five main properties: (i) on-demand self-service, unilateral provision without hu-

man interaction, (ii) broad network access, heterogeneous client platform available, (iii)

resource pooling, multi-tenant model dynamically assigning resources to customers, (iv)

rapidly elasticity, rapid scaling capability with appropriate quantity, (v) measured service,

systematically controlling and monitoring resource usage. In other words, customers can

easily and flexible access computing services without affording the heavy maintenance

cost. Any startup or enterprise can benefit from cloud computing: for instance, a startup

can focus on developing their products instead of the high capital and management cost

of IT, while enterprises can make business more agile and shorten time to market.

We can divide cloud computing mainly into three kinds of service models: Infrastruc-

ture as a Service (IaaS), Platform as a Service (Paas), and Software as a Service (SaaS),

which are also considered as different solutions to address IT issues. IaaS provides the

customer most basic provisions like storage, network, or RAM, but is highly flexible and

scalable. We can control the infrastructure without hiring external IT contractors. With the

pay-as-you-use model, it fits the budget and scaling requirement at any time. Examples of

IaaS are Amazon EC2 or OpenStack. PaaS provides runtime environments comprising of

software, middleware, and other software that allow people to use these tools to develop

and manage in a more abstract way. Without needing building applications from scratch

and knowing administration knowledge, developers are able to focus on the creating, test-

ing, and deploying side of the products rather than software operations like updating or

security. Database, load balancer, and MapReduce are some instances of PaaS. Last, SaaS

directly delivers the integrated application to customers through the Internet. With SaaS,

users don’t need to install any additional software and can conveniently access the ser-

vice via any device such as a web browser. In our daily lives, we highly rely on SaaS

like Gmail, Facebook, Github, etc. Enterprise or companies can choose from these three

kinds of models depending on the scale and complexity of their business, with the com-

mon ground that cloud computing helps the development of business to grow faster and

more stably.
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Cloud computing is not perfect: for example, although remote backup is an essential

requirement that a cloud service provider should guarantee, the services are still not long-

lasting forever. There are actually some example of significant [5, 36, 60] failure events

of cloud computing even if the service is mature today. Additionally, because all the

services are provided through the Internet, once the network congests or disconnection

occurs, the Quality of Services (QoS) of applications will be affected drastically. Thus,

we need another solution to reduce the latency while providing seamless services.

2.4 Edge Computing

As the data generated by IoT (Internet of Things) devices increase, processing these data

at an edge network becomes more efficient. The concept of edge computing is provid-

ing computational capacity for local edge networks. With the shorter distances required,

edge computing reduces the round-trip time of data transmission and offers acceptable

computing power or storage service to end-users. In fact, cloud computing is not always

efficient and practical at the edge of the network. Here Shi et al. [79] give some reasons:

• Push From Cloud Service: Compare to the fast speed of data processing, the bottle-

neck for most scenarios are the communication bandwidth. Take self-driving as an

example: it is impossible to exchange all data information with cloud data centers

when the sensors onboard are capturing any event. However, the handling of these

events is usually urgent, e.g., stopping the red light or changing lanes. Thus, the

response time is the most crucial and challenging part. Cloud computing may fail

if the bandwidth and reliability of network conditions are insufficient. With edge

computing, shorter response time and less network congestion can be realized in

such kinds of applications.

• Pull from IoT: From the estimation of Cisco [39], there are around 75 billion things

connected to the Internet. This fact makes it difficult for traditional cloud com-

puting to handle all the requests from devices. Large data quantities generate non-

trivial bandwidth and computational usage. Some sensitive data aren’t suitable to

be transmitted to the public cloud, so the processing is required to be finished at the

edge network right away. Last but not least, IoT devices are usually weak and en-

ergy starving. By offloading the task to edge servers, tasks can be conducted more

efficiently.

• Change From Data Consumer to Producer: In traditional cloud computing scenar-

ios, IoT devices are the data consumers (such as downloading the video to cell-

phones). With the development of mobile devices and wireless techniques, the mo-
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bile/IoT devices also change to be the data producers, for example, a surveillance

cameras streaming and storing the videos to the cloud. As a result, the collected

data should be pre-processed before sending to the cloud. Otherwise, network con-

gestion or privacy degradation would certainly occur.

The concept of edge computing is well-applied to real-world scenarios: smart home,

smart city, video analysis, cloud offloading, or collective edge. However, the challenges

and the solutions in edge computing is still worth further research. For instance, the stor-

age and computation capability of edge servers are not as powerful as cloud servers. The

collaboration of edge servers or optimization of processing procedures are the possible

solutions and oppurtunity [14, 66, 97]. To sum up, using edge computing addresses some

challenges of cloud computing, but also results in some new challenges owing to charac-

teristics of edge network. Under such background, we formulate the problems and address

the challenges of analyzing and managing the surveillance videos in the smart city.

2.5 Cloud-to-Thing Continuum

The development of technological trend starting from Wireless Sensor Network (WSN),

IoT, Cloud (centralized/distributed), to Fog Computing, and Mobile Edge Computing

(MEC). These technologies focus on their own respective usage scenarios. However,

as the applications become heterogeneous and complex, we cannot rely on merely one

of them to process, store, connect, and control thousands of devices and servers. Tradi-

tional cloud connectivity is no longer sufficient [11]. Thus, we merge the concept of these

technologies and build a more general and comprehensive idea: Cloud-to-Thing Contin-

uum. IoT devices collect the data from the local area and conduct lightweight processing

on the devices themselves. Groups of devices require collaboration in order to fuse the

source of the heterogeneous sensor and perform analytics on the edge server. Analytics

is the process of deriving knowledge from data and its additional values. It ranges from

health, transportation, living to the environment, and industry. The results of analytics are

transmitted and shared across the area via the Internet (either wired or wireless). At the

top of the cloud-to-thing continuum is the cloud platform, which consists of data centers

and a worldwide network. The cloud platform provides borderless services to all the local

networks around the world. Since cloud services can share the data with worldwide users,

the collaboration of edge servers also benefits from these data to offer more complete and

complex tasks.

In the cloud-to-thing continuum, orchestration is a crucial feature for many ITs and

DevOps engineers to help them reduce the cost, speed up the deployment, and simplify

the optimization of the service of system [67]. Building a stable cloud-to-edge orchestra-
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tion is challenging due to issues of network failure, resource capacity, user pattern, and

so on. Traditionally, the integration and interoperation of the software and hardware also

require large effort to realize them. [11]. In the cloud-to-thing era, the orchestration of

the system turns to be distributed. The computation and storage of applications are de-

centralized across the networks. As a result, the cloud evolves to the control nodes of

the edge server/devices and conducts summary analytics. As for edge servers, they are

in charge of real-time response to end devices. According to Vaquero [90], the needs of

orchestration in edge/fog computing mainly focus on dynamic operation, coalitions, pri-

vacy, and microservice. To realize these targets, virtualization [15] is the most commonly

used technology. Nowadays, we move virtualization from virtual machine to container,

which is a more lightweight solution. Developers apply containerized applications in

the cloud-to-thing continuum such as Docker [59]. The common orchestration solution

is Kubernetes [9] architecture, which is an open-source system for automating deploy-

ment, scaling, and management. The lifecycle of cloud-to-things application has a more

systematical operation so that the developments also become faster, more effective, and

organized. Nevertheless, there are still challenges that need to be addressed and optimized

in the orchestration of the cloud-to-things continuum, e.g., the reliability of high-density

device or low-latency and low-energy cross-layer communication. Numerous research

topics in this field are ongoing or will be proposed in the near future [7].

2.6 Machine Learning Enabled Analytics

Machine learning has existed for nearly half a century. The father of machine learn-

ing, Alan Turing, created the computer in history to decrypt secret messages from Ger-

mans in World War II. His contribution saves thousands of lives from the war, and his

masterpieces, Turing machine and Turing test, became the basis of the general-purpose

computer, which fostered artificial intelligent in the following decades. Before 2012, the

research of machine learning kept being developed, like the cases of Deep Blue [41] from

IBM, Kinect [102] from Microsoft, IBM’s Watson [37], and Google Brain [31]. In the

period, the idea of deep learning, which was created by Geoffrey Hinton [51], had been

realized and triggered a powerful research trend. In 2012, Alex Krizhevsky, Geoffrey

Hinton, and Ilya Sutskever published the model, ImageNet [49], which can dramatically

reduce the error on image recognition. In the following year, ZFNet, GoogLeNet (Incep-

tion), VGGNet, and ResNet were released successively. The machine learning models are

based on Convolution Neural Network (CNN) and solve the problem in computer vision.

Some other network structures such as the Recurrent Neural Network (RNN) or Gener-

ative Adversarial Network (GAN) can address and solve different kinds of problems, no
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matter if it is the supervised or unsupervised. Thanks to the improvement of the manu-

facturing process of semiconductors, we are able to compact more computational units on

chips. Analyzing the data or training our model can be more efficient with more powerful

GPUs. In addition, more and more edge/fog devices are equipped with the basic capabil-

ity to inference model so that some simple analytics can be conducted right away as soon

as the sensors collect the data. The promising machine learning framework, Tensorflow

Lite [33], which is a lightweight version for small and mobile devices, facilitates machine

learning on the edge. In reality, machine learning enabled analytics are capable of doing

much more interesting things than we thought.

In recent decades, machine learning has generated real value in both industrial or busi-

ness fields. For example, Google’s DeepMind [30] leverages machine learning to reduce

the energy consumption in the data center [32]. It finally produces a 15% reduction in

overall energy overhead, especially a 40% reduction in energy for cooling; The recom-

mendation system of E-commerce like Amazon, abnormal transaction detection systems

of financial services, and car scheduling of Uber [84] are all instances of big data analysis

enabled by machine learning. When we compare machine learning to the human decision,

the advantage of machine learning is obvious:

• Discovering the pattern or implicit relationships of large datasets fast and pre-

ciously.

• Decreasing the error and bias when learning and making decisions

• Increased expertise in multidimensional and multivariate problems.

• Streamlining the duplicate business and automating the production pipeline.

With the assistance of machine learning enabled analytics, the companies can control their

business easier and utilize the data collected from end-user more comprehensively. The

business can also be adjusted dynamically based on the data from users. The qualities of

products or services are promoted and the profits increase without a doubt.
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Chapter 3

Related Work

3.1 Video storage server

Shao et al. [78] studied the correlation among the cameras at different locations to detect

the abnormal behaviors, which was achieved by building a risk table. Each clip was deter-

mined to be deleted, partially deleted, or kept. Unfortunately, the strategy of making such

decisions were not detailed in their paper. Usman et al. [88] proposed an intrusion-driven

model, which encodes video clips with different encoding parameters. They assumed the

video clips can only be downsampled once. Thomas et al. [86] turned activity, saliency,

collision levels into a cost function for their algorithm. The video clips were indexed with

several keyframes to reduce the storage space, and end users could query video clips by

comparing the similarity of frames using a neural network. Although they attempted to

condense the video clips, the diverse levels of importance different video clips were not

considered in their solution. These three studies [78, 86, 88] are quite different from our

work because neither of them propose systematic approaches to: (i) quantify the informa-

tion amount, nor (ii) decide the downsampling approaches and parameters.

3.2 Video analytics

Video analytics applications were considered to be the killer app of edge computing [1]

and attracted many researchers. For example, Satyanarayanan et al. [75] proposed a de-

centralized cloud computing paradigm, called cloudlet, leveraging edge servers. The

videos from mobile devices were sent to cloudlets for analysis, while the analytics re-

sults were then sent to the cloud. Liu et al. [56] presented EdgeEye, which was an edge

computing framework for real-time video analytics applications. Such applications could

be offloaded by using their APIs. Chen et al. [13] presented a continuous, real-time object

recognition system for mobile and wearable devices. They hid the network latency by
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caching video frames on mobile devices. The devices analyzed the cached frames using

some hints sent by the server to localize the objects. Zhang et al. [99] presented Vigil,

which was a real-time distributed wireless surveillance system leveraging edge comput-

ing. The above mentioned papers [1, 13, 56, 75, 99] are minor to our proposed storage

server, as none of them considers the information amount.

3.3 Video downsampling

Video downsampling is usually achieved by transcoding, which has been thoroughly stud-

ied in the literature. For example, Li et al. [54] proposed to transcode video clips in an

on-demand manner to reduce the cloud resource consumption. Gao et al. [26] proposed a

partial transcoding scheme for content management. They focused on the end-user view-

ing patterns and the operational cost on the content provider side. They formulated a cost

minimization problem to find a balance between the storage cost and operational cost of

real-time transcoding. Zakerinasab and Wang [98] proposed a distributed video transcod-

ing scheme. The video segments were split into chunks and distributed to the cloud for

parallel transcoding. Dutta et al. [21] proposed a scheme to transcode video clips in edge

environments, in which the video clips were transcoded based on end-user expectations.

Zhang et al. [100] offloaded the transcoding workload from mobile devices to the cloud.

They designed an offloading policy for mobile devices and proposed an online algorithm

for the transcoding on the cloud to minimize the energy consumption while achieving low

latency. Yoon et al. [96] moved the transcoding workload to the wireless edge, such as

WiFi APs. They implemented a real-time video transcoder on a Raspberry Pi. The above

mentioned studies [21, 26, 54, 96, 98, 100] are also minor to our proposed storage server,

as none of them accounts for the information loss.

3.4 Video summarization

The concept of information amount in this thesis is partially inspired by previous work on

video summarization. For example, Fu et al. [24] proposed to extract low- and high-level

features from multi-view videos. They integrated the features with the Gaussian entropy

fusion model to detect scene shots. After that, they constructed a spatial-temporal graph

and clustered the scene shots by random walks. Their multi-objective optimization prob-

lem for summarization was based on the shot importance. Although their work considered

high-level features like face recognition, they assumed boolean analytics results. Hence,

their work could not differentiate the amounts of different high-level features. Our defini-

tion of information amount supports continuous weights to determine the diverse impor-
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tance among analytics results. The weights can be adjusted based on the requirements of

cameras at different places and orientations. Muhammad et al. [63] adopted memorabil-

ity, entropy, and aesthetics into a score to select the keyframes for video summarization.

These features were fused with weights; however, their solution depended on well-tuned

parameters to cater end-user demands. Setting the weights manually was tedious, expen-

sive, and error-prone. There exist other video summarization approaches [64, 68] that

removed redundancy in video clips to cut down the analysis time and storage space. Such

decisions were mostly made purely based on the pixel values of the video clips without

considering the high-level semantics that only exist in video analytics applications. In

contrast to video summarization works [24, 63, 64, 68], we transform low-level features

vectors to a different basis, which consists of principal components of the original feature

vectors, so that the transformed features can better approximate the importance using our

information amount concept.

To the best of our knowledge, we are the first one to propose a storage server that

determines the multiple quality levels of stored surveillance video clips coming from

smart environments. We preserve the video clips that are more important to end users in

better quality levels with longer achieved durations. By rigorously defining information

amount based on multi-level features to quantify the importance, we make intelligent

downsampling decisions. A preliminarily version of this thesis was published in our

earlier paper [87].
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Chapter 4

Information Amount of Surveillance

Videos

We define information amount to quantify the importance of videos captured at different

locations with diverse orientations. In information theory, entropy can be used to repre-

sent the information amount and feature vector complexity. Our definition of information

amount combines the entropy of visual features (like color and edge histogram), and se-

mantic features from the off-the-shelf analytics (like object detection). The core design

rationale is that visual features will account for the information amount of video content

even if we are unaware of actual analytics in the future. However, the amount of visual

features may not directly capture the actual events that interest end users, which are rather

complex. Such events are better captured by the semantic features, which are unfortu-

nately computationally intensive to derive. Defining information amount purely based

on semantic features is therefore too heavy for a resource-limited storage server. Hence,

we leverage both visual and semantic features to define the information amount in the

following.

Visual features. We observe that the viewports of surveillance videos are usually

fixed, and thus the background is repeating and redundant across too many video frames.

To reduce the duplicated computations, we pre-process the videos by removing the back-

ground and keep the foreground objects. Particularly, we color the background of video

frames in black, while keeping the color of foreground objects in the pre-processed videos.

Next, we divide these pre-processed videos into several shots as follows. For each video

frame, we compute the sum of the RGB values for each pixel. We then compute the dif-

ference of the RGB sums of individual pixels between two adjacent video frames. We

consider a pixel is changed if its RGB sum difference is significantly different from its

counterpart in the adjacent frame, i.e., the difference is beyond a tolerance. If the fraction

of the changed pixels exceeds a threshold, we declare a new scene shot from the video
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frame. Moreover, to avoid noisy and trivial shots, we limit the minimal shot length. Notice

that the abovementioned tolerance, threshold, and minimum length are all user-specified

parameters, which are empirically determined to be 12, 95%, and 2 seconds respectively

throughout this thesis, if not otherwise specified. Our background removal approach is

inspired by Godbehere et al. [29]. Our shot detection algorithm is inspired by the black

frame filter [23] with some augmentations for surveillance videos. This is because the

difference of RGB sums between adjacent frames in the surveillance videos tend to be

much smaller than generic, story-telling videos.

With pre-processed videos, we next define the visual features. We consider C new

incoming video clips to the storage server. For the shot Sc of clip c, we calculate its

entropy using the set of features F1, F2, . . . , Fm, where m is the considered number of

features. Besides color and edge histogram features [24], we also adopt convolution and

time-series features in this work1. We denote Shannon entropy as E(·). By transform-

ing each feature into a one-column vector, we get the entropy E(Fi) of the feature Fi,

where i = 1, 2, . . . ,m. To quantify the importance of visual features, we determine a

single score for each shot. One naive approach is to define a weighted function; however,

it’s difficult to specify appropriate weights without knowing the end-user demands in the

future. Hence, a more systematic way is needed to determine the importance of indi-

vidual visual features. To achieve that, we have compared six different Dimensionality

Reduction (DR) methods: Principal Component Analysis (PCA) [94], Isometric map-

ping (Isomap) [85], t-distributed Stochastic Neighbor Embedding (t-SNE) [57], Multi-

Dimensional Scaling (MDS) [19], Gaussian Random Projection (GRP), and Sparse Ran-

dom Projection (SRP) [6] to reduce the feature dimensions from m to 1. We employ

three widely-used and algorithm-independent quality metrics for evaluations: residual

variance [85, 101] (distance matrix based), trustworthiness, and continuity [6] (co-ranking

matrix based). For distance matrix based metrics (residual variance), smaller is better; for

co-ranking matrix based metrics (trustworthiness and continuity), larger is better. We note

that all three metrics are in real numbers between 0 and 1. We capitalize an open-source

Python library, pyDRMetrics [101], to implement the above DR methods and performance

metrics. We run the experiments on a workstation with an Intel i7 CPU at 2.10 GHz, and

also record the running time of different DR methods. We summarize the results in Ta-

ble 1. We find that PCA outperforms other methods w.r.t all quality metrics: achieving

smaller residual variance, higher trustworthiness, and higher continuity. Besides, all DR

methods, except t-SNE and MDS, terminate in real-time. Hence, we chose PCA as our

DR method in the rest of this thesis.

In PCA, the principle components are the eigenvectors of the covariance matrix of the

1Our definition is general and works for other visual features, which could be global or local ones.
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Table 4.1: Performance Comparison of Dimensionality Reduction Methods (Unit: s)

PCA Isomap GRP SRP t-SNE MDS

Residual Variance 7.30× 10−4 7.78× 10−4 1.50× 10−3 7.06× 10−2 4.83× 10−1 1.45× 10−2

Trustworthiness 0.999925 0.999901 0.999688 0.987477 0.963822 0.959152

Continuity 0.999973 0.999955 0.999686 0.987920 0.971213 0.915735

Reduction Time 1.14× 10−2 3.55× 10−1 5.99× 10−3 8.71× 10−3 61.02 1.41

visual features. We pick the eigenvector of the largest eigenvalue as the first component.

The importance scores of these features are the projection on the transformed space. We

feed m entropy values into PCA and generate a final score of visual features. The resulting

visual importance score represents the shot and feature characteristics. Specifically, we

write the visual importance of shot SC as:

Iv(Sc) = P1([E(F1), E(F2), . . . , E(Fm)]), (4.1)

where P1(·) is the transform function of PCA that considers the first principle component.

In general, the larger Iv(S) indicates more visual information embedded in video shot S.

In Fig. 4.1, we show sample visual feature importance scores based on PCA results of

actual videos captured in our smart campus testbed. Fig. 4.1(a) shows a daytime video

that contains more frames in each shot. Its entropy across all features is also higher.

In contrast, Fig. 4.1(b) reveals that the midnight video from the same camera has fewer

frames in each shot, where each shot’s entropy is also lower. Hence, the overall visual

feature importance score of video in Fig. 4.1(a) is much higher than that of video in

Fig. 4.1(b).

Semantic features. We decide to only extract semantic features from video shot

S if Iv(S) > δv, where δv is the threshold for entropy of visual features. This is to

avoid wasting resources on trivial shots per our observations on some pilot tests. We

assume Ac video analytics are needed for video clip c (c ∈ [1, C]). That is, each analytics

a (a ∈ [1, Ac]) analyzes surveillance video clip c to detect certain events. We let xa

be the output of analytics a, where xa can be either a discrete or a continuous value.

Examples of discrete outputs include illegal parking (boolean) and queue length at a bus

stop (integer); examples of continuous outputs include flood monitoring (depth) and fog

detection (visibility). For analytics a with discrete outputs, we let na be the normal output.

That is, if xa = na, analytics a detects no event. For analytics a with continuous outputs,

we define a tolerance level δa and consider no detected event if |xa − na| ≤ δa. Because

the outputs of different analytics have diverse scales, xa needs to be normalized. We let x̃a

be the maximal absolute value2 of the output from analytics a, and define the normalized

2Without loss of generality, we assume x̃a $= 0. Otherwise, analytics a is not worthy of being executed.
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...

...

Total no. frames 
in the shots: 1429

Total no. frames in the 
original video: 1440

Color Entropy: 1022.47
Edge Entropy: 433.40
Conv. Entropy: 3492.7
Temporal Entropy: 64.35
PCA value: 0.96

(a)

...

...

Total no. frames 
in the shots: 309

Total no. frames in the 
original video: 1440

Color Entropy: 124.01 
Edge Entropy: 26.01
Conv. Entropy: 161.37
Temporal Entropy: 12.29
PCA value: 0.05

(b)

Figure 4.1: Sample visual importance scores based on the PCA results from real video
clips: (a) video with longer shots and higher entropy in daytime (b) video with shorter
shots and lower entropy at midnight.
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Figure 4.2: System overview of our storage server in the edge network.
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information amount as:

eSc,a =







0 |xa − na| ≤ δa;

|xa/x̃a| otherwise,
(4.2)

where δa is set to zero for analytics with discrete outputs. Generally, a larger eSc,a value

indicates that more semantic information is detected by analytics a in shot Sc.

The outputs of individual video analytics depend on the inputs, which are the surveil-

lance video clips. We let W be a C × A matrix, where Wc,a (c ∈ [1, C] and a ∈ [1, Ac])

represents the weight of analytics a on clip c. Wc,a is configurable by the system admin-

istrators for prioritizing different analytics and clips. With the symbols defined above, we

formally write the semantic importance score of shot Sc in clip c as:

Ie(Sc) =
∑

a∈Ac

Wc,a · eSc,a

/

∑

a∈Ac

Wc,a, (4.3)

where the summations iterate through all analytics and clips, before being normalized

with weights Wc,a.

To fuse the visual and semantic importance scores, we carry out min-max normaliza-

tion where the range is derived from all samples throughout evaluations. We subtract the

minimum of visual features from the resulting number, and divide it by the difference of

maximum and minimum of visual features. The minimum and maximum are replaced in

the semantic features. That is, we use Îv(·) and Îe(·) to denote the normalized importance

score, respectively. Last, we use fc to denote the total number of frames among all shots

in a clip c (c ∈ [1, C]). We write the total information amount as:

I(c, fc) =
∑

Sc∈c

Îv(Sc) +
∑

∀S
′

c∈c,

Iv(S
′

c)>δv

Îe(S
′

c), (4.4)

where I(c, fc) is the quantified information amount of clip c, which drives the designs of

our optimization algorithms developed in the following sections.
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Chapter 5

Design of Storage Management

Fig. 4.2 gives an overview on the design of our storage server in an edge network, which

is detailed in this section.

5.1 Workflow

The surveillance cameras continuously stream coded videos to the storage server. The

video streams are initially saved on the storage server at the maximal quality, i.e., with

the full information amount. The stored video clips can be requested by external analytics

servers due to demands from end users. Our storage server provides requested videos to

the analytics servers to serve, which run video analytics for end users. The design and

implementation of analytics servers are out of the scope of this thesis. We add simplified

local analytics to the storage server, so as to extract visual and semantic features. We ex-

tract semantic features by applying video analytics that may be deployed on the external

analytics servers. We employ sampling length estimator to select the sampling length for

each incoming video, in order to approximate the information amount without incurring

excessively long running time. The videos in the full quality and information amount are

sent to a time-series database for storage. We also add a video downsampling platform to

the storage server, which supports multiple downsampling approaches. When the storage

space is close to full, we downsample stored videos to free up some space for incoming

video clips. We employ a downsampling decision maker, which carefully considers the

trade-off among the remaining information amount, freed storage space, and complexity

of different downsampling approaches when making the decisions. Furthermore, we em-

ploy the predictor to keep track of available storage and computation resources for timely

executions of information amount analysis and video clip downsampling. The predictions

serve as inputs of the algorithms in sampling length estimator and downsampling decision

maker. This is to ensure that enough storage space is freed for new video clips before their
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arrivals. In summary, the three key components of our storage server are: the sampling

length estimator, the downsampling decision maker, and the predictor. These three com-

ponents are executed in parallel. We collectively refer to them as the optimal sampling

manager.

5.2 Components

We summarize the components of Fig. 4.2 in the following:

• Sampling length estimator. It hosts an algorithm to decide the sampling length

for each incoming video clip. The sampling lengths are used to approximate the

information amount of individual video clips in a more efficient manner to address

Challenge #1 in Sec. 1.

• Downsampling decision maker. It hosts an algorithm to determine the video quality

level of each video clip that is about to be downsampled. By doing so, we control

information loss due to video clip downsampling to address Challenge #2.

• Predictor. It supports online predictions of resource consumption and information

amount, which are needed by the above two components to ensure ontime com-

pletion of the video analytics and downsampling approaches. This is to address

Challenge #3.

• Simplified local analytics. It hosts multiple video analytics, which are also run

by external analytics servers. The analytics are also needed for semantic feature

extraction.

• Video downsampling platform. It hosts multiple downsampling approaches, which

free up storage space.

• Configuration manager. It is an interface for system administrators to control and

monitor the storage server. For example, system administrators may add/remove

video analytics and downsampling approaches, or visualize the video clips in the

time-series database.

Among these, the sampling length estimator and downsampling decision maker are the

most crucial components. Their performance directly affects the analyzing and downsam-

pling time. Furthermore, the storage space efficiency also relies on the results given by

the downsampling decision maker. In Secs. 6 and 7, we introduce the sampling length

estimator and downsampling decision maker in detail.
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Chapter 6

Sampling Length Estimator: SLE

In this section, we develop our algorithms for Sampling Length Estimator (SLE). The

algorithms are responsible for estimating the information amounts of the incoming and

stored video clips.

6.1 Notations

Building upon the notations defined in earlier sections, we formally write the information

amount of all video clips (C) with all frames (F) in all shots and all video analytics (A)

as:

H(C,F,A) =
C
∑

c=1

I(c, fc), (6.1)

where I(c, fc) denotes the information amount across frames of all shots of clip c with-

out any sampling. For a given C, F, and A, computing H(C,F,A) using Eq. (6.1) is

extremely time consuming as it dictates executing all analytics on too many frames. The

storage server, unfortunately, is unlikely to be able to perform analysis in real-time, and

an approximation of H(C,F,A) through sampling for a shorter execution time is needed.

The sampled frames, however, need to be carefully chosen, e.g., selecting a few consec-

utive frames may lead to biased information amount due to the temporal locality across

these frames. To cope with this issue, we define sampling length l as follows. We select a

frame from every l consecutive ones from each shot. For simplicity, the same l is applied

to all shots of every video clip, because events with similar characteristics tend to have

temporal locality. Additionally, to control the computational complexity, we carefully

choose the lengths (Lc,a1 , Lc,a2 , . . . ) from a discrete set L0 = {0, 1, l1, l2, . . . , lm}, where

0 and 1 represent skipping and analyzing all frames, respectively. We write all sampling

lengths into C × A matrix L, where Lc,a denotes the sampling length l of analytics a

for shots in clip c. Note that Lc,a = 0 implies that analytics a is not applied on clip c
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at all. We aggregately write Lc = (Lc,a1 , Lc,a2 , . . . ) for presentation. Sampling lengths

allow us to trade off the computational complexity and information amount accuracy. The

approximate information amount is therefore written as:

H ′(L) =
|C|
∑

c=1

I(c, Lc), ∀Lc ∈ L0. (6.2)

Computing H ′(L) with Eq. (6.2) is less computationally intensive compared to computing

H(C,F,A) with Eq. (6.1). The challenge is to make H ′(L) as close to H(C,F,A) as

possible by carefully selecting the best L. This is the job of our sampling length estimator.

Next, we define a few helper functions. While applying sampling length l > 1 reduces

the execution time of analytics, doing so may lead to reduced information amount. We

let d(·) be the degradation factor of a sampling length, which represents the fraction of

sampled information amount from the unsampled information amount. Intuitively, larger

l leads to shorter execution time but lower degradation factor. The degradation factor

of applying analytics a on video clip c is denoted as d(c, a, Lc,a). Give the degradation

factor, the information amount due to semantic features is written as:

I
′

e(Sc) =

∑

a∈Ac
Wc,a · ê(c, fc, a) ·

|Sc|
|
∑

Sc∈c Sc|
· d(c, a, Lc,a)

∑

a∈Ac
Wc,a

, (6.3)

where ê(c, fc, a) denotes the prediction of the information amount from unsampled videos

(l = 1). We apply min-max normalization on I
′

e(Sc) to get Î
′

e(Sc).

Extracting visual features is much lighter-weight, and thus we decide not to perform

sampling when computing the information amount due to visual features. That is, we

directly use the score of visual features in Eq. (4.4) in the SLE. By adding up Îv(Sc) and

Î
′

e(Sc), our approximate information amount I(c, Lc) (after sampling) is:

I(c, Lc) =
∑

Sc∈c

Îv(Sc) +
∑

∀S
′

c∈c,

Iv(S
′

c)>δv

Î
′

e(Sc). (6.4)

6.2 Problem Formulation

Owing to the limited resources, we invest more computing power on the clips and ana-

lytics with higher information amounts to have more accurate estimations on them. In

SLE, the goal is to make approximate information amount H
′

(L) as close to that of the

full-quality video clips H(C,F,A) as possible. In addition, the execution of analytics

needs to be done within a time constraint δi. Our preliminary tests reveal that visual fea-

ture extraction can be done relatively fast, and thus we focus on the execution time due to
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semantic analytics. For better mathematical tractability, we measure the execution time

of shot detection, background subtraction, and visual feature extraction in our pilot tests.

We then sum these times up and use a constant to represent it. Besides, we let function

t(c, a) be the execution time per frame when executing analytics a on video clip c.

Lemma 6.2.1 (Hardness). Our sampling length estimation problem is NP-Hard.

Proof. This can be shown by a reduction from Multiple Choice Knapsack Problem (MCKP)

[47]. Given an instance of MCKP with n mutually disjoint classes and capacity k. The

item j in class i has profit pi,j and weight wi,j . By mapping: (i) n classes to c clips, (ii)

capacity k to time limitation δi, (iii) item j in class i to the sampling lengths of analytics

(Lc,a1 , Lc,a2,···), (iv) profit pi,j to information amount computed with Eq. (6.4), and (v)

weight wi,j to t(c, a) · |Lc,a|, we reduce MCKP to our problem in polynomial time.

We next write our sampling length estimator problem as:

min
L

(H(C,F,A)−H
′

(L)) = max
L

(H
′

(L))

s.t.
∑

∀c∈C

∑

∀a∈A

(t(c, a) · |Lc,a|) < δi.
(6.5)

We assume the information amount after sampling is no larger than the full-quality video

clips. By solving the formulation in Eq. (6.5), we maximize the approximated information

amount H
′

(L).

6.3 Optimal Estimation (OE) Algorithm

We propose an optimal estimation algorithm based on dynamic programming. Let z(c, δ)

be the maximal information amount when considering the first c clips under the time

constraint δ. The state of this recursion is written as:

z(c, δ) = max



z(c− 1, δ −
∑

∀lc,a∈lj

t(c, a) · lc,a) + I(c, lj)



 , ∀lj ∈ L0, (6.6)

where z(0, δ) = 0 (∀δ < δi) and z(c, δ) = −∞ if δ ≤ 0. We iterate from the tightest

time constraint and the first clip. The optimal solution z∗ is found when z∗ = z(|C|, δi).

With dynamic programming, we store the computed results of increasingly more states

to avoid redundant calculations. The next lemma analyzes the complexity of the OE

algorithm, which is straightforward.

Lemma 6.3.1 (Complexity). Our OE algorithm has a space complexity of O(δi · |C|2).

For the time complexity, each iteration computes Eq. (6.6) for O(|L0|) times. Thus, its
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total time complexity is O(|L0| · δi · |C|).

6.4 Approximated Estimation (AE) Algorithm

Algorithm 1 Approximate Estimation (AE) Algorithm for the SLE Problem

Inputs: Clips C, Deadline δi, Approximate Sampling Lengths L0, and Predictor ê(·)
Output: Approximate Sampling Matrix Lx.

1: Let Bl = max
∀c∈C, lj∈L0

(I(c, lj)), Bu = |C| ·Bl, and ε = 0.6

2: x = Bu / 2
3: J = ∅
4: for c ∈ C do

5: {‖I‖} = I(c, lj)∑
∀a∈Ac

(t(c,a)·lc,a)
, ∀lk ∈ L0 ∩ ‖I‖ > 0.8x

δi

6: lk = argmaxlj (‖I‖)
7: J = J ∪ {(c, lk)}
8: ‖J‖ =

∑

∀(c,lk)∈J
I(c, lk)

9: if ‖J‖ ≤ 0.8x then

10: Bu = x(1 + ε) = 0.8Bu

11: else

12: Bl = x(1− ε) = 0.2Bu

13: if Bu / BL ≤ 5 then

14: Construct Lx by J

15: return Lx

16: else

17: x = Bu / 2 and go to line 3

OE has a pseudo-polynomial running time. We next propose a polynomial-time Ap-

proximation Estimation (AE) algorithm. The AE algorithm is inspired by a binary-search

based algorithm [27], which is based on a branching algorithm. Given an x > 0 and an

ε > 0, the branching algorithm determines whether the optimal solution z∗ < x(1 + ε)

or z∗ > x(1 − ε) exists. Algorithm 1 gives the pseudocode of the AE algorithm. We

initialize x, upper bound Bu, and lower bound Bl in lines 1 and 2. We apply the de-

fault ε = 0.6 [27], making the z∗ / z0 ≤ 5, where z0 is the approximate solution. In

lines 3–12, for each clip, we first add the array of lengths with maximal information yet

meeting the constraint 0.8x / δi into J. Then we calculate the summation of information

amount of the selected arrays in J. If the summation is less than 0.8x, the algorithm re-

sults in z∗ > x(1 − ε); otherwise, we have z∗ < x(1 + ε) [27]. Therefore, we update

Bu and Bl accordingly. Last, in lines 13–17, we check the ratio between Bu and Bl to

decide whether we keep iterating or return the approximation sampling length matrix Lx

derived from J. We note that Gens and Levener [27] is only one of the approximation

algorithms for MCKP. There are other approximation algorithms [47, 50], which can also

serve as a starting points of developing similar approximation algorithms. We leave that
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as our future work. Next lemma reports the complexity and performance bound of the AE

algorithm; readers interested in its proof are referred to Gens and Levener [27].

Lemma 6.4.1 (Complexity and Bound). The AE algorithm gives the worst error bound

of 4
5 with respect to the optimal solution. Its running time is O(|C||L0|log|C|), which is

in polynomial time.

6.5 Efficient Estimation (EE) Algorithm

Algorithm 2 Efficient Estimation (EE) Algorithm for the SLE Problem

Inputs: Clips C, Deadline δi, Sampling Lengths L0, and Predictor ê(·)
Output: Efficient Sampling Matrix Le.

1: Let Lc = 1, ∀c ∈ C

2: while
∑

∀c∈C

∑

∀a∈A

(t(c, a) · |Lc,a|) > δi do

3: Find (c, a) = argmin
(c,a)

(

Wc,a · ê(c, fc, a) ·
|Sc|

|
∑

Sc∈c Sc|
· d(c, a, Lc,a) ·

1
t(c,a)·|Lc,a|)

)

, ∀Lc $=

0
4: if thenLc,a = max(L0)
5: Lc = 0
6: else

7: Let Lc,a of Lc be the next larger length in L0

8: Construct Le from selected sampling lengths

9: return Le

We propose a heuristic algorithm, called Efficient Estimation (EE) algorithm. This

algorithm is based on an intuition: the execution time and accuracy of information amount

are both reduced once the sampling length is increased. Algorithm 2 gives the pseudocode

of the EE algorithm. In line 1, we initialize the sampling lengths Lc of all video clips

and analytics to be 1 in L0. After doing so, if the total analytics execution time still

fits into deadline δi, we return that Le, because it gives the most accurate information

amount without any sampling. The while-loop starting from line 2 checks if the total

execution time exceeds the deadline. If yes, we choose pair (c, a) that: (i) contains the

least information amount and (ii) has a sampling length that can still be increased in line

3. We then increase the sampling length of (c, a) in line 7. When the total execution

time reaches δi, we return sampling matrix Le in line 8. The complexities of the proposed

heuristic are given below. The proof is omitted as it is straightforward.

Lemma 6.5.1 (Complexity). The EE algorithm has a time complexity of O(δi) and a

space complexity of O(|C||A|). Both are in polynomial.

28



Chapter 7

Downsampling Decision Maker: DDM

In this section, we develop our algorithms for the Downsampling Decision Maker (DDM).

The algorithms are responsible for determining the quality levels of video clips to be

preserved.

7.1 Notations

For concrete discussions, we introduce temporal and fidelity downsamlping approaches,

while spatial or other approaches can be readily adopted by our storage server. The

first approach is temporal subsampling, which keeps the first frames of recurring non-

overlapping time windows. For instance, temporal subsampling with a frame-skip of 4

means keeping 1 out of every 4 frames (i.e., frames 4k + 1 ∀k ∈ N). Any future video

analytics on deleted video frame f are approximated with the immediately preceding

frame that is kept, which is 4,f−1
4 - + 1 in this example. Secondly, the fidelity downsam-

pling approach essentially transcodes the video clips with a lower bitrate. The resulting

video clips have the same numbers of video frames, although their analytics outputs may

be different from the ones from the original video clips.

We let P0 be all possible downsampling quality levels, where each approach specifies

a frame rate and a bitrate. Downsampling decision maker generates the quality levels for

all video clips which are stored on the storage server. Thus, we let P be a 1-dimensional

downsampling decision matrix with a size of |C|. Pc indicates the selected downsampling

approach (e.g., 12 frame-per-second, or fps, at 500 kbps) of clip c. Pc = −1 indicates

storing the original quality of c on the storage server, while Pc = 0 indicates deleting clip

c from the storage server. The approximate information amount after taking downsam-

pling decision P is:

H ′(P) =
|C|
∑

c=1

I(c, Pc). (7.1)
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Here, we overload the notation I(·): with a parameter of quality level Pc, I(·) denotes

the summation of the information amount of all frames in clip c after downsampling with

Pc. We assume that each video clip can be downsampled more than once with different

decisions. The challenge is to maximize H ′(P) by carefully selecting the best P. This is

the job of our downsampling decision maker.

For the semantic features, we let d
′

(c, a, Pc) be the degradation factor of information

amount when applying analytic a on clip c at the quality level Pc. Note that different

downsampling approaches affect the semantics feature extractions differently, and the

information amount reduces as the quality gets lower. The symbol Î
′′

e (S
′

c) stands for the

importance score of semantic features of shot Sc of clip c. We write the degraded semantic

importance I
′′

e (Sc) after downsampling as:

I
′′

e (Sc) =
∑

a∈Ac

Wc,a · ec,a · d
′

(c, a, Pc)

/

∑

a∈Ac

Wc,a, (7.2)

where ec,a is the analytics results from simplified local analytics, which are conducted

with the lengths decided by SLE. As for the visual features, we directly apply the score of

visual features calculated in SLE. We approximate the information amount I(c, Pc) after

downsampling as follows:

I(c, Pc) =
∑

Sc∈c

Îv(Sc) +
∑

∀S
′

c∈c,

Iv(S
′

c)>δv

Î
′′

e (S
′

c) (7.3)

7.2 Problem Formulation

Given that the storage space is limited, we aim to downsample the video clips with less

per-unit-size information amount to free up enough storage space. The goal of DDM is

to maximize the total information amount of all stored clips after downsampling H ′(P).

The execution time and storage space are the two constraints of our problem. First, the

downsampling time of clips is stateful, which means that the time is related to the quality

levels before and after. Therefore, we write P
′

c and Pc to denote the quality levels be-

fore and after downsampling. Both P
′

c and Pc are from the pre-selected set P0. We let

t(c, P
′

c , Pc) be the downsampling time of video clip c. All the video downsampling tasks

must be done by a deadline δd. Second, we set watermarks to determine when to trigger

downsampling. The DDM problem is solved once the used space of the storage server

reaches the high watermark Ov′ . Once the downsampling is triggered, the target used

storage space is a low watermark Ov. Ov′ , Ov, and δd are user-configurable parameters.

Last, we denote the resulting used storage of clip c in quality Pc as ôc,Pc
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Lemma 7.2.1 (Hardness). Our downsampling decision making problem is NP-Hard.

Proof. We show the reduction from the multidimensional Knapsack Problem (d-KP) [47].

The set of items is partitioned into n mutually disjoint classes and only one item is se-

lected from every class. The weighted sums of items of feasible solutions must meet the

constraints in k dimensions. We consider a 2-MCKP problem here. The item j in class i

has profit pi,j with weights wi,j,1 and wi,j,2 in the two dimensions, respectively. By map-

ping: (i) class n to video clip c, (ii) δd to the first dimension constraint and Ov to the

second one, (iii) item set in each class to pre-selected quality set P0, (iv) profits pi,j of

items to the information amount derived from Eqs. (7.2) and (7.3), and (v) weights wi,j,1

to the downsampling time, wi,j,2 to the resulting used space, we get a corresponding DDM

problem in polynomial time. This yields the hardness proof.

We write our downsampling decision maker problem in the following:

max
P

(H
′

(P)) = max(
|C|
∑

c=1

I(c, Pc))

s.t.
∑

∀c∈C

t(c, P
′

c , Pc) < δd, and
∑

∀c∈C

ôc,Pc < Ov.

(7.4)

Note that each video clip is allowed to be downsampled more than once. In addition,

downsampling is a lossy procedure, which means that the drop of information amount is

non-reversible. By solving Eq. (7.4), we generate the best P to preserve the most space-

effective video clips.

7.3 Optimal Decision (OD) Algorithm

We first enumerate the clips from the strictest space and time constraints. We then employ

dynamic programming for the optimal decisions. We write z
′

(c, o, δ) as the maximal

preserved information amount after conducting downsampling on the first c clips under

the space and time constraints o and δ, with the selected downsampling qualities. The

state update is given as:

z
′

(c, o, δ) = max
(

z
′

(c− 1, o− ôc,pj , δ − t(c, P
′

c , pj)) + I(c, pj)
)

∀pj ∈ P0, (7.5)

where z
′

(0, o, δ) = 0 (∀δ < δd ∧ o < Ov) and z
′

(c, o, δ) = −∞ if δ ≤ 0 ∧ o ≤ 0.

We reach the optimal solution when z
′

= z
′

(|C|, Ov, δd). The next lemma analyzes the

complexity of the OD algorithm.

Lemma 7.3.1 (Complexity). In our OD algorithm, each of the iteration runs Eq. (7.5)
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Algorithm 3 Approximate Decision (AD) Algorithm for the DDM Problem

Inputs: Information Amount I , Clips C, Deadline δd, Approximate Downsampling Decision

Matrix Px, Positive Integer t̂.
Output: Approximate Downsampling Decision Matrix Px.

1: Let Bl = max
∀c∈C, pk∈P0

(I(c, pk)), Bl0 = Bl, Bu = |C| ·Bl, and d = 2

2: x = d
1+2dBu +Bl

3: J = ∅
4: for c ∈ C do

5: {‖I‖} = I(c, Pc)

t(c,P ′
c ,Pc)/δd

+ I(c, Pc)
ôc,Pc/Ov

, ∀ pi ∈ P0 ∩ ‖I‖ > x
d

6: pk = argmaxpj (‖I‖)
7: J = J ∪ {(c, pk)}
8: ‖J‖ =

∑

∀(c,pk)∈J
I(c, pk)

9: if ‖J‖ ≤ 1
2dx then

10: Bu = (1 + 1
2d)Bu

11: else

12: Bl =
1
2dBl

13: if Bu − (1 + 2d)Bl ≤ (12)
t̂Bl0 then

14: Construct Px by J

15: return Px

16: else

17: x = 1
1+2dBu + dBl and go to line 3

for O(|P0|) times. This leads to O(|C| · Ov · δd · |P0|) operations in total. The selected

quality of each clip needs to be saved while updating the states, so the space complexity

is O(|C|2 ·Ov · δd).

7.4 Approximation Decision (AD) Algorithm

The OD algorithm has pseudo-polynomial complexities, and thus we propose an Ap-

proximation Decision (AD) algorithm in Algorithm 3. Starting from the branching al-

gorithm [27], we first initialize the upper and lower bounds by the maximal information

amount among all clips. We initialize an x by d, which is the number of constraints, as

the criteria to add the pairs of clips and qualities to J in lines 2–7. We set the complexity

coefficient t̂ as 2. Each pair of clips has the maximal information amount per time and

per space, respectively. Lines 9–12 check whether the information amount of the selected

pair set ‖J‖ exceeds 1
2dx, which triggers the updates of upper and lower bounds for the

next round of the binary search. Once the approximation solution falls in the range in

line 13, we construct the approximate downsampling decision matrix Px from J. Our

algorithm is inspired by a binary search algorithm [35] for MMCKP [47]. We note that

other approximation algorithms for MMCKP [69] may be leveraged for developing better

approximation algorithms for our DDM problem. We leave that as a potential future task.

Lemma 7.4.1 (Complexity and Bound). In AD algorithm, each round of branching algo-
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rithm takes O(|C| · |P0|), where |P0| can be seen as a constant because we preselected

P0. There are at most O(t̂ + log(|C| − 2d)) iterations in the binary search algorithm.

Thus, the total time complexity is O(|C|(t̂ + log(|C| − 2d))), which is polynomial time.

An improved binary search algorithm finds the approximate solution with the ratio of

1 + 2d+ (12)
t̂, where d and t̂ equals 2 in our case.

7.5 Efficient Decision (ED) Algorithm

Algorithm 4 Efficient Decision (ED) Algorithm for the DDM Problem

Inputs: Information Amount I , Weight W, Deadline δd, Watermark Ov, Selected Sampling

Length Matrix L, and Predictor ê(·).
Output: Efficient Downsampling Matrix Pe.

1: Let Pc = −1, ∀c ∈ C; S =
∑

∀c∈C
oc; T = 0;

2: while S > Ov or T > δd do

3: c = argmin
∀c∈C,Pc '=0

(I(c, Lc) / ôc,Pc)

4: p̂ = argmin
∀ôc,Pc≥ôc,p̂

(ôc,Pc − ôc,p̂)

5: S = S − ôc,Pc + ôc,p̂;
6: T = T − t̂(c,Pc) + t̂(c, p̂);
7: Pc = p̂
8: Construct Pe from the selected Pc

9: return Pe

We propose an heuristic algorithm, called Efficient Decision (ED) for the DDM prob-

lem. The algorithm is based on the following intuition: the video clip with the smallest

per-unit-size information amount should be sacrificed first, while the degree of its down-

sampling approach should be kept as small as possible. Algorithm 4 gives the pseudocode

of the ED algorithm. Line 1 initializes the downsampling decisions of all video clips to

be, i.e., keeping them as-is. Then we let S and T be the used storage space and total

execution time, respectively. The while-loop starting from line 2 iterates as long as: (i)

the used storage space is higher than the low watermark or (ii) the total execution time

exceeds the deadline. The numerator in line 3 accounts for the information amount of

clip c, and the denominator accounts for the overall size. That is, in line 3, we select clip

c with the smallest per-unit-size information amount to be downsampled. In line 4, we

choose the quality p̂ which has the smallest difference of sampled size to gradually reduce

the storage space usage to the low watermark Ov. In lines 5–7, we update P, S, and T .

We note that line 4 may end up with p̂ = 0, which indicates that clip c is going to be

deleted. As long the low watermark and deadline constraints are met, we return the deci-

sion matrix Pe derived from the selected Pc in line 8. The complexities of the proposed

heuristic are given below. The proof is trivial and omitted.
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Lemma 7.5.1 (Complexity). The time complexity of the GD algorithm has a time com-

plexity of O(S −Ov + δd) and a space complexity of O(C).
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(a)

(b)

Figure 7.1: The smart street lamp testbed at NTHU, Taiwan: (a) testbed topology and (b)
sample photos.
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Chapter 8

Implementations

In this section, we first present a real implementation of our proposed storage server and

a smart campus deployment. This is followed by one of the possible predictor design and

its implementation.

8.1 Testbed Implementation

We have implemented the proposed storage server on our smart street lamp testbed at

NTHU, Taiwan, which consists of eight street lamps, as shown in Fig. 7.1. The street

lamps are equipped with several sensors, including air-quality, temperature, humidity,

wind speed, and motion sensors. Four of the street lamps come with IP cameras: three

fixed bullet camera and one PTZ (Pan-Tilt-Zoom) camera. The street lamps are intercon-

nected by a mixture of Gigabit Ethernet and WiFi mesh networks. Some of the street

lamps hold analytics servers, which can be compact PCs, like Intel NUCs, or single-

board computers, like Raspberry Pis. Fig. 1.2(a) reveals two sample analytics analyzing

the surveillance video clips.

Our implementation is summarized in Fig. 8.1, which complies with the design in

Fig. 4.2. Most implemented components belong to the storage server, which is written

in Python. We leverage: (i) InfluxDB [43] to realize the time-series database, (ii) Dark-

net [8] to realize the simplified local analytics platform and analytics servers, and (iii)

FFmpeg [22] to realize the video downsampling platform. We implement the optimal

downsampling manager in a modularized manner, where different components commu-

nicate using the socket API. This allows us to readily replace various algorithms in our

storage server for comparisons. While our storage server can: (i) receive surveillance

video streams from the four IP cameras on our smart street lamps and (ii) serve queries

through analytics servers from actual users, doing so results in an unpredictable work-

load, which may prevent us from fairly comparing different storage server designs. To
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cope with this limitation, we also implement: (i) a virtual camera, which emulates a cam-

era in our testbed by replaying the surveillance videos and (ii) a query generator, which

emulates the requests from analytic servers. The two components allow us to impose

exactly the same workload on different storage server designs.

Time Series
Databases

Video Downsampling Platform

Analytics 
Server

Simplified Local Analytics

Virtual
Camera

Query
Generator

Sampling Length Estimator

Prediction Tables 

Downsampling Decision Maker

Optimal Sampling Manager

Figure 8.1: Testbed consisting of our implemented storage server, an analytics server,
a virtual camera, and a query generator. The circled numbers indicate the order of the
operations.

8.2 Predictor

Table 8.1: Sample Prediction Table

Index Sample Values

Analytics {People counting, Illegal parking, . . .}
Quality Level {(12 fps, 500 kbps), (6 fps, 10 kbps), . . . }

Day-of-the-week {Weekday, Weekend}
Time-of-the-day {0, 1, . . . , 23}

The resource consumption of video analytics and downsampling approaches depends

on: (i) analytics/downsampling types, (ii) analytics/downsampling parameters (i.e., L and

P), and (iii) context information. Context information refers to external information that

serves as hints for more accurate predictions. Examples of context information include

the weather (fewer people taking buses in rainy days), the day-of-the-week (campus buses

are busier on weekdays), the time-of-the-day (fewer pedestrians crossing an intersection

in late evenings), and parking lot occupancy (illegal parking are more likely when the lots

are more full). We let function t(c, a) be the per-frame execution time when analyzing

sampling frames of video clip c using analytics a. The context information of c is stored

in the same time-series database along with c itself. Similarly, we use t(c,P
′

c,Pc) to

represent the downsampling time of approach d to downsample clips from quality P
′

c to

Pc on video clip c.
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There are several ways of predicting the resource consumptions under different pa-

rameters and context. One possibility is to adopt general regression models with arbi-

trarily chosen parameters under diverse context. Doing so, however, requires too many

samples to train the regression models, which is fairly expensive. We argue that the

parameters need not be arbitrarily chosen because they are determined by the administra-

tors of the storage server. In other words, as long as our predictions are accurate with a

few pre-selected parameter values, the storage server will work as good as, if not better

than, having general regression models. Hence, we propose to employ lookup tables in-

dexed by analytics/downsampling decisions and context. The tables are built and updated

with online samples to accommodate the environmental dynamics. Whenever there is a

ground-truth sample coming from the video downsampling platform or analytics servers,

we update the sliding window and the tables. When a prediction is needed, the values in

the lookup tables are returned. When a cell is not populated (is empty), we use the value

in the closest cell (in the sense of context) for prediction. Following the same design

rationale of the resource prediction, we build an information amount table ê(·) indexed

by analytics, downsampling decision, and context. We give a sample lookup table in Ta-

ble 8.1. We estimate êc,fc,a and update ê(·) with the moving averages, which in turn allows

us to derive H ′(L), and H ′(P) using Eqs. (6.2) and (7.1), respectively. Last, we note that

there exists a large design space for more comprehensive predictors, which could be data-

driven and machine learning based. Real deployments of our proposed storage server

may be readily incorporated with these comprehensive predictors for better performance;

however, we conduct our evaluations with the predictors based on lookup tables to be

conservative.
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Chapter 9

Evaluations

In this section, we first introduce the evaluation metrics, baselines, and environment setup

of our trace-driven simulation. Next, we evaluate the effectiveness, efficiency, practicality,

and scalability of our proposed algorithms for the SLE and DDM problems.

9.1 Setup

For fair evaluations, we record the video clips from an IP camera facing a major inter-

section on our campus in November 20201. More precisely, the video clips are encoded

in HEVC codec [81] with a resolution of 2048×1536. Each video clip lasts for 1 hour2

at 24 fps and 1 Mbps. We conduct the evaluations on a Linux server with an Nvidia

GeForce GTX 1080Ti GPU running our storage server. We report the sample evaluation

results from the second week (9th to 15th; Monday to Sunday) of November; while re-

sults from other weeks are similar. Specifically, we replay the video clips for seven days

and generate random queries on the last day (Sunday) for analytics on the surveillance

video clips captured in these seven days as follows. We first let λ represent the average

number of requests per day; if not otherwise specified, we let λ = 8. The inter-arrival

time of the query events is generated with an unit of hour following a Poisson process.

For each query event, we randomly select an analytics using the uniform distribution. For

statistically meaningful results, we repeat the simulations six times with different random

seeds, and report the results from a sample run and across all six runs.

For comparisons, we have also implemented the following algorithms to mimic the

current practices:

1We have made the dataset available upon request after anonymization. Please see our webpage
(/https://nmsl.cs.nthu.edu.tw/projects//) for the instructions of getting access to the
dataset.

2We have tried minute as the unit of video, however, the temporal bias between minutes is too large
to capture the available features. As a result, we select the hourly videos, which meet the campus routine
more.
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• Equal-Fidelity (EF) downsamples the old video clips to a pre-defined bitrate (500

kbps if not otherwise specified) while keeping the same frames when more storage

space is needed. EF only downsamples each video clip once, i.e., a previously

downsampled video clip is deleted when EF is invoked again.

• Equal-Frame-Rate (EFR) is similar to EF, except that it downsamples the old

video clips to a pre-defined frame rate (6 fps if not otherwise specified). The bitrate

is not changed.

• First-In-First-Out (FIFO) always deletes the oldest video clips to free disk space

for incoming video clips.

We consider the following performance metrics:

• Information amount. We report the estimated information amount over time when

the algorithms for the SLE problem are triggered. Besides, we evaluate the total

information amount of our storage server as the time advances. Generally speaking,

more preserved information amounts lead to the lower chances for end-user queries

to fail in the future.

• Used storage space. More storage space is used when increasingly more surveil-

lance video clips are stored at the storage server. Our storage server controls the

used storage space based on the high/low watermarks. We evaluate the algorithms

for the DDM problem by measuring the dynamics of the used space.

• Number of the stored video clips. More video clips saved on the storage server

offer better chances for satisfying queries from end users. This is because, as long

as a video clip is not completely deleted, we can still apply some analytics on it

even though its quality level may be low.

• Running time of the algorithms. Processing streamed videos requires real-time

decision making, or the whole storage server may get stuck. We compare the run-

ning time of the algorithms solving the SLE and DDM problems.

• Per-query information amount error. We refer to the information amount gap

between the full and downsampled video clips as the per-query information amount

error. It can be readily computed using Eqs. (6.4) and (7.3).

We compare the performance of different algorithms under the following parameters.

We let the sampling lengths L0 = {1, 24, 48, 96, 144}. We empirically choose the follow-

ing downsampling decisions: P0 = {(24, 1000), (24, 500), (12, 500), (12, 100), (6, 100),

(6, 10), (1, 10)}, where the first element is the frame rate in fps and the second element is
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the bitrate in kbps. We note that some combinations of the frame rate and bitrate are not

included, because FFmpeg fails to transcode the video clip to those combinations, e.g.,

10 kbps is clearly too low for a 24 fps clip. Moreover, the high/low watermarks are set

to be 100% and 50% of the storage space in our experiments. We let δi = δd = 6 hours

because we aim to complete all the analytics and downsampling tasks before the next

decision is made. Due to the space limit, we report the sample results with the following

two parameters in our evaluations: (i) while our proposed storage server supports weights,

we use the unit weight matrix. (ii) we let the threshold for the entropy of visual features

δv = 0, which means all the detected shots are included when deriving the semantic fea-

tures of the video clips. We consider two sample analytics (illegal parking and people

counting) throughout our simulations; while two unknown analytics (illegal parking at a

different parking spot and car counting) are added in the later experiments to evaluate the

efficiency of the included visual features. Due to our sample analytics aiming to detect

people and cars existing or not, we set na = δa = 0 as the normal output and tolerance

level respectively. Furthermore, we vary the storage space size O ∈ {20, 40, 80} GB to

understand how it affects the overall performance. For the sake of fairness and clarify, we

adopt information amount estimated by OE when evaluating algorithms for a DDM prob-

lem. Similar simulation results with the same trends are observed, when the information

amounts are estimated by EE or AE. Last, we note that some of our proposed algorithms

employ discretized variables, which can be in different granularity levels. Finer granu-

larity leads to more precise free space management at the cost of longer running time.

To understand such a trade-off, we compare two granularity levels: MB and GB in the

evaluations. We include 95% confidence intervals as error bars whenever applicable.

9.2 Results

Our EE algorithm efficiently solves the SLE problem Figs. 9.1(a) and 9.1(b) plot the

estimated information amounts from sampled analytics on weekdays and the weekend.

We observe that OE captures 75% and EE does 70% on average information amount

w.r.t. the ground-truth, which is the videos without sampling. The AE captures the only

28%, which is worse, but still within the error range in theory. These two figures reveal

that more information amounts are captured during daytime of weekday, while the mid-

night on the weekend results in hardly any information amount. More importantly, our

EE algorithm effectively estimates the sampling lengths for analyzing the videos. The

resulting information amount of EE is less than that of OE by only 7% on weekdays and

9% on weekends at most. Besides, our EE beats AE by a large margin, especially at the

peak hours. Figs. 9.1(c) and 9.1(d) report the execution time of the analytics, which is
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well controlled within the deadline (shown by the dashed lines) when applying the sam-

pling lengths. The both figures also show that the sampling is essential; otherwise, the

execution time exceed the deadline most of the time. The running time of three estimation

algorithms are illustrated in Figs. 9.1(e) and 9.1(f)3. Because the difference between OE

and EE/AE is too large, so we plot the figures with log-scale Y-axes. We observe that

our EE algorithm runs in real time on both weekdays and weekends. In summary, our

proposed EE algorithm runs in real-time, yet achieves near optimal performance, better

than the optimal OE. In contrast, although the approximation algorithm AE comes with a

provable bound, it results in inferior performance compared to the EE algorithm. Hence,

we conclude that the EE algorithm efficiently solves the SLE problem.

Our ED algorithm preserves more information amount. We report the preserved

information amount on our storage server over a week. Fig. 9.2 gives the results from GB

granularity level. We make three observations on this figure. First, the first downsampling

decisions of all algorithms are made right before day 2 where EF, EFR, and FIFO suffer

from large drop on the information amount, while OD, ED, EF lead to little loss. Further,

only OD and ED effectively preserve information amount in the remaining days. Second,

the growth of information amount from day 1 to 5 (weekdays) is higher than that of the last

two days (weekends). Third, on day 7, the overall information amount saved by our ED

algorithm significantly outperforms all other alternatives. For example, EE outperforms

AD by 44% and EF by 69%. In summary, the ED algorithm efficiently addresses the DDM

problem and preserves more information amount over time.

Our ED algorithm runs in real time with fine granularity level. Table 9.1 reports

the average running time of the algorithms for the DDM problem with 95% confidence

intervals. The table shows that ED runs in real-time, always less than 89 ms. It is negli-

gible compared to the execution time of the downsampling tasks, which is in the order of

minutes if not hours. OD has an extremely large execution time, even with a coarse granu-

larity level of GB. In fact, we ran the OD algorithm for a week without getting the optimal

solution4; hence, we put Not-Applicable (N/A) in that table cell. Besides, because the size

of a video clip is about 400 MB in our testbed, taking GB as the granularity level leads

to high errors when making the downsampling decisions. For instance, Fig. 9.3(a) shows

that with GB granularity level, ED results in excessive downsampling time, actually ex-

ceeding the downsampling deadline marked as the dashed line. A closer look indicates

that the video codec cannot complete all downsampling tasks because of the prediction

3We notice that AE does not fully utilize all the execution time before the deadline. However, after
carefully comparing the information amount of AE compared to that without any sampling, we have found
that the error bounds of AE (H(C,F,A)/H

′

(L)) are merely 3.17 and 3.93 on the weekdays and weekend,
respectively. We note that these empirical error bounds are below the theoretical ones mentioned in Lemma
5.3.

4We estimate at least 38 days are needed to get the optimal decision.
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error on execution time due to coarse (GB) granularity. As similar issue also occurs on

the prediction of information amount. We observe that ED does not always lead to the

best performance compared to OD in various aspects. When the computing resource is

very scarce, AD may be more suitable than ED, because the downsampling time of AD

is only 34% of ED as shown in Fig. 9.3(a). Hence, system administrators could adopt

different algorithms depending on their available computing resources. Fig 9.3(b) gives

the total information amount from different algorithms for the DDM problem. Compared

to Fig. 9.2, we note that ED does not suffer from a sudden drop of the total information

amount on day 4 as highlighted by the circles. Another observation we can make out

of Fig 9.3(b) is that ED significantly outperforms AD, even though the latter algorithm

comes with a provable bound. In summary, we find that our proposed ED algorithm runs

in real-time and performs well with fine (MB) granularity level. In contrast, the optimal

OD algorithm fails to scale to fine granularity level, and thus is less practical. Hence,

we do not report results from OD in the rest of the thesis. In addition, results from MB

granularity level are given, if not otherwise specified.

Our storage server is effective on used space management yet results in low

per-query errors. Fig. 9.4(a) plots sample results of used space from days 1 to 2 and

Fig. 9.4(c) plots those from days 5 to 6. Results from other days are similar. In Fig. 9.4(a),

the five lines overlap with one another until about 21:00 on day 1. This is because the used

storage space has not reached the high watermark. These two figures show that: (i) the al-

gorithms for the DDM problem are invoked once the used storage space reaches the high

watermark and (ii) the used storage space drops below the low watermark as designed.

Moreover, our ED algorithm manages the used space quite well, as it stops right at the

low watermark. Figs. 9.4(b) and 9.4(d) report the number of video clips saved on the stor-

age server. Except for FIFO and EFR, all other algorithms result in increasing number of

saved video clips over the week. We observe that our ED deletes the least clips on both

weekdays and weekends. For example, on day 5, ED removes 48% fewer clips than EF;

ED saves 2.78 times more videos clips than FIFO on the last day. In Figs. 9.5(a)–9.5(c),

we report the per-query information amount error. On weekdays, we first observe that

EF, EFR, and FIFO lead to fairly large errors on almost all queries. The reason is that the

queries are generated on day 7; at that time, the earlier video clips are already removed by

these baseline algorithms. Our ED performs much better: its information amount error is

58% lower than that of FIFO on average. We notice that in the weekend, FIFO shows the

smallest error. This is no surprise as the queries are on the most recent video clips. Even

in the worst case (day 6), our ED still achieves a small information amount error of 0.2,

while other baseline algorithms could lead to almost 0.9 on some weekdays (like day 3).

Last, we also note that our AD still outperforms the baseline algorithms (EF, EFR, and
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FIFO), although it has inferior performance to ED as shown in Fig. 9.5. A deeper look

into Figs. 9.4(a), 9.4(b), and 9.5(c) reveals that EF, EFR, FIFO and AD suffer from two

shortcomings. First, they tend to free too much used space, especially AD and EFR, and

thus delete too many video clips. Second, even for those kept video clips, their quality

is too low for analytics algorithms to make sense out of them. Hence, EF, EFR, FIFO,

and AD do not perform well in terms of per-query error. Taken all together, our ED not

only well manages the used space and number of clips, but also successfully retains the

information on both weekdays and weekends compared to other alternatives.

Table 9.2: Information Amount Error With and Without Visual Features

Weekday Weekend

With 9.77× 10−2 (±1.14× 10−2) 2.60× 10−2 (±5.85× 10−3)
Without 1.40× 10−1 (±1.85× 10−2) 4.78× 10−2 (±1.03× 10−2)

Our storage server successfully supports unknown analytics. We define the infor-

mation amount based on both semantic and visual features. The latter features are meant

to cover the unknown analytics in the future. To understand their effectiveness, we next

employ two unknown analytics in the queries on day 7. We then compute their errors of

information amount with and without considering the visual features in our proposed ED

algorithms. We give the results in Table 9.2. This table reveals that introducing (low-

level) visual features reduces the information amount errors: 30% on weekdays and 46%

on weekends, respectively. The reason is that visual features are more general across

queries with heterogeneous analytics. By considering visual features in the information

amount, our storage server is capable of retaining important videos even if there are new

analytics coming from end users. Table 9.2 also shows that the errors on weekends are

slightly lower than those on weekdays. This is as expected, because the quires are made

closer to weekends (than weekdays).

Our ED algorithm scales well with larger storage spaces. Last, we consider differ-

ent storage size: between 20 to 80 GB. To exercise the larger disks, we consider a longer

12-day trace between 9th and 20th of November. We report the per-day performance of

our ED algorithm in Fig. 9.6. We observe that ED successfully capitalizes additional stor-

age spaces: it saves more video clips and total information amount when the storage space

is increased to 80 GB. In addition, the used space is well bounded between the high/low

watermarks. In summary, our ED algorithm scales well with larger storage spaces.
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Figure 9.1: Comparisons of different algorithms for the SLE problem: (a), (c), and (e)
on weekdays; (b), (d), and (f) over the weekend. (a) and (b) are the information amount;
(c) and (d) are the execution time of sampled analytics; (e) and (f) are the algorithms’
running time.
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Figure 9.2: Comparisons of downsampling decision algorithms: preserved information
amount GB granularity.

Table 9.1: Running Time of Downsampling Decision Algorithms with Different Granu-
larity Levels (Unit: s)

Algorithm MB GB

OD N/A 3.32× 102(±1.95× 101)
ED 8.85× 10−2 (±1.26× 10−3) 1.25× 10−2 (±2.72× 10−3)
AD 2.06× 10−3 (±2.28× 10−4) 1.81× 10−3 (±2.31× 10−4)
EF 1.30× 10−3 (±2.58× 10−3) 1.00× 10−3 (±2.64× 10−5)

EFR 8.12× 10−4 (±9.02× 10−5) 9.13× 10−4 (±1.05× 10−4)
FIFO 5.26× 10−4(±1.89× 10−5) 4.95× 10−4(±5.13× 10−6)
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Figure 9.3: Comparisons of downsampling decision algorithms: (a) execution time of the
video sampling tasks and (b) preserved information amount MB granularity.
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Figure 9.4: Comparison of different algorithm for the DDM problem: (a)–(c) on week-
days; (b)–(d) over the weekend. (a) and (b) are the total used space of stored video clips;
(b) and (d) are the number of stored video clips.
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Figure 9.5: Information amount error for queries: (a) average and (b) maximum errors
across seven days in different runs; (c) average of each day in seven days, sample results
from run 1 are shown. Notice that all algorithms (except OD, which is not included in this
figure) lead to zero information amount error on day 7.
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Figure 9.6: Our ED algorithm scales well with larger storage spaces: (a) number of stored
video clips, (b) total information amount, and (c) total used space.
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Chapter 10

Conclusion

In this thesis, we detailed the design, implementations, optimization, and evaluations of a

multi-level feature driven storage server for surveillance videos gathered from smart envi-

ronments. The design goal of the storage server is to retain as much information amount as

possible under the constraints of storage space and computational power. We achieved the

design goal in the following steps. We first carefully defined the information amount by

extracting semantic and visual features from shots in the surveillance video clips. We pro-

posed to use lookup tables for predicting resource consumption and information amount

due to different analytics and downsampling approaches. Such predictions are capitalized

to solve two key research problems: (i) sampling length estimation, which determines the

sampling length to capture the information amount without overloading the storage server

and (ii) downsampling decision maker, which selects a downsampling decision matrix to

retain the most information amount without consuming excessive resources (both compu-

tation time and storage). We conducted extensive trace-driven simulations to compare the

performance of our proposed algorithms in the system against the current practices. We

found that our efficient algorithms (EE and ED) run faster (than the optimal algorithms

OE and OD) and achieve much better performance (than the approximation algorithms

AE and AD). The evaluation results demonstrate that our efficient algorithms:

1. achieve a mere ∼ 7% captured information amount gap compared to the optimal

solutions;

2. boost the number of saved video clips by up to 2.78 times.;

3. reduce per-query error by ∼ 58% on average;

4. terminate in 88 ms at most;

5. well-manage the used space between the high/low watermarks;

6. generate smaller errors on unknown analytics;
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7. scale well with larger storage space.

Our proposed storage server can be extended in several directions. First, a cluster of

geographically distributed storage servers could be jointly managed for even better per-

formance. Second, quantifying the satisfaction levels of end-user queries is non-trivial.

The information amount computed by our storage server may not directly reflect the user

experience. Incorporating the concept of Quality-of-Experience [62] may be worth in-

vestigating. Besides, the weights of analytics and clips from different users probably

are inconsistent with each other, thus proper aggregation algorithms for different users’

weight can be designed. Third, more comprehensive predictors, such as those built upon

Reinforcement-Learning (RL) [82] may be adopted; while the implications of more ac-

curate predictions on the performance storage server can be quantified. Fourth, a wider

array of analytics applications for diverse scenarios, such as infrastructure monitoring

and smart agriculture, may be considered, where the information overlaps among these

analytics applications can be investigated and potentially leveraged in the storage server

design. Last, sensors other than surveillance cameras may also leverage our proposed

solution, where audio and time-series data can be efficiently stored on edge servers.
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