國立清華大學電機資訊學院資訊系統與應用研究所 碩士論文 Institute of Information Systems and Applications College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

多級別特徵驅動之監視影像儲存管理系統

Multi-level Feature-driven Storage Management of Surveillance

蔡旻翰 Min-Han Tsai

學號:108065701 Student ID:108065701

指導教授:徐正炘 博士 Advisor: Cheng-Hsin Hsu, Ph.D.

> 中華民國 110 年 5 月 May, 2021

Acknowledgments

The time of two years and three months is limited, but it carries infinite gratitude and memory. First of all, I would like to thank my family who always trusts and supports what I want to do. Thanks to my friends and labmates, especially Chao-Wen, Cheng-Hao, and Tse-Hou. They give me recommendations, talk funny words, and eat tons of hot pots with me. My research becomes much more interesting because I have nice partners like you. Next, I want to give my thanks to Ching-Lin and Shou-Chen. They also provide me lots of suggestions on no matter doing research or finding jobs. Thanks to my course and TA partners who cover me when I was thoughtless. Next, I am grateful to my adviser, Prof. Hsu. It is an awesome idea that you keep pushing my publications, which makes my research life easier and enriches my resume. Prof. Hsu is a super nice person who spares no effort to teach me how to do research and correct my direction, besides, he also offers sufficient equipment and the opportunity of practicing English to me. I was so lucky to finish my thesis and find a nice job on time. Prof. Hsu gives me a great help on revising my write-up and he always provides me useful advice. He even pops up in the lab with coke and food before the deadline so that I can keep working on my code and thesis without being hungry. I want to thank my girlfriend. I usually go home late, while you always wait for me patiently. I sincerely hope that we can keep fighting to realize our dream. Thanks to all people mentioned above, you guys are the great part of my graduate career absolutely.

致謝

在兩年又三個月的有限的歲月裡,卻乘載了無限的感謝和回憶。 首先感謝我的家人,謝謝你們總是相信我且支持我想做的事。 謝謝實 驗室的朋友和學長姐弟妹,特別是陳昭文、吳丞浩、洪澤厚,在過去 兩年中給我許多研究建議,同時也講了不少垃圾話和吃了不少火鍋, 讓我的研究生活增添趣味。感謝樊慶玲學姊和嚴守成學長在研究和找 工作上都幫助我非常多,解決了我很多實作和想法上的瓶頸。感謝跟 我一起修課和當助教的夥伴支援我粗心的地方。 感謝給我機會進到 這間實驗室的徐正炘教授,從剛開始就鼓勵我發表,讓我碩班的後半 段輕鬆許多,也充分豐富了我的經歷。教授不遺餘力地傳授我研究方 法、方向,並提供了足夠的實驗設備和英文練習機會,讓我可以準時 順利地畢業和找到工作。每次改寫作都鉅細靡遺地修改文章並附上滿 滿的建議,截稿日前還會突擊實驗室餵食可樂和蛋糕,讓我可以不間 斷地寫程式和改論文。我要謝謝我的女朋友,很抱歉我為了論文的事 常常晚回家,而你一直以來都很信任和支持我,希望未來我們可以繼 續一起努力完成我們的夢想。感謝以上的所有人,你們都是我碩班生 涯中最重要的部分。

中文摘要

在智慧場域中,隨著串流監視影像技術的興起,許多創新的分析應 用也應運而生,其中包含了各式各樣能將純影像轉化為對使用者來說 具有意義的結果。 除了即時的串流服務,這些監視影像也被保存在存 儲伺服器中,以提供未來使用者隨選式、自定義的分析請求。不同於 現有專注於最大化影片品質的隨選式 影音串流服務,監視影像存儲伺 服器需要面對的是:在有限的空間和運算資源下決定並最大化儲存影 片的資訊含量,同時還要替未來新進的影片預留空間。在本論文中, 我們設計、實作、優化、並評估了一個多級特徵驅動存儲系統,該系 統能提供各種規模的智慧場域使用,如智慧校園、建築、社區或城 市。我們專注 於此系統的設計和實作,並且解決了兩個核心的問題: (一)有效率地捕捉新進影片的資訊含量(二)聰明地決定影片保存 的品質。我們首先採取近似分析的方式 推算出影片的資訊含量,並使 得伺服器免於過載的問題。此近似分析的算法基於多級特徵(語意及 視覺特徵)正式定義所謂的「資訊量」。接著,我們根據此量化的數 值決定最佳降採樣的方法和影片的目標保存品質,目的在於最大化存 儲系統中的的總資訊量。我們嚴格地制定上述兩個研究問題並以數學 方法將其轉化為 最佳化問題。對此兩個問題,我們分別給出了最佳、 近似、和高效共六個算法。除了一系列優化的算法,我們也利用清華 大學的物聯網測試平台中的影片評估 我們提出的系統。此平台包含了 八支裝有各式感測器的智慧路燈,其中四支裝了監視錄影機,並且所 有捕捉的影片都會送回至機房做儲存和分析。在實驗階段,我們以 實 際的影片評估我們提出的演算法的效能,而我們提出的解決方案在多 方面都勝過了目前業界的做法,例如:(一)在捕捉資訊量上,達成 了和最佳解僅有7%的差距(二)在一週的實驗後存下了近三倍的影片 數量(三)減少平均58%的請求誤差(四)能在100毫秒内做出決定所 有影片保存的品質(五)不超出系統可負荷的儲存空間(六)能適應 各種規模的儲存空間。

Abstract

Surveillance videos in smart environments have become commodities nowadays, which enable many novel applications, including various video analytics that turn videos into semantic results. In addition to live feeds, the surveillance videos may be saved in a storage server for on-demand userdefined queries in the future. Different from on-demand video streaming servers whose design objective is to maximize the user-perceived video quality, a surveillance video storage server has limited space and must retain as much information as possible, while reserving sufficient space for incoming videos. In this thesis, we design, implement, optimize, and evaluate a multilevel feature driven storage server for diverse-scale smart environments, for example buildings, campuses, communities, and cities. We focus on the design and implementation of the storage server and solve two key research problems in it, namely: (i) efficiently determining the information amount of incoming videos and (ii) intelligently deciding the qualities of videos to be kept. In particular, we first analyze the videos to derive approximate information amount without overloading our storage server. This is done by formally defining the information amount based on multi-level (semantic and visual) features of videos. We then leverage the information amounts to determine the optimal downsampling approach and target quality level of videos to save storage space, while preserving as much information amount as possible. We rigorously formulate the above two research problems into mathematical optimization problems, and propose optimal, approximate, and efficient algorithms to solve them. Besides the suite of optimization algorithms, we also implement our proposed system on a smart campus testbed at NTHU, Taiwan, which consists of eight smart street lamps. The street lamps are equipped with a wide spectrum of sensors, network devices, analytics servers, and a storage server. We compare the performance of our proposed algorithms against the current practices using real surveillance videos from our smart campus testbed. Our efficient algorithms outperform the current practices in multiple dimensions, meaning we: (i) achieve a mere 7% approximation gap on captured information amount compared to the optimal solutions, (ii) save almost 3 times more clips after a week, (iii) achieve 58% less per-query error on average, (iv) always terminate in less than 100 ms, (v) do not consume excessive storage space, and (vi) scale well with larger storage spaces.

Contents

Ac	know	ledgments				
致	謝	ii				
中	文摘	要 iii				
Ał	ostrac	t iv				
1	Intro	oduction 1				
	1.1	Contributions				
	1.2	Organizations				
2	Bacl	ground 6				
	2.1	Internet-of-Things				
	2.2	Smart Environments				
	2.3	Cloud Computing				
	2.4	Edge Computing				
	2.5	Cloud-to-Thing Continuum				
	2.6	Machine Learning Enabled Analytics				
3	Rela	ted Work 14				
	3.1	Video storage server				
	3.2	Video analytics				
	3.3	Video downsampling				
	3.4	Video summarization				
4	Info	rmation Amount of Surveillance Videos 17				
5	Desi	gn of Storage Management 22				
	5.1	Workflow				
	5.2	Components				
6	Sampling Length Estimator: SLE					
	6.1	Notations				
	6.2	Problem Formulation				
	6.3	Optimal Estimation (OE) Algorithm				
	6.4	Approximated Estimation (AE) Algorithm				
	6.5	Efficient Estimation (EE) Algorithm				

7	Dow	nsampling Decision Maker: DDM	29		
	7.1	Notations	29		
	7.2	Problem Formulation	30		
	7.3	Optimal Decision (OD) Algorithm	31		
	7.4	Approximation Decision (AD) Algorithm	32		
	7.5	Efficient Decision (ED) Algorithm	33		
8	8 Implementations				
	8.1	Testbed Implementation	36		
	8.2	Predictor	37		
9	• Evaluations				
	9.1	Setup	39		
	9.2	Results	41		
10	Con	clusion	51		
Bibliography					

Bibliography

List of Figures

1.1	A sample IoT edge network, consisting of cameras (and other sensors), a	
	gateway, a storage server, and several analytics servers	2
1.2	Sample features: (a) semantic and (b) visual ones	3
2.1	Evolution of the Internet-of-Things [53]	7
2.2	Sample smart environment with various sensors	8
4.1	Sample visual importance scores based on the PCA results from real video	
	clips: (a) video with longer shots and higher entropy in daytime (b) video	
	with shorter shots and lower entropy at midnight.	20
4.2	System overview of our storage server in the edge network	20
7.1	The smart street lamp testbed at NTHU, Taiwan: (a) testbed topology and	
	(b) sample photos	35
8.1	Testbed consisting of our implemented storage server, an analytics server,	
	a virtual camera, and a query generator. The circled numbers indicate the	
	order of the operations	37
9.1	Comparisons of different algorithms for the SLE problem: (a), (c), and (e)	
	on weekdays; (b), (d), and (f) over the weekend. (a) and (b) are the infor-	
	mation amount; (c) and (d) are the execution time of sampled analytics;	
	(e) and (f) are the algorithms' running time	45
9.2	Comparisons of downsampling decision algorithms: preserved informa-	
	tion amount GB granularity.	46
9.3	Comparisons of downsampling decision algorithms: (a) execution time	
	of the video sampling tasks and (b) preserved information amount MB	
	granularity	47
9.4	Comparison of different algorithm for the DDM problem: (a)-(c) on	
	weekdays; (b)–(d) over the weekend. (a) and (b) are the total used space	
	of stored video clips; (b) and (d) are the number of stored video clips	48

- stored video clips, (b) total information amount, and (c) total used space. . 50

List of Tables

4.1	Performance Comparison of Dimensionality Reduction Methods (Unit: s)	19
8.1	Sample Prediction Table	37
9.2	Information Amount Error With and Without Visual Features	44
9.1	Running Time of Downsampling Decision Algorithms with Different Gran-	
	ularity Levels (Unit: s)	46

Chapter 1

Introduction

Increasingly more surveillance cameras are being deployed in smart environments, such as cities, home, and workspaces, for enhanced security. Due to the broad applications of surveillance cameras and mature techniques like artificial intelligence, the global market of surveillance cameras is constantly growing. For instance, the surveillance camera market of the smart home sector will reach \$9.7 billion by 2023, while the market share including other sectors is even larger. More and more cameras in smart environments offer novel and diverse analytics applications, such as object detection and tracking [12, 25, 95], face recognition [52, 71], health monitoring [70, 76], and traffic management [46, 58, 74]. Nowadays, the cameras upload surveillance video clips to data centers for storage and analytics [20, 40, 72]. Doing so, however, may lead to high operational cost and network congestion because each surveillance camera produces a traffic stream at several Mbps. On top of that, many of these video clips are never queried by end users throughout their life-cycles. Therefore, a better way to manage the video clips is to store them on a *storage* server in an edge network, as illustrated in Fig. 1.1. The edge network interconnects multiple nearby Internet-of-Things (IoT) devices, including surveillance cameras, and connects to the Internet via a gateway through an access network. By not uploading all the video clips to the cloud, the traffic load on the access network is reduced. When users need to query/analyze the surveillance videos, they instruct nearby analytics servers, which in turn request for corresponding video clips from the storage server. These analytics servers could be: (i) stationary at base stations, serving close-by smartphones and laptops or (ii) mobile in police cars, fire trucks, and ambulances, serving end users in them.

Keeping surveillance video clips at a storage server, however, may quickly fill up its disk. For example, storing 1 Mbps video clips from 10 surveillance cameras for merely a week consumes 1.4 TB disk space, but surveillance video clips are typically archived for much longer than a week. When the storage space of the edge server is used up, we have to get rid of some video clips to make room for incoming ones. A naive way

Figure 1.1: A sample IoT edge network, consisting of cameras (and other sensors), a gateway, a storage server, and several analytics servers.

to do this is to delete the oldest video clips. Doing so, however, may lead to too much information loss, because video clips from different cameras at different times contain *different* amounts of information. In fact, video clips that contain some useful information are better *downsampled* (in temporal, spatial, fidelity, or other aspects) instead of being completely deleted. The downsampled video clips can still be queried/analyzed for useful analytics results in the future.

The resulting information amount from analytics queries depends on the end-user needs and the surveillance video content. Different video clips contain diverse amounts of information, which can be characterized by the *semantic* and *visual* features. The semantic features are high level, which directly reflect the user-intended queries, e.g., the business owners pay more attention to the number of pass-by pedestrians at the intersections, while the police department cares whether there are illegally parked or speeding cars. The visual features are low level, e.g., color distributions and dominated edges, which are more general across queries with heterogeneous analytics. Fig. 1.2 illustrates sample semantic and visual features. Among these features, the visual features are more general for unknown analytics in future user queries, but may not be exactly aligned with the actual analytics. Hence, we consider both semantic and visual features, striving to get the best out of them both.

In this thesis, we design, implement, and optimize a storage server for saving the surveillance video clips. *The goal is to retain video clips with the highest information*

(a)

No. of People: 4

Figure 1.2: Sample features: (a) semantic and (b) visual ones.

amounts and selectively downsample the stored video clips to make room for future ones. This is, however, no easy task for the following reasons:

- Challenge #1: Different video clips contain diverse information amounts, which depend on the dynamic query demands of video analytics from end users.
- Challenge #2: Different downsampling approaches lead to diverse amounts of information loss.
- Challenge #3: Quantifying the information amount requires executing video analytics and downsampling video clips requires video transcoding. Both video analytics and downsampling are computationally intensive and thus need to be carefully scheduled.

We address the above three challenges as follows. We first define the information amount to systematically guide the decisions made on our storage server. We then employ multiple downsampling approaches to free up the storage space. We study two key optimization problems of our proposed storage server. The first problem is selecting a sampling length of each video clip to analyze, in order to approximate the actual information amount without overloading the storage server. The second problem is choosing the downsampling approaches and quality levels for individual video clips to preserve as much information as possible, while making enough room for incoming video clips. For each of the optimization problems, we first give its optimal and approximation algorithms with analysis. For better efficiency and practicality, we also propose heuristic algorithms for both research problems. Our experiments reveal that our heuristic algorithms: (i) reach 58% less per-query error on average, (ii) save nearly 2.78 times more clips after a week, (iii) make decisions in real time (less than 100 ms), (iv) lead to only 7% less information amount gap than the optimal solutions, (v) control the used space within the allowed range, and (vi) scale to larger storage spaces.

1.1 Contributions

In this thesis, we rigorously study the aforementioned challenges. We design, implement, and optimize a multi-level feature-driven storage server for surveillance. Considering the real problem occuring in smart environments, we propose six algorithms and give their corresponding complexities. The algorithms with different bounds aim to adapt to the change of resource conditions. We collect twelve days of evaluation videos from our real testbed on our campus. Specifically, we made the following contributions in this thesis:

- We propose a storage sever to retain information amount under the constraints of space and computation power.
- We decide the sampling lengths for analytics and quality levels for preservation.
- We give optimal and approximate algorithms for analysis, and heuristic algorithms for better efficiency and practicality.
- We evaluate the performance of the system in the real world testbed.

1.2 Organizations

This thesis is organized as followed: we first give an introduction and point out the challenges to build the edge storage server in Chapter 1; the background of Internet-of-Things, smart environments, cloud computing, cloud-to-thing continuum, and machine learning enabled analytics in Chapter 2; the related work of the video storage server, video downsampling/analytics, and video summarization in Chapter 3; we define information amount to quantify the importance of surveillance videos in Chapter 4; system design and architecture of our storage server and the functionality of each component in Chapter 5; formulations targeting the optimization problem to determine the sampling lengths, which are for analyzing videos, in Chapter 6; formulations targeting the optimization problem to determine the quality levels of videos, which are for video preservation in the edge server, in Chapter 7; system and testbed implementation are detailed in Chapter 8; set up and extensive experiments to evaluate the performance of our storage server in Chapter 9; and a conclusion of our contributions and future works in Chapter 10.

Chapter 2

Background

2.1 Internet-of-Things

Internet-of-Things is the concept of "things" connecting to networks and interact with each other without human intervention. The things communicate or collect data wirelessly via smart sensors. By leveraging these data, people have built various life-assisted applications in the field of transportion, healthcare, housekeeping, etc. The idea of IoT was firstly proposed by Kevin Ashton in 1999 [3], while the refered field only ranged from the identifiable object with radio-frequency identification technology (RFID). In later, IoT had been more generally defined with respect to the standards, protocols, interface, and integration of networks [48, 55]. Also, the International Telecommunication Union (ITU) discussed the potential of products, markets, challenges, and implications of IoT [45]. We illustrate the evolvement of IoT as several phases in the Fig.2.1, which is organized by Li et al [53]. The initial stage is the passive identification applied on warehouse management or door access control. After the emergence of wireless technology, the IoT applications are enabled with wireless sensory networks (WSNs), RFID, near field communication (NFC), barcodes, low energy communications, and cloud computing. It has been more widely used on ambient and autonomous control at the different usage scenarios [10, 83, 92]. In the mid-2010s, as the technology of mobile devices and 4G networks became mature, more computational tasks are brought to smaller and more portable devices like smart phones, raspberry Pi, and drone. These smart "things" are capable of conducting more complex tasks collaboratively under the acceptable latency. In recent years, IoT sensors are deployed is shown in smart cities, campuses, or buildings. The sensor data collected from these devices are not only used for monitoring, but also to generate predictions for analysis, combined with machine learning. In the past decades, machine to machine (M2M) communication has been implemented through the low energy of bluetooth [34], Zigbee [73], Wifi [38], and long range of SigFox [91], LoRa [89, 91],

Figure 2.1: Evolution of the Internet-of-Things [53].

and Ingenu random phase multiple access (RPMA) [42]. However, these solutions are still not perfect for all the M2M scenarios. Because of the rapid development of 5G networks [77], the requirements of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (uRLLC), and Massive Machine Type Communications (mMTC) proposed by International Mobile Communications (IMT) will be achieved in the near future. With the corresponding benefits, more comprehensive services are realized: eMBB enhances the downlink/uplink speed to the level of 10Gbps, multiple VR/AR streaming can be viewed no matter where we are; uRLLC ensures restricted latency and reliability (thus the needs of remote surge, self-driving, or precise industrial control are guaranteed); The characteristics of mMTC connects components at million levels. To sum up, 5G networks address most of existing challenges of IoT.

2.2 Smart Environments

A smart environment is a combination of invisible sensor, actuators, and computational elements. The components are generally embedded seamlessly in normal objects and are connected to each other. A sample smart environment is illustrated in Fig. 2.2. Through the network of these smart components, we are capable of monitoring and controlling environmental factors such as energy, pollution, grean area, and traffic flow. We can make the environment adapt to dynamic events in the real world [4, 17]. Based on the

Figure 2.2: Sample smart environment with various sensors.

knowledge in the specified area, the citizen or end users are offered a more convenient, energy-saving, intelligent life model. To build smart environments, we need to deploy, collect, and analyze data from ubiquitous IoT sensors. We take smart meters as an example. Smart meters can measure and communicate residential electricity consumption through the Internet. The energy consumption can be tracked by both the end user and power supply company. As a result, more efficient and effective electricity services, customized tariffs [44], and demand response programs [61] are achieved in the context of smart grid. We can view the real time data log by website on mobile phone applications. Further more, to analyze these consumption information automatically, Weiss et al. [93] propose a better-tailor feedback scheme which breaks down the consumption in an appliance-specific manner.

Another example is the smart city. Generally speaking, the biggest issue in the smart city is the problem of traffic congestion. According to the report from U.S. Census Bureau [16], an American spend 27.1 minutes on one-way commuting averagely, which is 20 minutes more than a decades ago. As roadmaps in cities become more mature, however, the traffic gets worse because the majority of people want to move during the same time (rush hour). The traffic signs fail to efficiently control the priority of road users. The priority of private cars, buses, motorcycles, bikes, and pedestrians require to be changed dynamically based on the condition on road. Thus, by installing the sensors on the traffic light [28, 46], we are able know how many cars are on road with object detection algorithms. By analyzing the results, the intervals of traffic signs can be adjusted at different times in a day. Not limited to traffic, there are a couple of applications that can be realized in a smart city like bus route scheduling [2], pollution and energy monitoring [80], healthcare [18], etc.

2.3 Cloud Computing

With the evolution of computing services, what users need has transformed into commodifized models of service that deliver in the same manner as traditional utilities. Cloud computing is based on this concept to provide people easy access, scalable, elastic IT service around the world. As defined by the from National Institute of Standard and Technology (NIST) [65], cloud computing enables ubiquitous and on-demand network access to shared pools of configurable computing resources, which allows users to rapidly provision their service with minimal effort. NIST characterizes the cloud computing model with five main properties: (i) on-demand self-service, unilateral provision without human interaction, (ii) broad network access, heterogeneous client platform available, (iii) resource pooling, multi-tenant model dynamically assigning resources to customers, (iv) rapidly elasticity, rapid scaling capability with appropriate quantity, (v) measured service, systematically controlling and monitoring resource usage. In other words, customers can easily and flexible access computing services without affording the heavy maintenance cost. Any startup or enterprise can benefit from cloud computing: for instance, a startup can focus on developing their products instead of the high capital and management cost of IT, while enterprises can make business more agile and shorten time to market.

We can divide cloud computing mainly into three kinds of service models: Infrastructure as a Service (IaaS), Platform as a Service (Paas), and Software as a Service (SaaS), which are also considered as different solutions to address IT issues. IaaS provides the customer most basic provisions like storage, network, or RAM, but is highly flexible and scalable. We can control the infrastructure without hiring external IT contractors. With the pay-as-you-use model, it fits the budget and scaling requirement at any time. Examples of IaaS are Amazon EC2 or OpenStack. PaaS provides runtime environments comprising of software, middleware, and other software that allow people to use these tools to develop and manage in a more abstract way. Without needing building applications from scratch and knowing administration knowledge, developers are able to focus on the creating, testing, and deploying side of the products rather than software operations like updating or security. Database, load balancer, and MapReduce are some instances of PaaS. Last, SaaS directly delivers the integrated application to customers through the Internet. With SaaS, users don't need to install any additional software and can conveniently access the service via any device such as a web browser. In our daily lives, we highly rely on SaaS like Gmail, Facebook, Github, etc. Enterprise or companies can choose from these three kinds of models depending on the scale and complexity of their business, with the common ground that cloud computing helps the development of business to grow faster and more stably.

Cloud computing is not perfect: for example, although remote backup is an essential requirement that a cloud service provider should guarantee, the services are still not long-lasting forever. There are actually some example of significant [5, 36, 60] failure events of cloud computing even if the service is mature today. Additionally, because all the services are provided through the Internet, once the network congests or disconnection occurs, the Quality of Services (QoS) of applications will be affected drastically. Thus, we need another solution to reduce the latency while providing seamless services.

2.4 Edge Computing

As the data generated by IoT (Internet of Things) devices increase, processing these data at an edge network becomes more efficient. The concept of edge computing is providing computational capacity for local edge networks. With the shorter distances required, edge computing reduces the round-trip time of data transmission and offers acceptable computing power or storage service to end-users. In fact, cloud computing is not always efficient and practical at the edge of the network. Here Shi et al. [79] give some reasons:

- Push From Cloud Service: Compare to the fast speed of data processing, the bottleneck for most scenarios are the communication bandwidth. Take self-driving as an example: it is impossible to exchange all data information with cloud data centers when the sensors onboard are capturing any event. However, the handling of these events is usually urgent, e.g., stopping the red light or changing lanes. Thus, the response time is the most crucial and challenging part. Cloud computing may fail if the bandwidth and reliability of network conditions are insufficient. With edge computing, shorter response time and less network congestion can be realized in such kinds of applications.
- Pull from IoT: From the estimation of Cisco [39], there are around 75 billion things connected to the Internet. This fact makes it difficult for traditional cloud computing to handle all the requests from devices. Large data quantities generate non-trivial bandwidth and computational usage. Some sensitive data aren't suitable to be transmitted to the public cloud, so the processing is required to be finished at the edge network right away. Last but not least, IoT devices are usually weak and energy starving. By offloading the task to edge servers, tasks can be conducted more efficiently.
- Change From Data Consumer to Producer: In traditional cloud computing scenarios, IoT devices are the data consumers (such as downloading the video to cellphones). With the development of mobile devices and wireless techniques, the mo-

bile/IoT devices also change to be the data producers, for example, a surveillance cameras streaming and storing the videos to the cloud. As a result, the collected data should be pre-processed before sending to the cloud. Otherwise, network congestion or privacy degradation would certainly occur.

The concept of edge computing is well-applied to real-world scenarios: smart home, smart city, video analysis, cloud offloading, or collective edge. However, the challenges and the solutions in edge computing is still worth further research. For instance, the storage and computation capability of edge servers are not as powerful as cloud servers. The collaboration of edge servers or optimization of processing procedures are the possible solutions and oppurtunity [14, 66, 97]. To sum up, using edge computing addresses some challenges of cloud computing, but also results in some new challenges owing to characteristics of edge network. Under such background, we formulate the problems and address the challenges of analyzing and managing the surveillance videos in the smart city.

2.5 Cloud-to-Thing Continuum

The development of technological trend starting from Wireless Sensor Network (WSN), IoT, Cloud (centralized/distributed), to Fog Computing, and Mobile Edge Computing (MEC). These technologies focus on their own respective usage scenarios. However, as the applications become heterogeneous and complex, we cannot rely on merely one of them to process, store, connect, and control thousands of devices and servers. Traditional cloud connectivity is no longer sufficient [11]. Thus, we merge the concept of these technologies and build a more general and comprehensive idea: Cloud-to-Thing Continuum. IoT devices collect the data from the local area and conduct lightweight processing on the devices themselves. Groups of devices require collaboration in order to fuse the source of the heterogeneous sensor and perform analytics on the edge server. Analytics is the process of deriving knowledge from data and its additional values. It ranges from health, transportation, living to the environment, and industry. The results of analytics are transmitted and shared across the area via the Internet (either wired or wireless). At the top of the cloud-to-thing continuum is the cloud platform, which consists of data centers and a worldwide network. The cloud platform provides borderless services to all the local networks around the world. Since cloud services can share the data with worldwide users, the collaboration of edge servers also benefits from these data to offer more complete and complex tasks.

In the cloud-to-thing continuum, orchestration is a crucial feature for many ITs and DevOps engineers to help them reduce the cost, speed up the deployment, and simplify the optimization of the service of system [67]. Building a stable cloud-to-edge orchestra-

tion is challenging due to issues of network failure, resource capacity, user pattern, and so on. Traditionally, the integration and interoperation of the software and hardware also require large effort to realize them. [11]. In the cloud-to-thing era, the orchestration of the system turns to be distributed. The computation and storage of applications are decentralized across the networks. As a result, the cloud evolves to the control nodes of the edge server/devices and conducts summary analytics. As for edge servers, they are in charge of real-time response to end devices. According to Vaquero [90], the needs of orchestration in edge/fog computing mainly focus on dynamic operation, coalitions, privacy, and microservice. To realize these targets, virtualization [15] is the most commonly used technology. Nowadays, we move virtualization from virtual machine to container, which is a more lightweight solution. Developers apply containerized applications in the cloud-to-thing continuum such as Docker [59]. The common orchestration solution is Kubernetes [9] architecture, which is an open-source system for automating deployment, scaling, and management. The lifecycle of cloud-to-things application has a more systematical operation so that the developments also become faster, more effective, and organized. Nevertheless, there are still challenges that need to be addressed and optimized in the orchestration of the cloud-to-things continuum, e.g., the reliability of high-density device or low-latency and low-energy cross-layer communication. Numerous research topics in this field are ongoing or will be proposed in the near future [7].

2.6 Machine Learning Enabled Analytics

Machine learning has existed for nearly half a century. The father of machine learning, Alan Turing, created the computer in history to decrypt secret messages from Germans in World War II. His contribution saves thousands of lives from the war, and his masterpieces, Turing machine and Turing test, became the basis of the general-purpose computer, which fostered artificial intelligent in the following decades. Before 2012, the research of machine learning kept being developed, like the cases of Deep Blue [41] from IBM, Kinect [102] from Microsoft, IBM's Watson [37], and Google Brain [31]. In the period, the idea of deep learning, which was created by Geoffrey Hinton [51], had been realized and triggered a powerful research trend. In 2012, Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever published the model, ImageNet [49], which can dramatically reduce the error on image recognition. In the following year, ZFNet, GoogLeNet (Inception), VGGNet, and ResNet were released successively. The machine learning models are based on Convolution Neural Network (CNN) and solve the problem in computer vision. Some other network structures such as the Recurrent Neural Network (RNN) or Generative Adversarial Network (GAN) can address and solve different kinds of problems, no

22 MUA UNIT

matter if it is the supervised or unsupervised. Thanks to the improvement of the manufacturing process of semiconductors, we are able to compact more computational units on chips. Analyzing the data or training our model can be more efficient with more powerful GPUs. In addition, more and more edge/fog devices are equipped with the basic capability to inference model so that some simple analytics can be conducted right away as soon as the sensors collect the data. The promising machine learning framework, Tensorflow Lite [33], which is a lightweight version for small and mobile devices, facilitates machine learning on the edge. In reality, machine learning enabled analytics are capable of doing much more interesting things than we thought.

In recent decades, machine learning has generated real value in both industrial or business fields. For example, Google's DeepMind [30] leverages machine learning to reduce the energy consumption in the data center [32]. It finally produces a 15% reduction in overall energy overhead, especially a 40% reduction in energy for cooling; The recommendation system of E-commerce like Amazon, abnormal transaction detection systems of financial services, and car scheduling of Uber [84] are all instances of big data analysis enabled by machine learning. When we compare machine learning to the human decision, the advantage of machine learning is obvious:

- Discovering the pattern or implicit relationships of large datasets fast and preciously.
- Decreasing the error and bias when learning and making decisions
- Increased expertise in multidimensional and multivariate problems.
- Streamlining the duplicate business and automating the production pipeline.

With the assistance of machine learning enabled analytics, the companies can control their business easier and utilize the data collected from end-user more comprehensively. The business can also be adjusted dynamically based on the data from users. The qualities of products or services are promoted and the profits increase without a doubt.

Chapter 3

Related Work

3.1 Video storage server

Shao et al. [78] studied the correlation among the cameras at different locations to detect the abnormal behaviors, which was achieved by building a risk table. Each clip was determined to be deleted, partially deleted, or kept. Unfortunately, the strategy of making such decisions were not detailed in their paper. Usman et al. [88] proposed an intrusion-driven model, which encodes video clips with different encoding parameters. They assumed the video clips can only be downsampled once. Thomas et al. [86] turned activity, saliency, collision levels into a cost function for their algorithm. The video clips were indexed with several keyframes to reduce the storage space, and end users could query video clips by comparing the similarity of frames using a neural network. Although they attempted to condense the video clips, the diverse levels of importance different video clips were not considered in their solution. *These three studies [78, 86, 88] are quite different from our work because neither of them propose systematic approaches to: (i) quantify the information amount, nor (ii) decide the downsampling approaches and parameters.*

3.2 Video analytics

Video analytics applications were considered to be the *killer app* of edge computing [1] and attracted many researchers. For example, Satyanarayanan et al. [75] proposed a decentralized cloud computing paradigm, called *cloudlet*, leveraging edge servers. The videos from mobile devices were sent to cloudlets for analysis, while the analytics results were then sent to the cloud. Liu et al. [56] presented EdgeEye, which was an edge computing framework for real-time video analytics applications. Such applications could be offloaded by using their APIs. Chen et al. [13] presented a continuous, real-time object recognition system for mobile and wearable devices. They hid the network latency by

caching video frames on mobile devices. The devices analyzed the cached frames using some hints sent by the server to localize the objects. Zhang et al. [99] presented Vigil, which was a real-time distributed wireless surveillance system leveraging edge computing. *The above mentioned papers [1, 13, 56, 75, 99] are minor to our proposed storage server, as none of them considers the information amount.*

3.3 Video downsampling

Video downsampling is usually achieved by transcoding, which has been thoroughly studied in the literature. For example, Li et al. [54] proposed to transcode video clips in an on-demand manner to reduce the cloud resource consumption. Gao et al. [26] proposed a partial transcoding scheme for content management. They focused on the end-user viewing patterns and the operational cost on the content provider side. They formulated a cost minimization problem to find a balance between the storage cost and operational cost of real-time transcoding. Zakerinasab and Wang [98] proposed a distributed video transcoding scheme. The video segments were split into chunks and distributed to the cloud for parallel transcoding. Dutta et al. [21] proposed a scheme to transcode video clips in edge environments, in which the video clips were transcoded based on end-user expectations. Zhang et al. [100] offloaded the transcoding workload from mobile devices to the cloud. They designed an offloading policy for mobile devices and proposed an online algorithm for the transcoding on the cloud to minimize the energy consumption while achieving low latency. Yoon et al. [96] moved the transcoding workload to the wireless edge, such as WiFi APs. They implemented a real-time video transcoder on a Raspberry Pi. The above mentioned studies [21, 26, 54, 96, 98, 100] are also minor to our proposed storage server, as none of them accounts for the information loss.

3.4 Video summarization

The concept of information amount in this thesis is partially inspired by previous work on video summarization. For example, Fu et al. [24] proposed to extract low- and high-level features from multi-view videos. They integrated the features with the Gaussian entropy fusion model to detect scene shots. After that, they constructed a spatial-temporal graph and clustered the scene shots by random walks. Their multi-objective optimization problem for summarization was based on the shot importance. Although their work considered high-level features like face recognition, they assumed boolean analytics results. Hence, their work could not differentiate the amounts of different high-level features. Our definition of information amount supports continuous weights to determine the diverse impor-

tance among analytics results. The weights can be adjusted based on the requirements of cameras at different places and orientations. Muhammad et al. [63] adopted memorability, entropy, and aesthetics into a score to select the keyframes for video summarization. These features were fused with weights; however, their solution depended on well-tuned parameters to cater end-user demands. Setting the weights manually was tedious, expensive, and error-prone. There exist other video summarization approaches [64, 68] that removed redundancy in video clips to cut down the analysis time and storage space. Such decisions were mostly made purely based on the pixel values of the video clips without considering the high-level semantics that only exist in video analytics applications. *In contrast to video summarization works* [24, 63, 64, 68], we transform low-level features vectors to a different basis, which consists of principal components of the original feature vectors, so that the transformed features can better approximate the importance using our information amount concept.

To the best of our knowledge, we are the first one to propose a storage server that determines the multiple quality levels of stored surveillance video clips coming from smart environments. We preserve the video clips that are more important to end users in better quality levels with longer achieved durations. By rigorously defining information amount based on multi-level features to quantify the importance, we make intelligent downsampling decisions. A preliminarily version of this thesis was published in our earlier paper [87].

Chapter 4

Information Amount of Surveillance Videos

We define *information amount* to quantify the importance of videos captured at different locations with diverse orientations. In information theory, entropy can be used to represent the information amount and feature vector complexity. Our definition of information amount combines the entropy of visual features (like color and edge histogram), and semantic features from the off-the-shelf analytics (like object detection). The core design rationale is that visual features will account for the information amount of video content even if we are unaware of actual analytics in the future. However, the amount of visual features may not directly capture the actual events that interest end users, which are rather complex. Such events are better captured by the semantic features, which are unfortunately computationally intensive to derive. Defining information amount purely based on semantic features is therefore too heavy for a resource-limited storage server. Hence, we leverage both visual and semantic features to define the information amount in the following.

Visual features. We observe that the viewports of surveillance videos are usually fixed, and thus the background is repeating and redundant across too many video frames. To reduce the duplicated computations, we pre-process the videos by removing the background and keep the foreground objects. Particularly, we color the background of video frames in black, while keeping the color of foreground objects in the pre-processed videos. Next, we divide these pre-processed videos into several shots as follows. For each video frame, we compute the sum of the RGB values for each pixel. We then compute the difference of the RGB sums of individual pixels between two adjacent video frames. We consider a pixel is changed if its RGB sum difference is significantly different from its counterpart in the adjacent frame, i.e., the difference is beyond a tolerance. If the fraction of the changed pixels exceeds a threshold, we declare a new scene shot from the video

frame. Moreover, to avoid noisy and trivial shots, we limit the minimal shot length. Notice that the abovementioned tolerance, threshold, and minimum length are all user-specified parameters, which are empirically determined to be 12, 95%, and 2 seconds respectively throughout this thesis, if not otherwise specified. Our background removal approach is inspired by Godbehere et al. [29]. Our shot detection algorithm is inspired by the black frame filter [23] with some augmentations for surveillance videos. This is because the difference of RGB sums between adjacent frames in the surveillance videos tend to be much smaller than generic, story-telling videos.

With pre-processed videos, we next define the visual features. We consider C new incoming video clips to the storage server. For the shot S_c of clip c, we calculate its entropy using the set of features F_1, F_2, \ldots, F_m , where m is the considered number of features. Besides color and edge histogram features [24], we also adopt convolution and time-series features in this work¹. We denote Shannon entropy as $E(\cdot)$. By transforming each feature into a one-column vector, we get the entropy $E(F_i)$ of the feature F_i , where i = 1, 2, ..., m. To quantify the importance of visual features, we determine a single score for each shot. One naive approach is to define a weighted function; however, it's difficult to specify appropriate weights without knowing the end-user demands in the future. Hence, a more systematic way is needed to determine the importance of individual visual features. To achieve that, we have compared six different Dimensionality Reduction (DR) methods: Principal Component Analysis (PCA) [94], Isometric mapping (Isomap) [85], t-distributed Stochastic Neighbor Embedding (t-SNE) [57], Multi-Dimensional Scaling (MDS) [19], Gaussian Random Projection (GRP), and Sparse Random Projection (SRP) [6] to reduce the feature dimensions from m to 1. We employ three widely-used and algorithm-independent quality metrics for evaluations: residual variance [85, 101] (distance matrix based), trustworthiness, and continuity [6] (co-ranking matrix based). For distance matrix based metrics (residual variance), smaller is better; for co-ranking matrix based metrics (trustworthiness and continuity), larger is better. We note that all three metrics are in real numbers between 0 and 1. We capitalize an open-source Python library, pyDRMetrics [101], to implement the above DR methods and performance metrics. We run the experiments on a workstation with an Intel i7 CPU at 2.10 GHz, and also record the running time of different DR methods. We summarize the results in Table 1. We find that PCA outperforms other methods w.r.t all quality metrics: achieving smaller residual variance, higher trustworthiness, and higher continuity. Besides, all DR methods, except t-SNE and MDS, terminate in real-time. Hence, we chose PCA as our DR method in the rest of this thesis.

In PCA, the principle components are the eigenvectors of the covariance matrix of the

¹Our definition is general and works for other visual features, which could be global or local ones.

	PCA	Isomap	GRP	SRP	t-SNE	MDS
Residual Variance	7.30×10^{-4}	7.78×10^{-4}	1.50×10^{-3}	7.06×10^{-2}	4.83×10^{-1}	1.45×10^{-2}
Trustworthiness	0.999925	0.999901	0.999688	0.987477	0.963822	0.959152
Continuity	0.999973	0.999955	0.999686	0.987920	0.971213	0.915735
Reduction Time	1.14×10^{-2}	3.55×10^{-1}	5.99×10^{-3}	8.71×10^{-3}	61.02	1.41

Table 4.1: Performance Comparison of Dimensionality Reduction Methods (Unit: s)

visual features. We pick the eigenvector of the largest eigenvalue as the first component. The importance scores of these features are the projection on the transformed space. We feed m entropy values into PCA and generate a final score of visual features. The resulting visual importance score represents the shot and feature characteristics. Specifically, we write the visual importance of shot S_C as:

$$I_v(S_c) = P_1([E(F_1), E(F_2), \dots, E(F_m)]),$$
(4.1)

where $P_1(\cdot)$ is the transform function of PCA that considers the first principle component. In general, the larger $I_v(S)$ indicates more visual information embedded in video shot S. In Fig. 4.1, we show sample visual feature importance scores based on PCA results of actual videos captured in our smart campus testbed. Fig. 4.1(a) shows a daytime video that contains more frames in each shot. Its entropy across all features is also higher. In contrast, Fig. 4.1(b) reveals that the midnight video from the same camera has fewer frames in each shot, where each shot's entropy is also lower. Hence, the overall visual feature importance score of video in Fig. 4.1(a) is much higher than that of video in Fig. 4.1(b).

Semantic features. We decide to only extract semantic features from video shot S if $I_v(S) > \delta_v$, where δ_v is the threshold for entropy of visual features. This is to avoid wasting resources on trivial shots per our observations on some pilot tests. We assume A_c video analytics are needed for video clip c ($c \in [1, C]$). That is, each analytics a ($a \in [1, A_c]$) analyzes surveillance video clip c to detect certain events. We let x_a be the output of analytics a, where x_a can be either a discrete or a continuous value. Examples of discrete outputs include illegal parking (boolean) and queue length at a bus stop (integer); examples of continuous outputs include flood monitoring (depth) and fog detection (visibility). For analytics a with discrete outputs, we let n_a be the normal output. That is, if $x_a = n_a$, analytics a detects no event. For analytics a with continuous outputs, we define a tolerance level δ_a and consider no detected event if $|x_a - n_a| \leq \delta_a$. Because the outputs of different analytics have diverse scales, x_a needs to be normalized. We let \tilde{x}_a be the maximal absolute value² of the output from analytics a, and define the normalized

²Without loss of generality, we assume $\tilde{x}_a \neq 0$. Otherwise, analytics a is not worthy of being executed.

Figure 4.1: Sample visual importance scores based on the PCA results from real video clips: (a) video with longer shots and higher entropy in daytime (b) video with shorter shots and lower entropy at midnight.

UN

Figure 4.2: System overview of our storage server in the edge network.

information amount as:

$$e_{S_{c},a} = \begin{cases} 0 & |x_a - n_a| \le \delta_a; \\ |x_a/\tilde{x}_a| & \text{otherwise,} \end{cases}$$
(4.2)

where δ_a is set to zero for analytics with discrete outputs. Generally, a larger $e_{S_c,a}$ value indicates that more semantic information is detected by analytics a in shot S_c .

The outputs of individual video analytics depend on the inputs, which are the surveillance video clips. We let \mathbf{W} be a $C \times A$ matrix, where $\mathbf{W}_{c,a}$ ($c \in [1, C]$ and $a \in [1, A_c]$) represents the weight of analytics a on clip c. $\mathbf{W}_{c,a}$ is configurable by the system administrators for prioritizing different analytics and clips. With the symbols defined above, we formally write the semantic importance score of shot S_c in clip c as:

$$I_e(S_c) = \sum_{a \in A_c} \mathbf{W}_{c,a} \cdot e_{S_c,a} \bigg/ \sum_{a \in A_c} \mathbf{W}_{c,a},$$
(4.3)

where the summations iterate through all analytics and clips, before being normalized with weights $W_{c,a}$.

To fuse the visual and semantic importance scores, we carry out min-max normalization where the range is derived from all samples throughout evaluations. We subtract the minimum of visual features from the resulting number, and divide it by the difference of maximum and minimum of visual features. The minimum and maximum are replaced in the semantic features. That is, we use $\hat{I}_v(\cdot)$ and $\hat{I}_e(\cdot)$ to denote the normalized importance score, respectively. Last, we use f_c to denote the total number of frames among all shots in a clip c ($c \in [1, C]$). We write the total information amount as:

$$I(c, f_c) = \sum_{S_c \in c} \hat{I}_v(S_c) + \sum_{\substack{\forall S'_c \in c, \\ I_v(S'_c) > \delta_v}} \hat{I}_e(S'_c),$$
(4.4)

where $I(c, f_c)$ is the quantified information amount of clip c, which drives the designs of our optimization algorithms developed in the following sections.

Chapter 5

Design of Storage Management

Fig. 4.2 gives an overview on the design of our storage server in an edge network, which is detailed in this section.

5.1 Workflow

The surveillance cameras continuously stream coded videos to the storage server. The video streams are initially saved on the storage server at the maximal quality, i.e., with the full information amount. The stored video clips can be requested by external analytics servers due to demands from end users. Our storage server provides requested videos to the analytics servers to serve, which run video analytics for end users. The design and implementation of analytics servers are out of the scope of this thesis. We add simplified local analytics to the storage server, so as to extract visual and semantic features. We extract semantic features by applying video analytics that may be deployed on the external analytics servers. We employ *sampling length estimator* to select the sampling length for each incoming video, in order to approximate the information amount without incurring excessively long running time. The videos in the full quality and information amount are sent to a time-series database for storage. We also add a video downsampling platform to the storage server, which supports multiple downsampling approaches. When the storage space is close to full, we downsample stored videos to free up some space for incoming video clips. We employ a downsampling decision maker, which carefully considers the trade-off among the remaining information amount, freed storage space, and complexity of different downsampling approaches when making the decisions. Furthermore, we employ the predictor to keep track of available storage and computation resources for timely executions of information amount analysis and video clip downsampling. The predictions serve as inputs of the algorithms in sampling length estimator and downsampling decision maker. This is to ensure that enough storage space is freed for new video clips before their arrivals. In summary, the three key components of our storage server are: the sampling length estimator, the downsampling decision maker, and the predictor. These three components are executed in parallel. We collectively refer to them as the *optimal sampling manager*.

5.2 Components

We summarize the components of Fig. 4.2 in the following:

- *Sampling length estimator*. It hosts an algorithm to decide the sampling length for each incoming video clip. The sampling lengths are used to approximate the information amount of individual video clips in a more efficient manner to address Challenge #1 in Sec. 1.
- *Downsampling decision maker*. It hosts an algorithm to determine the video quality level of each video clip that is about to be downsampled. By doing so, we control information loss due to video clip downsampling to address Challenge #2.
- *Predictor*. It supports online predictions of resource consumption and information amount, which are needed by the above two components to ensure ontime completion of the video analytics and downsampling approaches. This is to address Challenge #3.
- *Simplified local analytics*. It hosts multiple video analytics, which are also run by external analytics servers. The analytics are also needed for semantic feature extraction.
- *Video downsampling platform*. It hosts multiple downsampling approaches, which free up storage space.
- *Configuration manager*. It is an interface for system administrators to control and monitor the storage server. For example, system administrators may add/remove video analytics and downsampling approaches, or visualize the video clips in the time-series database.

Among these, the sampling length estimator and downsampling decision maker are the most crucial components. Their performance directly affects the analyzing and downsampling time. Furthermore, the storage space efficiency also relies on the results given by the downsampling decision maker. In Secs. 6 and 7, we introduce the sampling length estimator and downsampling decision maker in detail.

Chapter 6

Sampling Length Estimator: SLE

In this section, we develop our algorithms for Sampling Length Estimator (SLE). The algorithms are responsible for estimating the information amounts of the incoming and stored video clips.

6.1 Notations

Building upon the notations defined in earlier sections, we formally write the information amount of all video clips (C) with all frames (F) in all shots and all video analytics (A) as:

$$H(\mathbf{C}, \mathbf{F}, \mathbf{A}) = \sum_{c=1}^{\mathbf{C}} I(c, f_c), \qquad (6.1)$$

where $I(c, f_c)$ denotes the information amount across frames of all shots of clip c without any sampling. For a given C, F, and A, computing H(C, F, A) using Eq. (6.1) is extremely time consuming as it *dictates* executing all analytics on too many frames. The storage server, unfortunately, is unlikely to be able to perform analysis in real-time, and an *approximation* of H(C, F, A) through sampling for a shorter execution time is needed. The sampled frames, however, need to be carefully chosen, e.g., selecting a few *consecutive* frames may lead to biased information amount due to the temporal locality across these frames. To cope with this issue, we define sampling length l as follows. We select a frame from every l consecutive ones from each shot. For simplicity, the same l is applied to all shots of every video clip, because events with similar characteristics tend to have temporal locality. Additionally, to control the computational complexity, we carefully choose the lengths $(L_{c,a_1}, L_{c,a_2}, ...)$ from a discrete set $\mathbf{L}_0 = \{0, 1, l_1, l_2, ..., l_m\}$, where 0 and 1 represent skipping and analyzing all frames, respectively. We write all sampling lengths into $C \times A$ matrix L, where $\mathbf{L}_{c,a}$ denotes the sampling length l of analytics afor shots in clip c. Note that $\mathbf{L}_{c,a} = 0$ implies that analytics a is not applied on clip c at all. We aggregately write $L_c = (L_{c,a_1}, L_{c,a_2}, ...)$ for presentation. Sampling lengths allow us to trade off the computational complexity and information amount accuracy. The approximate information amount is therefore written as:

$$H'(\mathbf{L}) = \sum_{c=1}^{|\mathbf{C}|} I(c, L_c), \forall L_c \in \mathbf{L}_0.$$
(6.2)

Computing $H'(\mathbf{L})$ with Eq. (6.2) is less computationally intensive compared to computing $H(\mathbf{C}, \mathbf{F}, \mathbf{A})$ with Eq. (6.1). The challenge is to make $H'(\mathbf{L})$ as close to $H(\mathbf{C}, \mathbf{F}, \mathbf{A})$ as possible by carefully selecting the best \mathbf{L} . This is the job of our sampling length estimator.

Next, we define a few helper functions. While applying sampling length l > 1 reduces the execution time of analytics, doing so may lead to reduced information amount. We let $d(\cdot)$ be the *degradation factor* of a sampling length, which represents the fraction of sampled information amount from the unsampled information amount. Intuitively, larger l leads to shorter execution time but lower degradation factor. The degradation factor of applying analytics a on video clip c is denoted as $d(c, a, L_{c,a})$. Give the degradation factor, the information amount due to semantic features is written as:

$$I'_{e}(S_{c}) = \frac{\sum_{a \in A_{c}} \mathbf{W}_{c,a} \cdot \hat{e}(c, f_{c}, a) \cdot \frac{|S_{c}|}{|\sum_{S_{c} \in c} S_{c}|} \cdot d(c, a, L_{c,a})}{\sum_{a \in A_{c}} \mathbf{W}_{c,a}},$$
(6.3)

where $\hat{e}(c, f_c, a)$ denotes the prediction of the information amount from unsampled videos (l = 1). We apply min-max normalization on $I'_e(S_c)$ to get $\hat{I}'_e(S_c)$.

Extracting visual features is much lighter-weight, and thus we decide not to perform sampling when computing the information amount due to visual features. That is, we directly use the score of visual features in Eq. (4.4) in the SLE. By adding up $\hat{I}_v(S_c)$ and $\hat{I}'_e(S_c)$, our approximate information amount $I(c, L_c)$ (after sampling) is:

$$I(c, L_c) = \sum_{S_c \in c} \hat{I}_v(S_c) + \sum_{\substack{\forall S'_c \in c, \\ I_v(S'_c) > \delta_v}} \hat{I}'_e(S_c).$$
(6.4)

6.2 **Problem Formulation**

Owing to the limited resources, we invest more computing power on the clips and analytics with higher information amounts to have more accurate estimations on them. In SLE, the goal is to make approximate information amount $H'(\mathbf{L})$ as close to that of the full-quality video clips $H(\mathbf{C}, \mathbf{F}, \mathbf{A})$ as possible. In addition, the execution of analytics needs to be done within a time constraint δ_i . Our preliminary tests reveal that visual feature extraction can be done relatively fast, and thus we focus on the execution time due to
semantic analytics. For better mathematical tractability, we measure the execution time of shot detection, background subtraction, and visual feature extraction in our pilot tests. We then sum these times up and use a constant to represent it. Besides, we let function t(c, a) be the execution time per frame when executing analytics a on video clip c.

Lemma 6.2.1 (Hardness). Our sampling length estimation problem is NP-Hard.

Proof. This can be shown by a reduction from Multiple Choice Knapsack Problem (MCKP) [47]. Given an instance of MCKP with n mutually disjoint classes and capacity k. The item j in class i has profit $p_{i,j}$ and weight $w_{i,j}$. By mapping: (i) n classes to c clips, (ii) capacity k to time limitation δ_i , (iii) item j in class i to the sampling lengths of analytics $(L_{c,a_1}, L_{c,a_2, \cdots})$, (iv) profit $p_{i,j}$ to information amount computed with Eq. (6.4), and (v) weight $w_{i,j}$ to $t(c, a) \cdot |L_{c,a}|$, we reduce MCKP to our problem in polynomial time.

We next write our sampling length estimator problem as:

$$\min_{\mathbf{L}} (H(\mathbf{C}, \mathbf{F}, \mathbf{A}) - H'(\mathbf{L})) = \max_{\mathbf{L}} (H'(\mathbf{L}))$$

s.t.
$$\sum_{\forall c \in \mathbf{C}} \sum_{\forall a \in \mathbf{A}} (t(c, a) \cdot |L_{c,a}|) < \delta_i.$$
 (6.5)

We assume the information amount after sampling is no larger than the full-quality video clips. By solving the formulation in Eq. (6.5), we maximize the approximated information amount $H'(\mathbf{L})$.

6.3 Optimal Estimation (OE) Algorithm

We propose an optimal estimation algorithm based on dynamic programming. Let $z(c, \delta)$ be the maximal information amount when considering the first c clips under the time constraint δ . The state of this recursion is written as:

$$z(c,\delta) = \max\left(z(c-1,\delta - \sum_{\forall l_{c,a} \in l_j} t(c,a) \cdot l_{c,a}) + I(c,l_j)\right), \forall l_j \in \mathbf{L}_0,$$
(6.6)

where $z(0, \delta) = 0$ ($\forall \delta < \delta_i$) and $z(c, \delta) = -\infty$ if $\delta \le 0$. We iterate from the tightest time constraint and the first clip. The optimal solution z^* is found when $z^* = z(|\mathbf{C}|, \delta_i)$. With dynamic programming, we store the computed results of increasingly more states to avoid redundant calculations. The next lemma analyzes the complexity of the OE algorithm, which is straightforward.

Lemma 6.3.1 (Complexity). *Our OE algorithm has a space complexity of* $\mathcal{O}(\delta_i \cdot |\mathbf{C}|^2)$. *For the time complexity, each iteration computes Eq. (6.6) for* $\mathcal{O}(|\mathbf{L}_0|)$ *times. Thus, its*

total time complexity is $\mathcal{O}(|\mathbf{L}_0| \cdot \delta_i \cdot |\mathbf{C}|)$.

6.4 Approximated Estimation (AE) Algorithm

Algorithm 1 Approximate Estimation (AE) Algorithm for the SLE Problem

Inputs: Clips C, Deadline δ_i , Approximate Sampling Lengths \mathbf{L}_0 , and Predictor $\hat{e}(\cdot)$ **Output:** Approximate Sampling Matrix \mathbf{L}_x .

1: Let $B_l = \max_{\forall c \in \mathbf{C}, \ l_j \in \mathbf{L}_0} (I(c, l_j)), B_u = |\mathbf{C}| \cdot B_l$, and $\epsilon = 0.6$ 2: $x = B_u / 2$ 3: $\mathbf{J} = \emptyset$ 4: for $c \in \mathbf{C}$ do $\begin{aligned} & \mathcal{L} \in \mathbf{C} \text{ tr} \\ \{ \|I\| \} = \frac{I(c, l_j)}{\sum_{\forall a \in A_c} (t(c, a) \cdot l_{c, a})}, \, \forall l_k \in \mathbf{L}_0 \ \cap \ \|I\| > \frac{0.8x}{\delta_i} \\ & l_k = \arg \max_{l_j} (\|I\|) \end{aligned}$ 5: 6: 7: $\mathbf{J} = \mathbf{J} \cup \{(c, l_k)\}$ 8: $\|\mathbf{J}\| = \sum_{\forall (c,l_k) \in \mathbf{J}} I(c,l_k)$ 9: if $\|\mathbf{J}\| \le 0.8x$ then $B_u = x(1+\epsilon) = 0.8B_u$ 10: 11: **else** $B_l = x(1-\epsilon) = 0.2B_u$ 12: 13: if $B_u / B_L \le 5$ then Construct \mathbf{L}_x by \mathbf{J} 14: 15: return \mathbf{L}_x 16: **else** $x = B_u / 2$ and go to line 3 17:

OE has a pseudo-polynomial running time. We next propose a polynomial-time Approximation Estimation (AE) algorithm. The AE algorithm is inspired by a binary-search based algorithm [27], which is based on a *branching algorithm*. Given an x > 0 and an $\epsilon > 0$, the branching algorithm determines whether the optimal solution $z^* < x(1 + \epsilon)$ or $z^* > x(1-\epsilon)$ exists. Algorithm 1 gives the pseudocode of the AE algorithm. We initialize x, upper bound B_u , and lower bound B_l in lines 1 and 2. We apply the default $\epsilon = 0.6$ [27], making the $z^* / z^0 \leq 5$, where z^0 is the approximate solution. In lines 3–12, for each clip, we first add the array of lengths with maximal information yet meeting the constraint $0.8x / \delta_i$ into J. Then we calculate the summation of information amount of the selected arrays in J. If the summation is less than 0.8x, the algorithm results in $z^* > x(1 - \epsilon)$; otherwise, we have $z^* < x(1 + \epsilon)$ [27]. Therefore, we update B_u and B_l accordingly. Last, in lines 13–17, we check the ratio between B_u and B_l to decide whether we keep iterating or return the approximation sampling length matrix L_x derived from J. We note that Gens and Levener [27] is only one of the approximation algorithms for MCKP. There are other approximation algorithms [47, 50], which can also serve as a starting points of developing similar approximation algorithms. We leave that as our future work. Next lemma reports the complexity and performance bound of the AE algorithm; readers interested in its proof are referred to Gens and Levener [27].

Lemma 6.4.1 (Complexity and Bound). *The AE algorithm gives the worst error bound* of $\frac{4}{5}$ with respect to the optimal solution. Its running time is $\mathcal{O}(|\mathbf{C}||\mathbf{L}_0|\log|\mathbf{C}|)$, which is in polynomial time.

6.5 Efficient Estimation (EE) Algorithm

```
Algorithm 2 Efficient Estimation (EE) Algorithm for the SLE Problem
Inputs: Clips C, Deadline \delta_i, Sampling Lengths L<sub>0</sub>, and Predictor \hat{e}(\cdot)
Output: Efficient Sampling Matrix L_e.
 1: Let \mathbf{L}_{c} = 1, \forall c \in \mathbf{C}

2: while \sum_{\forall c \in \mathbf{C}} \sum_{\forall a \in \mathbf{A}} (t(c, a) \cdot |L_{c,a}|) > \delta_{i} \operatorname{do}
              \operatorname{Find}\left(c,a\right) = \underset{\left(c,a\right)}{\operatorname{arg\,min}} \left( \mathbf{W}_{c,a} \cdot \hat{e}(c,f_{c},a) \cdot \frac{|S_{c}|}{|\sum_{S_{c} \in c} S_{c}|} \cdot d(c,a,L_{c,a}) \cdot \frac{1}{t(c,a) \cdot |L_{c,a}|} \right), \ \forall \mathbf{L}_{c} \neq 0
 3:
              if then L_{c,a} = \max(\mathbf{L}_0)
 4:
                      \mathbf{L}_c = 0
 5:
 6:
              else
 7:
                     Let L_{c,a} of \mathbf{L}_c be the next larger length in \mathbf{L}_0
 8: Construct L_e from selected sampling lengths
 9: return L<sub>e</sub>
```

We propose a heuristic algorithm, called Efficient Estimation (EE) algorithm. This algorithm is based on an intuition: the execution time and accuracy of information amount are both reduced once the sampling length is increased. Algorithm 2 gives the pseudocode of the EE algorithm. In line 1, we initialize the sampling lengths L_c of all video clips and analytics to be 1 in L_0 . After doing so, if the total analytics execution time still fits into deadline δ_i , we return that L_e , because it gives the most accurate information amount without any sampling. The while-loop starting from line 2 checks if the total execution time exceeds the deadline. If yes, we choose pair (c, a) that: (i) contains the least information amount and (ii) has a sampling length that can still be increased in line 3. We then increase the sampling length of (c, a) in line 7. When the total execution time reaches δ_i , we return sampling matrix L_e in line 8. The complexities of the proposed heuristic are given below. The proof is omitted as it is straightforward.

Lemma 6.5.1 (Complexity). The EE algorithm has a time complexity of $\mathcal{O}(\delta_i)$ and a space complexity of $\mathcal{O}(|\mathbf{C}||\mathbf{A}|)$. Both are in polynomial.

Chapter 7

Downsampling Decision Maker: DDM

In this section, we develop our algorithms for the Downsampling Decision Maker (DDM). The algorithms are responsible for determining the quality levels of video clips to be preserved.

7.1 Notations

For concrete discussions, we introduce temporal and fidelity downsamlping approaches, while spatial or other approaches can be readily adopted by our storage server. The first approach is *temporal* subsampling, which keeps the first frames of recurring non-overlapping time windows. For instance, temporal subsampling with a *frame-skip* of 4 means keeping 1 out of every 4 frames (i.e., frames $4k + 1 \forall k \in \mathbb{N}$). Any future video analytics on *deleted* video frame *f* are approximated with the immediately preceding frame that is kept, which is $4\lfloor \frac{f-1}{4} \rfloor + 1$ in this example. Secondly, the *fidelity* downsampling approach essentially transcodes the video clips with a lower bitrate. The resulting video clips have the same numbers of video frames, although their analytics outputs may be different from the ones from the original video clips.

We let \mathbf{P}_0 be all possible downsampling quality levels, where each approach specifies a frame rate and a bitrate. Downsampling decision maker generates the quality levels for all video clips which are stored on the storage server. Thus, we let \mathbf{P} be a 1-dimensional downsampling decision matrix with a size of $|\mathbf{C}|$. \mathbf{P}_c indicates the selected downsampling approach (e.g., 12 frame-per-second, or fps, at 500 kbps) of clip c. $\mathbf{P}_c = -1$ indicates storing the original quality of c on the storage server, while $\mathbf{P}_c = 0$ indicates deleting clip c from the storage server. The approximate information amount after taking downsampling decision \mathbf{P} is:

$$H'(\mathbf{P}) = \sum_{c=1}^{|\mathbf{C}|} I(c, P_c).$$
 (7.1)

Here, we overload the notation $I(\cdot)$: with a parameter of quality level P_c , $I(\cdot)$ denotes the summation of the information amount of *all frames* in clip c after downsampling with P_c . We assume that each video clip can be downsampled more than once with different decisions. The challenge is to maximize $H'(\mathbf{P})$ by carefully selecting the best \mathbf{P} . This is the job of our downsampling decision maker.

For the semantic features, we let $d'(c, a, P_c)$ be the degradation factor of information amount when applying analytic a on clip c at the quality level P_c . Note that different downsampling approaches affect the semantics feature extractions differently, and the information amount reduces as the quality gets lower. The symbol $\hat{I}''_e(S'_c)$ stands for the importance score of semantic features of shot S_c of clip c. We write the degraded semantic importance $I''_e(S_c)$ after downsampling as:

$$I_{e}^{''}(S_{c}) = \sum_{a \in A_{c}} \mathbf{W}_{c,a} \cdot e_{c,a} \cdot d^{'}(c,a,P_{c}) \middle/ \sum_{a \in A_{c}} \mathbf{W}_{c,a},$$
(7.2)

where $e_{c,a}$ is the analytics results from simplified local analytics, which are conducted with the lengths decided by SLE. As for the visual features, we directly apply the score of visual features calculated in SLE. We approximate the information amount $I(c, P_c)$ after downsampling as follows:

$$I(c, P_c) = \sum_{S_c \in c} \hat{I}_v(S_c) + \sum_{\substack{\forall S'_c \in c, \\ I_v(S'_c) > \delta_v}} \hat{I}''_e(S'_c)$$
(7.3)

7.2 **Problem Formulation**

Given that the storage space is limited, we aim to downsample the video clips with less per-unit-size information amount to free up enough storage space. The goal of DDM is to maximize the total information amount of all stored clips after downsampling $H'(\mathbf{P})$. The execution time and storage space are the two constraints of our problem. First, the downsampling time of clips is stateful, which means that the time is related to the quality levels before and after. Therefore, we write P'_c and P_c to denote the quality levels before and after downsampling. Both P'_c and P_c are from the pre-selected set \mathbf{P}_0 . We let $t(c, P'_c, P_c)$ be the downsampling time of video clip c. All the video downsampling tasks must be done by a deadline δ_d . Second, we set watermarks to determine when to trigger downsampling. The DDM problem is solved once the used space of the storage server reaches the high watermark $O_{v'}$. Once the downsampling is triggered, the target used storage space is a low watermark O_v . $O_{v'}$, O_v , and δ_d are user-configurable parameters. Last, we denote the resulting used storage of clip c in quality P_c as \hat{o}_{c,P_c}

Lemma 7.2.1 (Hardness). Our downsampling decision making problem is NP-Hard.

Proof. We show the reduction from the multidimensional Knapsack Problem (d-KP) [47]. The set of items is partitioned into n mutually disjoint classes and only one item is selected from every class. The weighted sums of items of feasible solutions must meet the constraints in k dimensions. We consider a 2-MCKP problem here. The item j in class i has profit $p_{i,j}$ with weights $w_{i,j,1}$ and $w_{i,j,2}$ in the two dimensions, respectively. By mapping: (i) class n to video clip c, (ii) δ_d to the first dimension constraint and O_v to the second one, (iii) item set in each class to pre-selected quality set P_0 , (iv) profits $p_{i,j}$ of items to the information amount derived from Eqs. (7.2) and (7.3), and (v) weights $w_{i,j,1}$ to the downsampling time, $w_{i,j,2}$ to the resulting used space, we get a corresponding DDM problem in polynomial time. This yields the hardness proof.

We write our downsampling decision maker problem in the following:

$$\max_{\mathbf{P}} (H'(\mathbf{P})) = \max(\sum_{c=1}^{|\mathbf{C}|} I(c, P_c))$$

s.t.
$$\sum_{\forall c \in \mathbf{C}} t(c, P'_c, P_c) < \delta_d, and \sum_{\forall c \in \mathbf{C}} \hat{o}_{c, P_c} < O_v.$$
 (7.4)

Note that each video clip is allowed to be downsampled more than once. In addition, downsampling is a lossy procedure, which means that the drop of information amount is non-reversible. By solving Eq. (7.4), we generate the best P to preserve the most space-effective video clips.

7.3 Optimal Decision (OD) Algorithm

We first enumerate the clips from the strictest space and time constraints. We then employ dynamic programming for the optimal decisions. We write $z'(c, o, \delta)$ as the maximal preserved information amount after conducting downsampling on the first *c* clips under the space and time constraints *o* and δ , with the selected downsampling qualities. The state update is given as:

$$z'(c, o, \delta) = \max\left(z'(c - 1, o - \hat{o}_{c, p_j}, \delta - t(c, P'_c, p_j)) + I(c, p_j)\right) \forall p_j \in \mathbf{P}_0,$$
(7.5)

where $z'(0, o, \delta) = 0$ ($\forall \delta < \delta_d \land o < O_v$) and $z'(c, o, \delta) = -\infty$ if $\delta \le 0 \land o \le 0$. We reach the optimal solution when $z' = z'(|\mathbf{C}|, O_v, \delta_d)$. The next lemma analyzes the complexity of the OD algorithm.

Lemma 7.3.1 (Complexity). In our OD algorithm, each of the iteration runs Eq. (7.5)

Algorithm 3 Approximate Decision (AD) Algorithm for the DDM Problem

Inputs: Information Amount *I*, Clips C, Deadline δ_d , Approximate Downsampling Decision Matrix \mathbf{P}_x , Positive Integer \hat{t} .

Output: Approximate Downsampling Decision Matrix \mathbf{P}_x . 1: Let $B_l = \max_{\forall c \in \mathbf{C}, \ p_k \in \mathbf{P}_0} (I(c, p_k)), B_{l_0} = B_l, B_u = |\mathbf{C}| \cdot B_l$, and d = 22: $x = \frac{d}{1+2d}B_u + B_l$ 3: $\mathbf{J} = \emptyset$ 4: for $c \in \mathbf{C}$ do $\{ \|I\| \} = \frac{I(c, P_c)}{t(c, P'_c, P_c)/\delta_d} + \frac{I(c, P_c)}{\hat{o}_{c, P_c}/O_v}, \ \forall \ p_i \in \mathbf{P}_0 \ \cap \ \|I\| > \frac{x}{d}$ $p_k = \arg\max_{p_j}(\|I\|)$ 5: 6: 7: $\mathbf{J} = \mathbf{J} \cup \{(c, p_k)\}$ 8: $\|\mathbf{J}\| = \sum_{\forall (c,p_k) \in \mathbf{J}} I(c,p_k)$ 9: if $\|\mathbf{J}\| \leq \frac{1}{2d}x$ then $B_u = (1 + \frac{1}{2d})B_u$ 10: 11: else $B_l = \frac{1}{2d} B_l$ 12: 13: if $B_u - (1+2d)B_l \leq (\frac{1}{2})^{\hat{t}}B_{l_0}$ then Construct \mathbf{P}_x by \mathbf{J} 14: 15: return \mathbf{P}_x 16: else $x = \frac{1}{1+2d}B_u + dB_l$ and go to line 3 17:

for $\mathcal{O}(|\mathbf{P}_0|)$ times. This leads to $\mathcal{O}(|\mathbf{C}| \cdot O_v \cdot \delta_d \cdot |\mathbf{P}_0|)$ operations in total. The selected quality of each clip needs to be saved while updating the states, so the space complexity is $\mathcal{O}(|\mathbf{C}|^2 \cdot O_v \cdot \delta_d)$.

7.4 Approximation Decision (AD) Algorithm

The OD algorithm has pseudo-polynomial complexities, and thus we propose an Approximation Decision (AD) algorithm in Algorithm 3. Starting from the branching algorithm [27], we first initialize the upper and lower bounds by the maximal information amount among all clips. We initialize an x by d, which is the number of constraints, as the criteria to add the pairs of clips and qualities to J in lines 2–7. We set the complexity coefficient \hat{t} as 2. Each pair of clips has the maximal information amount per time and per space, respectively. Lines 9–12 check whether the information amount of the selected pair set $\|J\|$ exceeds $\frac{1}{2d}x$, which triggers the updates of upper and lower bounds for the next round of the binary search. Once the approximation solution falls in the range in line 13, we construct the approximate downsampling decision matrix P_x from J. Our algorithm is inspired by a binary search algorithm [35] for MMCKP [47]. We note that other approximation algorithms for MMCKP [69] may be leveraged for developing better approximation algorithms for our DDM problem. We leave that as a potential future task.

Lemma 7.4.1 (Complexity and Bound). In AD algorithm, each round of branching algo-

rithm takes $\mathcal{O}(|\mathbf{C}| \cdot |\mathbf{P}_0|)$, where $|\mathbf{P}_0|$ can be seen as a constant because we preselected \mathbf{P}_0 . There are at most $\mathcal{O}(\hat{t} + \log(|\mathbf{C}| - 2d))$ iterations in the binary search algorithm. Thus, the total time complexity is $\mathcal{O}(|\mathbf{C}|(\hat{t} + \log(|\mathbf{C}| - 2d)))$, which is polynomial time. An improved binary search algorithm finds the approximate solution with the ratio of $1 + 2d + (\frac{1}{2})^{\hat{t}}$, where d and \hat{t} equals 2 in our case.

7.5 Efficient Decision (ED) Algorithm

Algorithm 4 Efficient Decision (ED) Algorithm for the DDM Problem **Inputs:** Information Amount I, Weight W, Deadline δ_d , Watermark O_v , Selected Sampling Length Matrix L, and Predictor $\hat{e}(\cdot)$. **Output:** Efficient Downsampling Matrix P_e . 1: Let $\mathbf{P}_c = -1, \forall c \in C; \ S = \sum_{\forall c \in C} o_c; \ T = 0;$ 2: while $S > O_v$ or $T > \delta_d$ do $c = \arg \min \left(I(c, L_c) / \hat{o}_{c, \mathbf{P}_c} \right)$ 3: $\forall c \in C, \mathbf{P}_c \neq 0$ 4: $\hat{p} = \arg \min (\hat{o}_{c,\mathbf{P}_{c}} - \hat{o}_{c,\hat{p}})$ $\forall \hat{o}_{c,\mathbf{P}_{c}} \geq \hat{o}_{c,\hat{p}}$ $S = S - \hat{o}_{c,\mathbf{P}_c} + \hat{o}_{c,\hat{p}};$ 5: $T = T - \hat{t}(c, \mathbf{P}_c) + \hat{t}(c, \hat{p})$ 6: 7: $\mathbf{P}_c = \hat{p}$ 8: Construct P_e from the selected **P** 9: return \mathbf{P}_e UA UN

We propose an heuristic algorithm, called Efficient Decision (ED) for the DDM problem. The algorithm is based on the following intuition: the video clip with the smallest per-unit-size information amount should be sacrificed first, while the degree of its downsampling approach should be kept as small as possible. Algorithm 4 gives the pseudocode of the ED algorithm. Line 1 initializes the downsampling decisions of all video clips to be, i.e., keeping them as-is. Then we let S and T be the used storage space and total execution time, respectively. The while-loop starting from line 2 iterates as long as: (i) the used storage space is higher than the low watermark or (ii) the total execution time exceeds the deadline. The numerator in line 3 accounts for the information amount of clip c, and the denominator accounts for the overall size. That is, in line 3, we select clip c with the smallest per-unit-size information amount to be downsampled. In line 4, we choose the quality \hat{p} which has the smallest difference of sampled size to gradually reduce the storage space usage to the low watermark O_v . In lines 5–7, we update P, S, and T. We note that line 4 may end up with $\hat{p} = 0$, which indicates that clip c is going to be deleted. As long the low watermark and deadline constraints are met, we return the decision matrix \mathbf{P}_e derived from the selected P_c in line 8. The complexities of the proposed heuristic are given below. The proof is trivial and omitted.

Lemma 7.5.1 (Complexity). The time complexity of the GD algorithm has a time complexity of $\mathcal{O}(S - O_v + \delta_d)$ and a space complexity of $\mathcal{O}(C)$.

(b)

Figure 7.1: The smart street lamp testbed at NTHU, Taiwan: (a) testbed topology and (b) sample photos.

Chapter 8

Implementations

In this section, we first present a real implementation of our proposed storage server and a smart campus deployment. This is followed by one of the possible predictor design and its implementation.

8.1 Testbed Implementation

We have implemented the proposed storage server on our smart street lamp testbed at NTHU, Taiwan, which consists of eight street lamps, as shown in Fig. 7.1. The street lamps are equipped with several sensors, including air-quality, temperature, humidity, wind speed, and motion sensors. Four of the street lamps come with IP cameras: three fixed bullet camera and one PTZ (Pan-Tilt-Zoom) camera. The street lamps are interconnected by a mixture of Gigabit Ethernet and WiFi mesh networks. Some of the street lamps hold analytics servers, which can be compact PCs, like Intel NUCs, or single-board computers, like Raspberry Pis. Fig. 1.2(a) reveals two sample analytics analyzing the surveillance video clips.

Our implementation is summarized in Fig. 8.1, which complies with the design in Fig. 4.2. Most implemented components belong to the storage server, which is written in Python. We leverage: (i) InfluxDB [43] to realize the time-series database, (ii) Darknet [8] to realize the simplified local analytics platform and analytics servers, and (iii) FFmpeg [22] to realize the video downsampling platform. We implement the optimal downsampling manager in a *modularized* manner, where different components communicate using the socket API. This allows us to readily replace various algorithms in our storage server for comparisons. While our storage server *can*: (i) receive surveillance video streams from the four IP cameras on our smart street lamps and (ii) serve queries through analytics servers from actual users, doing so results in an unpredictable *workload*, which may prevent us from fairly comparing different storage server designs. To

cope with this limitation, we also implement: (i) a virtual camera, which emulates a camera in our testbed by replaying the surveillance videos and (ii) a query generator, which emulates the requests from analytic servers. The two components allow us to impose exactly the same workload on different storage server designs.

Figure 8.1: Testbed consisting of our implemented storage server, an analytics server, a virtual camera, and a query generator. The circled numbers indicate the order of the operations.

8.2 **Predictor**

Table 8.1: Sample Prediction Table 11411

UIA

Index	Sample Values
Analytics	{People counting, Illegal parking, }
Quality Level	{(12 fps, 500 kbps), (6 fps, 10 kbps), }
Day-of-the-week	{Weekday, Weekend}
Time-of-the-day	$\{0, 1, \dots, 23\}$

The resource consumption of video analytics and downsampling approaches depends on: (i) analytics/downsampling types, (ii) analytics/downsampling parameters (i.e., L and P), and (iii) context information. Context information refers to external information that serves as *hints* for more accurate predictions. Examples of context information include the weather (fewer people taking buses in rainy days), the day-of-the-week (campus buses are busier on weekdays), the time-of-the-day (fewer pedestrians crossing an intersection in late evenings), and parking lot occupancy (illegal parking are more likely when the lots are more full). We let function t(c, a) be the per-frame execution time when analyzing sampling frames of video clip c using analytics a. The context information of c is stored in the same time-series database along with c itself. Similarly, we use $t(c, \mathbf{P}_c^{'}, \mathbf{P}_c)$ to represent the downsampling time of approach d to downsample clips from quality \mathbf{P}'_{c} to \mathbf{P}_c on video clip c.

There are several ways of predicting the resource consumptions under different parameters and context. One possibility is to adopt general regression models with arbitrarily chosen parameters under diverse context. Doing so, however, requires too many samples to train the regression models, which is fairly expensive. We argue that the parameters need not be arbitrarily chosen because they are determined by the administrators of the storage server. In other words, as long as our predictions are accurate with a few *pre-selected* parameter values, the storage server will work as good as, if not better than, having general regression models. Hence, we propose to employ lookup tables indexed by analytics/downsampling decisions and context. The tables are built and updated with online samples to accommodate the environmental dynamics. Whenever there is a ground-truth sample coming from the video downsampling platform or analytics servers, we update the sliding window and the tables. When a prediction is needed, the values in the lookup tables are returned. When a cell is not populated (is empty), we use the value in the closest cell (in the sense of context) for prediction. Following the same design rationale of the resource prediction, we build an information amount table $\hat{e}(\cdot)$ indexed by analytics, downsampling decision, and context. We give a sample lookup table in Table 8.1. We estimate $\hat{e}_{c,f_c,a}$ and update $\hat{e}(\cdot)$ with the moving averages, which in turn allows us to derive H'(L), and H'(P) using Eqs. (6.2) and (7.1), respectively. Last, we note that there exists a large design space for more comprehensive predictors, which could be datadriven and machine learning based. Real deployments of our proposed storage server may be readily incorporated with these comprehensive predictors for better performance; however, we conduct our evaluations with the predictors based on lookup tables to be conservative.

Chapter 9

Evaluations

In this section, we first introduce the evaluation metrics, baselines, and environment setup of our trace-driven simulation. Next, we evaluate the effectiveness, efficiency, practicality, and scalability of our proposed algorithms for the SLE and DDM problems.

9.1 Setup

For fair evaluations, we record the video clips from an IP camera facing a major intersection on our campus in November 2020¹. More precisely, the video clips are encoded in HEVC codec [81] with a resolution of 2048×1536 . Each video clip lasts for 1 hour² at 24 fps and 1 Mbps. We conduct the evaluations on a Linux server with an Nvidia GeForce GTX 1080Ti GPU running our storage server. We report the sample evaluation results from the second week (9th to 15th; Monday to Sunday) of November; while results from other weeks are similar. Specifically, we replay the video clips for seven days and generate random queries on the last day (Sunday) for analytics on the surveillance video clips captured in these seven days as follows. We first let λ represent the average number of requests per day; if not otherwise specified, we let $\lambda = 8$. The inter-arrival time of the query events is generated with an unit of *hour* following a Poisson process. For each query event, we randomly select an analytics using the uniform distribution. For statistically meaningful results, we repeat the simulations six times with different random seeds, and report the results from a sample run and across all six runs.

For comparisons, we have also implemented the following algorithms to mimic the current practices:

¹We have made the dataset available upon request after anonymization. Please see our webpage (/https://nmsl.cs.nthu.edu.tw/projects//) for the instructions of getting access to the dataset.

 $^{^{2}}$ We have tried minute as the unit of video, however, the temporal bias between minutes is too large to capture the available features. As a result, we select the hourly videos, which meet the campus routine more.

- Equal-Fidelity (EF) downsamples the old video clips to a pre-defined bitrate (500 kbps if not otherwise specified) while keeping the same frames when more storage space is needed. EF only downsamples each video clip once, i.e., a previously downsampled video clip is deleted when EF is invoked again.
- Equal-Frame-Rate (EFR) is similar to EF, except that it downsamples the old video clips to a pre-defined frame rate (6 fps if not otherwise specified). The bitrate is not changed.
- **First-In-First-Out (FIFO)** always deletes the oldest video clips to free disk space for incoming video clips.

We consider the following performance metrics:

- Information amount. We report the estimated information amount over time when the algorithms for the SLE problem are triggered. Besides, we evaluate the total information amount of our storage server as the time advances. Generally speaking, more preserved information amounts lead to the lower chances for end-user queries to fail in the future.
- Used storage space. More storage space is used when increasingly more surveillance video clips are stored at the storage server. Our storage server controls the used storage space based on the high/low watermarks. We evaluate the algorithms for the DDM problem by measuring the dynamics of the used space.
- Number of the stored video clips. More video clips saved on the storage server offer better chances for satisfying queries from end users. This is because, as long as a video clip is not completely deleted, we can still apply some analytics on it even though its quality level may be low.
- **Running time of the algorithms**. Processing streamed videos requires real-time decision making, or the whole storage server may get stuck. We compare the running time of the algorithms solving the SLE and DDM problems.
- **Per-query information amount error**. We refer to the information amount gap between the full and downsampled video clips as the per-query information amount error. It can be readily computed using Eqs. (6.4) and (7.3).

We compare the performance of different algorithms under the following parameters. We let the sampling lengths $\mathbf{L}_0 = \{1, 24, 48, 96, 144\}$. We empirically choose the following downsampling decisions: $\mathbf{P}_0 = \{(24, 1000), (24, 500), (12, 500), (12, 100), (6, 100), (6, 10), (1, 10)\}$, where the first element is the frame rate in fps and the second element is the bitrate in kbps. We note that some combinations of the frame rate and bitrate are not included, because FFmpeg fails to transcode the video clip to those combinations, e.g., 10 kbps is clearly too low for a 24 fps clip. Moreover, the high/low watermarks are set to be 100% and 50% of the storage space in our experiments. We let $\delta_i = \delta_d = 6$ hours because we aim to complete all the analytics and downsampling tasks before the next decision is made. Due to the space limit, we report the sample results with the following two parameters in our evaluations: (i) while our proposed storage server supports weights, we use the unit weight matrix. (ii) we let the threshold for the entropy of visual features $\delta_v = 0$, which means all the detected shots are included when deriving the semantic features of the video clips. We consider two sample analytics (illegal parking and people counting) throughout our simulations; while two unknown analytics (illegal parking at a different parking spot and car counting) are added in the later experiments to evaluate the efficiency of the included visual features. Due to our sample analytics aiming to detect people and cars existing or not, we set $n_a = \delta_a = 0$ as the normal output and tolerance level respectively. Furthermore, we vary the storage space size $O \in \{20, 40, 80\}$ GB to understand how it affects the overall performance. For the sake of fairness and clarify, we adopt information amount estimated by OE when evaluating algorithms for a DDM problem. Similar simulation results with the same trends are observed, when the information amounts are estimated by EE or AE. Last, we note that some of our proposed algorithms employ discretized variables, which can be in different granularity levels. Finer granularity leads to more precise free space management at the cost of longer running time. To understand such a trade-off, we compare two granularity levels: MB and GB in the evaluations. We include 95% confidence intervals as error bars whenever applicable.

9.2 **Results**

Our EE algorithm efficiently solves the SLE problem Figs. 9.1(a) and 9.1(b) plot the estimated information amounts from sampled analytics on weekdays and the weekend. We observe that OE captures 75% and EE does 70% on average information amount w.r.t. the ground-truth, which is the videos without sampling. The AE captures the only 28%, which is worse, but still within the error range in theory. These two figures reveal that more information amounts are captured during daytime of weekday, while the midnight on the weekend results in hardly any information amount. More importantly, our EE algorithm effectively estimates the sampling lengths for analyzing the videos. The resulting information amount of EE is less than that of OE by only 7% on weekdays and 9% on weekends at most. Besides, our EE beats AE by a large margin, especially at the peak hours. Figs. 9.1(c) and 9.1(d) report the execution time of the analytics, which is

well controlled within the deadline (shown by the dashed lines) when applying the sampling lengths. The both figures also show that the sampling is essential; otherwise, the execution time exceed the deadline most of the time. The running time of three estimation algorithms are illustrated in Figs. 9.1(e) and 9.1(f)³. Because the difference between OE and EE/AE is too large, so we plot the figures with log-scale Y-axes. We observe that our EE algorithm runs in real time on both weekdays and weekends. In summary, our proposed EE algorithm runs in real-time, yet achieves near optimal performance, better than the optimal OE. In contrast, although the approximation algorithm AE comes with a provable bound, it results in inferior performance compared to the EE algorithm. *Hence, we conclude that the EE algorithm efficiently solves the SLE problem*.

Our ED algorithm preserves more information amount. We report the preserved information amount on our storage server over a week. Fig. 9.2 gives the results from GB granularity level. We make three observations on this figure. First, the first downsampling decisions of all algorithms are made right before day 2 where EF, EFR, and FIFO suffer from large drop on the information amount, while OD, ED, EF lead to little loss. Further, only OD and ED effectively preserve information amount in the remaining days. Second, the growth of information amount from day 1 to 5 (weekdays) is higher than that of the last two days (weekends). Third, on day 7, the overall information amount saved by our ED algorithm significantly outperforms all other alternatives. For example, EE outperforms AD by 44% and EF by 69%. *In summary, the ED algorithm efficiently addresses the DDM problem and preserves more information amount over time.*

Our ED algorithm runs in real time with fine granularity level. Table 9.1 reports the average running time of the algorithms for the DDM problem with 95% confidence intervals. The table shows that ED runs in real-time, always less than 89 ms. It is negligible compared to the execution time of the downsampling tasks, which is in the order of minutes if not hours. OD has an extremely large execution time, even with a coarse granularity level of GB. In fact, we ran the OD algorithm for a week without getting the optimal solution⁴; hence, we put Not-Applicable (N/A) in that table cell. Besides, because the size of a video clip is about 400 MB in our testbed, taking GB as the granularity level leads to high errors when making the downsampling decisions. For instance, Fig. 9.3(a) shows that with GB granularity level, ED results in excessive downsampling time, actually exceeding the downsampling deadline marked as the dashed line. A closer look indicates that the video codec cannot complete all downsampling tasks because of the prediction

³We notice that AE does not fully utilize all the execution time before the deadline. However, after carefully comparing the information amount of AE compared to that without any sampling, we have found that the error bounds of AE (H(C, F, A)/H'(L)) are merely 3.17 and 3.93 on the weekdays and weekend, respectively. We note that these empirical error bounds are below the theoretical ones mentioned in Lemma 5.3.

⁴We estimate at least 38 days are needed to get the optimal decision.

error on execution time due to coarse (GB) granularity. As similar issue also occurs on the prediction of information amount. We observe that ED does not always lead to the best performance compared to OD in various aspects. When the computing resource is very scarce, AD may be more suitable than ED, because the downsampling time of AD is only 34% of ED as shown in Fig. 9.3(a). Hence, system administrators could adopt different algorithms depending on their available computing resources. Fig 9.3(b) gives the total information amount from different algorithms for the DDM problem. Compared to Fig. 9.2, we note that ED does not suffer from a sudden drop of the total information amount on day 4 as highlighted by the circles. Another observation we can make out of Fig 9.3(b) is that ED significantly outperforms AD, even though the latter algorithm runs *in real-time and performs well with fine (MB) granularity level.* In contrast, the optimal OD algorithm fails to scale to fine granularity level, and thus is less practical. Hence, we do not report results from OD in the rest of the thesis. In addition, results from MB granularity level are given, if not otherwise specified.

Our storage server is effective on used space management yet results in low per-query errors. Fig. 9.4(a) plots sample results of used space from days 1 to 2 and Fig. 9.4(c) plots those from days 5 to 6. Results from other days are similar. In Fig. 9.4(a), the five lines overlap with one another until about 21:00 on day 1. This is because the used storage space has not reached the high watermark. These two figures show that: (i) the algorithms for the DDM problem are invoked once the used storage space reaches the high watermark and (ii) the used storage space drops below the low watermark as designed. Moreover, our ED algorithm manages the used space quite well, as it stops right at the low watermark. Figs. 9.4(b) and 9.4(d) report the number of video clips saved on the storage server. Except for FIFO and EFR, all other algorithms result in increasing number of saved video clips over the week. We observe that our ED deletes the least clips on both weekdays and weekends. For example, on day 5, ED removes 48% fewer clips than EF; ED saves 2.78 times more videos clips than FIFO on the last day. In Figs. 9.5(a)-9.5(c), we report the per-query information amount error. On weekdays, we first observe that EF, EFR, and FIFO lead to fairly large errors on almost all queries. The reason is that the queries are generated on day 7; at that time, the earlier video clips are already removed by these baseline algorithms. Our ED performs much better: its information amount error is 58% lower than that of FIFO on average. We notice that in the weekend, FIFO shows the smallest error. This is no surprise as the queries are on the most recent video clips. Even in the worst case (day 6), our ED still achieves a small information amount error of 0.2, while other baseline algorithms could lead to almost 0.9 on some weekdays (like day 3). Last, we also note that our AD still outperforms the baseline algorithms (EF, EFR, and FIFO), although it has inferior performance to ED as shown in Fig. 9.5. A deeper look into Figs. 9.4(a), 9.4(b), and 9.5(c) reveals that EF, EFR, FIFO and AD suffer from two shortcomings. First, they tend to free too much used space, especially AD and EFR, and thus delete too many video clips. Second, even for those kept video clips, their quality is too low for analytics algorithms to make sense out of them. Hence, EF, EFR, FIFO, and AD do not perform well in terms of per-query error. *Taken all together, our ED not only well manages the used space and number of clips, but also successfully retains the information on both weekdays and weekends compared to other alternatives.*

Table 9.2: Information Amount Error With and Without Visual Features

	Weekday	Weekend
With	$9.77 \times 10^{-2} (\pm 1.14 \times 10^{-2})$	$2.60 \times 10^{-2} (\pm 5.85 \times 10^{-3})$
Without	$1.40 \times 10^{-1} (\pm 1.85 \times 10^{-2})$	$4.78 \times 10^{-2} (\pm 1.03 \times 10^{-2})$

Our storage server successfully supports unknown analytics. We define the information amount based on both semantic and visual features. The latter features are meant to cover the unknown analytics in the future. To understand their effectiveness, we next employ two unknown analytics in the queries on day 7. We then compute their errors of information amount with and without considering the visual features in our proposed ED algorithms. We give the results in Table 9.2. This table reveals that introducing (low-level) visual features reduces the information amount errors: 30% on weekdays and 46% on weekends, respectively. The reason is that visual features are more general across queries with heterogeneous analytics. *By considering visual features in the information amount, our storage server is capable of retaining important videos even if there are new analytics coming from end users.* Table 9.2 also shows that the errors on weekends are slightly lower than those on weekdays.

Our ED algorithm scales well with larger storage spaces. Last, we consider different storage size: between 20 to 80 GB. To exercise the larger disks, we consider a longer 12-day trace between 9th and 20th of November. We report the per-day performance of our ED algorithm in Fig. 9.6. We observe that ED successfully capitalizes additional storage spaces: it saves more video clips and total information amount when the storage space is increased to 80 GB. In addition, the used space is well bounded between the high/low watermarks. *In summary, our ED algorithm scales well with larger storage spaces*.

Figure 9.1: Comparisons of different algorithms for the SLE problem: (a), (c), and (e) on weekdays; (b), (d), and (f) over the weekend. (a) and (b) are the information amount; (c) and (d) are the execution time of sampled analytics; (e) and (f) are the algorithms' running time.

Figure 9.2: Comparisons of downsampling decision algorithms: preserved information amount GB granularity.

Table 9.1: Running Time of Downsampling Decision Algorithms with Different Granularity Levels (Unit: s)

Algorithm	MB	GB
OD	N/A	$3.32 \times 10^2 (\pm 1.95 \times 10^1)$
ED	$8.85 \times 10^{-2} (\pm 1.26 \times 10^{-3})$	$1.25 \times 10^{-2} (\pm 2.72 \times 10^{-3})$
AD	$2.06 \times 10^{-3} (\pm 2.28 \times 10^{-4})$	$1.81 \times 10^{-3} (\pm 2.31 \times 10^{-4})$
EF	$1.30 \times 10^{-3} (\pm 2.58 \times 10^{-3})$	$1.00 \times 10^{-3} (\pm 2.64 \times 10^{-5})$
EFR	$8.12 \times 10^{-4} \ (\pm 9.02 \times 10^{-5})$	$9.13 \times 10^{-4} \ (\pm 1.05 \times 10^{-4})$
FIFO	$5.26 \times 10^{-4} (\pm 1.89 \times 10^{-5})$	$4.95 \times 10^{-4} (\pm 5.13 \times 10^{-6})$

Figure 9.3: Comparisons of downsampling decision algorithms: (a) execution time of the video sampling tasks and (b) preserved information amount MB granularity.

Figure 9.4: Comparison of different algorithm for the DDM problem: (a)–(c) on weekdays; (b)–(d) over the weekend. (a) and (b) are the total used space of stored video clips; (b) and (d) are the number of stored video clips.

Figure 9.5: Information amount error for queries: (a) average and (b) maximum errors across seven days in different runs; (c) average of each day in seven days, sample results from run 1 are shown. Notice that all algorithms (except OD, which is not included in this figure) lead to zero information amount error on day 7.

Figure 9.6: Our ED algorithm scales well with larger storage spaces: (a) number of stored video clips, (b) total information amount, and (c) total used space.

Chapter 10

Conclusion

In this thesis, we detailed the design, implementations, optimization, and evaluations of a multi-level feature driven storage server for surveillance videos gathered from smart environments. The design goal of the storage server is to retain as much information amount as possible under the constraints of storage space and computational power. We achieved the design goal in the following steps. We first carefully defined the information amount by extracting semantic and visual features from shots in the surveillance video clips. We proposed to use lookup tables for predicting resource consumption and information amount due to different analytics and downsampling approaches. Such predictions are capitalized to solve two key research problems: (i) sampling length estimation, which determines the sampling length to capture the information amount without overloading the storage server and (ii) downsampling decision maker, which selects a downsampling decision matrix to retain the most information amount without consuming excessive resources (both computation time and storage). We conducted extensive trace-driven simulations to compare the performance of our proposed algorithms in the system against the current practices. We found that our efficient algorithms (EE and ED) run faster (than the optimal algorithms OE and OD) and achieve much better performance (than the approximation algorithms AE and AD). The evaluation results demonstrate that our efficient algorithms:

- 1. achieve a mere $\sim 7\%$ captured information amount gap compared to the optimal solutions;
- 2. boost the number of saved video clips by up to 2.78 times.;
- 3. reduce per-query error by $\sim 58\%$ on average;
- 4. terminate in 88 ms at most;
- 5. well-manage the used space between the high/low watermarks;
- 6. generate smaller errors on unknown analytics;

7. scale well with larger storage space.

Our proposed storage server can be extended in several directions. First, a cluster of geographically distributed storage servers could be jointly managed for even better performance. Second, quantifying the satisfaction levels of end-user queries is non-trivial. The information amount computed by our storage server may not directly reflect the user experience. Incorporating the concept of Quality-of-Experience [62] may be worth investigating. Besides, the weights of analytics and clips from different users probably are inconsistent with each other, thus proper aggregation algorithms for different users' weight can be designed. Third, more comprehensive predictors, such as those built upon Reinforcement-Learning (RL) [82] may be adopted; while the implications of more accurate predictions on the performance storage server can be quantified. Fourth, a wider array of analytics applications for diverse scenarios, such as infrastructure monitoring and smart agriculture, may be considered, where the information overlaps among these analytics applications can be investigated and potentially leveraged in the storage server design. Last, sensors other than surveillance cameras may also leverage our proposed solution, where audio and time-series data can be efficiently stored on edge servers.

Bibliography

- G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha. Real-time video analytics: The killer app for edge computing. *IEEE Computer*, 50(10):58–67, October 2017.
- [2] A. Anjomshoaa, F. Duarte, D. Rennings, T. Matarazzo, P. deSouza, and C. Ratti. City scanner: Building and scheduling a mobile sensing platform for smart city services. *IEEE Internet of things Journal*, 5(6):4567–4579, May 2018.
- [3] K. Ashton et al. That Internet of Things thing. *LLC RFID*, 22(7):97–114, June 2009.
- [4] A. Astaras, H. Lewy, C. James, A. Katasonov, D. Ruschin, and P. Bamidis. Unobtrusive smart environments for independent living and the role of mixed methods in elderly healthcare delivery: the USEFIL approach. In *Handbook of Research* on Innovations in the Diagnosis and Treatment of Dementia, chapter 15, pages 290–305. IGI Global, May 2015.
- [5] Azure. Azure status history, 2021.
- [6] E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text data. In *Proc. of ACM International Conference on Knowledge discovery and data mining (KDD'01)*, pages 245–250, San Francisco, California, August 2001.
- [7] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana. The Internet of Things, fog and cloud continuum: Integration and challenges. *Elsevier Internet of Things*, 3(4):134–155, October 2018.
- [8] A. Bochkovskiy. YOLO-v3 and YOLO-v2 for Windows and Linux, 2019.
- [9] B. Burns, J. Beda, and K. Hightower. In *Kubernetes: up and running: dive into the future of infrastructure*. O'Reilly Media, May 2015.

- [10] H. Cai, L. Da Xu, B. Xu, C. Xie, S. Qin, and L. Jiang. IoT-based configurable information service platform for product lifecycle management. *IEEE Transactions* on Industrial Informatics, 10(2):1558–1567, February 2014.
- [11] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, and M. Villari. From the cloud to edge and IoT: a smart orchestration architecture for enabling osmotic computing. In *Proc. of IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA'18)*, pages 419–424, Krakow, Poland, May 2018.
- [12] G. Chandan, A. Jain, H. Jain, et al. Real time object detection and tracking using deep learning and OpenCV. In *Proc. of IEEE International Conference on Inventive Research in Computing Applications (ICIRCA'18)*, pages 1305–1308, Coimbatore, India, July 2018.
- [13] T. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile devices. In *Proc. of ACM Conference* on Embedded Networked Sensor Systems (SenSys'15), pages 155–168, New York, NY, November 2015.
- [14] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu. Exploiting massive D2D collaboration for energy-efficient mobile edge computing. *IEEE Wireless communications*, 24(4):64–71, August 2017.
- [15] T.-c. Chiueh and S. Nanda. A survey on virtualization technologies. *Rpe Report*, 142, June 2005.
- [16] Christopher Ingraham. Nine days on the road. Average commute time reached a new record last year, 2019.
- [17] V. Cimino and S. E. Rombo. Design and prototyping of a smart university campus. In *Handbook of Research on Implementation and Deployment of IoT Projects in Smart Cities*, chapter 14, pages 228–252. IGI Global, May 2019.
- [18] D. Cook, G. Duncan, G. Sprint, and R. Fritz. Using smart city technology to make healthcare smarter. *Proceedings of the IEEE*, 106(4):708–722, 2018.
- [19] M. Cox and T. Cox. Multidimensional scaling. In *Handbook of data visualization*, pages 315–347. Springer, June 2008.
- [20] S. Dey, A. Chakraborty, S. Naskar, and P. Misra. Smart city surveillance: Leveraging benefits of cloud data stores. In *Proc. of IEEE Conference on Local Computer Networks Workshops (LCNW)*, pages 868–876, Clearwater, Florida, October 2012.

- [21] S. Dutta, T. Taleb, P. Frangoudis, and A. Ksentini. On-the-fly QoE-Aware transcoding in the mobile edge. In *Proc. of IEEE Global Communications Conference* (*GLOBECOM'16*), Washington, DC, USA, December 2016.
- [22] FFmpeg Developers. FFmpeg documentation, 2019.
- [23] FFmpeg Developers. FFmpeg documentation blackframe, 2020.
- [24] Y. Fu, Y. Guo, Y. Zhu, F. Liu, C. Song, and Z. Zhou. Multi-view video summarization. *IEEE Transactions on Multimedia*, 12(7):717–729, June 2010.
- [25] N. Funde, P. Paranjape, K. Ram, P. Magde, and M. Dhabu. Object detection and tracking approaches for video surveillance over camera network. In *Proc. of IEEE International Conference on Advanced Computing & Communication Systems (ICACCS'19)*, pages 1171–1176, Coimbatore, India, 2019.
- [26] G. Gao, W. Zhang, Y. Wen, Z. Wang, W. Zhu, and Y. Tan. Cost optimal video transcoding in media cloud: Insights from user viewing pattern. In *Proc. of IEEE Intl. Conf. on Multimedia and Expo (ICME'14)*, pages 1–6, Chengdu, China, July 2014.
- [27] G. Gens and E. Levner. An approximate binary search algorithm for the multiplechoice knapsack problem. *Elsevier Information Processing Letters*, 67(5):261– 265, September 1998.
- [28] B. Ghazal, K. ElKhatib, K. Chahine, and M. Kherfan. Smart traffic light control system. In Proc. of IEEE International Conference on Electrical, Electronics, Computer engineering and their Applications (EECEA'16), pages 140–145, Beirut, Lebanon, April 2016.
- [29] A. Godbehere, A. Matsukawa, and K. Goldberg. Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In *Proc. of IEEE American Control Conference (ACC'12)*, pages 4305–4312, Montreal, QC, Canada, June 2012.
- [30] Google. DeepMind, 2010.
- [31] Google. Google brain team: Make machines intelligent. improve people's lives, 2011.
- [32] Google. Machine learning finds new ways for our data centers to save energy, 2019.
- [33] Google. Tensorflow lite, 2021.

- [34] A. Harris, V. Khanna, G. Tuncay, R. Want, and R. Kravets. Bluetooth low energy in dense IoT environments. *IEEE Communications Magazine*, 54(12):30–36, December 2016.
- [35] C. He, J. Leung, K. Lee, and M. Pinedo. An improved binary search algorithm for the multiple-choice knapsack problem. *EDP Sciences RAIRO-Operations Research*, 50(4-5):995–1001, December 2016.
- [36] J. Herrman. Amazon's big breakdown, 2020.
- [37] R. High. The era of cognitive systems: An inside look at IBM Watson and how it works. *IBM Corporation, Redbooks*, 1:16, December 2012.
- [38] W. Hlaing, S. Thepphaeng, V. Nontaboot, N. Tangsunantham, T. Sangsuwan, and C. Pira. Implementation of wifi-based single phase smart meter for Internet of Things (IoT). In *Proc. of IEEE International Electrical Engineering Congress* (*IEECON'17*), pages 1–4, Pattaya, Thailand, October 2017.
- [39] L. Horwitz. The future of IoT miniguide: The burgeoning IoT market continues, 2019.
- [40] S. Hossain, M. Hassan, M. Al, and A. Alghamdi. Resource allocation for service composition in cloud-based video surveillance platform. In *Proc. of IEEE International Conference on Multimedia and Expo Workshops (ICMEW'12)*, pages 408–412, Melbourne, Australia, July 2012.
- [41] F. Hsu. IBM's deep blue chess grandmaster chips. *IEEE Micro*, 19(2):70–81, April 1999.
- [42] A. Ikpehai, B. Adebisi, K. Rabie, K. Anoh, R. Ande, M. Hammoudeh, H. Gacanin, and U. Mbanaso. Low-power wide area network technologies for internet-ofthings: A comparative review. *IEEE Internet of Things Journal*, 6(2):2225–2240, November 2018.
- [43] InfluxDB. InfluxDB official website, 2019.
- [44] Time-of-use tariffs: Innovation landscape brief. Standard, 2019.
- [45] The Internet of things. Standard, International Telecommunication Union, 2005.
- [46] S. Javaid, A. Sufian, S. Pervaiz, and M. Tanveer. Smart traffic management system using Internet of Things. In *Proc. of IEEE International Conference on Advanced Communication Technology (ICACT'18)*, pages 393–398, Chuncheon, South Korea, March 2018.

- [47] H. Kellerer, U. Pferschy, and D. Pisinger. Multidimensional knapsack problems. In *Knapsack problems*, chapter 9, pages 235–283. Springer, 2004.
- [48] D. Kiritsis. Closed-loop PLM for intelligent products in the era of the Internet of things. *Elsevier Computer-Aided Design*, 43(5):479–501, May 2011.
- [49] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. ACM Communications, 60(6):84–90, June 2017.
- [50] E. Lawler. Fast approximation algorithms for knapsack problems. *INFORMS Mathematics of Operations Research*, 4(4):339–356, November 1979.
- [51] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. *Nature*, 521(7553):436–444, May 2015.
- [52] P. Li, L. Prieto, D. Mery, and P. Flynn. On low-resolution face recognition in the wild: Comparisons and new techniques. *IEEE Transactions on Information Forensics and Security*, 14(8):2000–2012, January 2019.
- [53] S. Li, L. Da Xu, and S. Zhao. The Internet of Things: a survey. Springer Information Systems Frontiers, 17(2):243–259, April 2015.
- [54] X. Li, M. Salehi, and M. Bayoumi. High performance on-demand video transcoding using cloud services. In Proc. of IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid'16), pages 600–603, Cartagena, Colombia, May 2016.
- [55] Y. Li, M. Hou, H. Liu, and Y. Liu. Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. *Springer Information Technology and Management*, 13(4):205–216, April 2012.
- [56] P. Liu, B. Qi, and S. Banerjee. Edgeeye: An edge service framework for realtime intelligent video analytics. In *Proc. of ACM International Workshop on Edge Systems, Analytics and Networking (EdgeSys'18)*, pages 1–6, Munich, Germany, June 2018.
- [57] L. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR Journal of machine learning research, 9(11):2579–2605, November 2008.
- [58] F. Mehboob and M. Abbas. Intelligent video surveillance. In A. Neves, editor, Video Surveillance-Based Intelligent Traffic Management in Smart Cities, chapter 2, pages 1–9. IntechOpen, November 2018.

- [59] D. Merkel. Docker: lightweight linux containers for consistent development and deployment. *ACM Linux journal*, 2014(239):2, May 2014.
- [60] J. Michel. Massive outage hits google services worldwide, 2020.
- [61] L. Minchala-Avila, J. Armijos, D. Pesántez, and Y. Zhang. Design and implementation of a smart meter with demand response capabilities. *Elsevier Energy Procedia*, 103:195–200, December 2016.
- [62] S. Möller and A. Raake. In *Quality of experience: advanced concepts, applications and methods*. Springer, March 2014.
- [63] K. Muhammad, T. Hussain, M. Tanveer, G. Sannino, and V. H. C. de Albuquerque. Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks. *IEEE Internet of Things Journal*, 7(5):4455– 4463, November 2019.
- [64] A. Murugan, K. Devi, A. Sivaranjani, and P. Srinivasan. A study on various methods used for video summarization and moving object detection for video surveillance applications. *Springer Multimedia Tools and Applications*, 77(18):23:273– 23:290, September 2018.
- [65] The NIST definition of cloud computing. Standard, 2011.
- [66] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler, H. Feussner, and A. Schneider. Enabling real-time context-aware collaboration through 5G and mobile edge computing. In *Proc. of IEEE International Conference on Information Technology-New Generations (ITNG'15)*, pages 601–605, April 2015.
- [67] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform for high-performance internet applications. ACM SIGOPS Operating Systems Review, 44(3):2–19, July 2010.
- [68] R. Panda and A. Roy-Chowdhury. Multi-view surveillance video summarization via joint embedding and sparse optimization. *IEEE Transactions on Multimedia*, 19(9):2010–2021, December 2017.
- [69] B. Patt-Shamir and D. Rawitz. Vector bin packing with multiple-choice. *Elsevier Discrete Applied Mathematics*, 160(10-11):1591–1600, July 2012.
- [70] A. Prati, C. Shan, and K. Wang. Sensors, vision and networks: From video surveillance to activity recognition and health monitoring. *IOS Press Journal of Ambient Intelligence and Smart Environments*, 11(1):5–22, January 2019.

- [71] P. Rasti, T. Uiboupin, S. Escalera, and G. Anbarjafari. Convolutional neural network super resolution for face recognition in surveillance monitoring. In *Proc. of Springer of International conference on articulated motion and deformable objects* (AMDO'16), pages 175–184, Palma de Mallorca, Spain, July 2016.
- [72] D. Rodríguez-Silva, L. Adkinson-Orellana, F. Gonz'lez-Castano, I. Armino-Franco, and D. Gonz'lez-Martinez. Video surveillance based on cloud storage. In *Proc. of IEEE International Conference on Cloud Computing (CLOUD'12)*, pages 991–992, Honolulu, Hawaii, June 2012.
- [73] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O'Flynn. IoT goes nuclear: Creating a ZigBee chain reaction. In *Proc. of IEEE Symposium on Security and Privacy* (SP'17), pages 195–212, San Jose, CA, May 2017.
- [74] M. Saifuzzaman, N. Moon, and F. Nur. IoT based street lighting and traffic management system. In *Proc. of IEEE Region 10 Humanitarian Technology Conference* (*R10-HTC'17*), pages 121–124, Dhaka, Bangladesh, December 2017.
- [75] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and B. Amos. Edge analytics in the Internet of Things. *IEEE Pervasive Computing*, 14(2):24–31, April-June 2015.
- [76] J. Seo, S. Han, S. Lee, and H. Kim. Computer vision techniques for construction safety and health monitoring. *Elsevier Advanced Engineering Informatics*, 29(2):239–251, April 2015.
- [77] M. Shafi, A. Molisch, P. Smith, T. Haustein, P. Zhu, P. Silva, F. Tufvesson, A. Benjebbour, and G. Wunder. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. *IEEE Journal on Selected Areas in Communications*, 35(6):1201–1221, April 2017.
- [78] Z. Shao, J. Cai, and Z. Wang. Smart monitoring cameras driven intelligent processing to big surveillance video data. *IEEE Transactions on Big Data*, 4(1):105–116, June 2017.
- [79] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. *IEEE Internet of Things Journal*, 3(5):637–646, June 2016.
- [80] B. Siregar, A. Nasution, and F. Fahmi. Integrated pollution monitoring system for smart city. In *Proc. of IEEE International Conference on ICT For Smart Society* (*ICISS'16*), pages 49–52, Surabaya, Indonesia, July 2016.

- [81] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the high efficiency video coding (HEVC) standard. *IEEE Transactions on Circuits and Systems for Video Technology*, 22(12):1649–1668, September 2012.
- [82] R. Sutton and A. Barto. In *Reinforcement learning: An introduction*. MIT press, November 2018.
- [83] F. Tao, Y. Cheng, L. Da, L. Zhang, and B. Li. CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. *IEEE Transactions* on industrial informatics, 10(2):1435–1442, February 2014.
- [84] T. Taylor. How machine learning language is driving innovation at Uber, 2018.
- [85] J. Tenenbaum, V. De, and C. Langford. A global geometric framework for nonlinear dimensionality reduction. AAAS science, 290(5500):2319–2323, December 2000.
- [86] S. Thomas, S. Gupta, and K. Subramanian. Smart surveillance based on video summarization. In *Proc. of IEEE Region 10 Symposium (TENSYMP'17)*, pages 1–5, Cochin, India, July 2017.
- [87] M. Tsai, N. Venkatasubramanian, and C. Hsu. Analytics-aware storage of surveillance videos: Implementation and optimization. In *Proc. of IEEE International Conference on Smart Computing (SMARTCOMP'20)*, pages 25–32, Bologna, Italy, September 2020.
- [88] A. Usman, R. Usman, and S. Shin. An intrusion oriented heuristic for efficient resource management in end-to-end wireless video surveillance systems. In *Proc. of IEEE Annual Consumer Communications & Networking Conference (CCNC'18)*, pages 1–6, Las Vegas, Nevada, January 2018.
- [89] L. Vangelista, A. Zanella, and M. Zorzi. Long-range IoT technologies: The dawn of LoRa. In Proc. of Springer Future access enablers of ubiquitous and intelligent infrastructures (FABULOUS'15), pages 51–58, Ohrid, Republic of Macedonia, September 2015.
- [90] L. Vaquero, F. Cuadrado, Y. Elkhatib, J. BernalBernabe, S. Srirama, and M. Zhani. Research challenges in nextgen service orchestration. *Elsevier Future Generation Computer Systems*, 90:20–38, January 2019.
- [91] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovács, P. Mogensen, and M. Sorensen. Coverage and capacity analysis of SigFox, LORA, GPRS, and NB-

IoT. In *Proc. of IEEE Vehicular Technology Conference (VTC'17)*, pages 1–5, Sydney, Australia, June 2017.

- [92] C. Wang, Z. Bi, and L. Da. IoT and cloud computing in automation of assembly modeling systems. *IEEE Transactions on Industrial Informatics*, 10(2):1426–1434, January 2014.
- [93] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake. Leveraging smart meter data to recognize home appliances. In *Proc. of IEEE International Conference on Pervasive Computing and Communications (PerCom'12)*, pages 190–197, Lugano, Switzerland, March 2012.
- [94] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. *Elsevier Chemometrics and intelligent laboratory systems*, 2(1-3):37–52, August 1987.
- [95] R. Xu, S. Y. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng, and T. R. Faughnan. Real-time human objects tracking for smart surveillance at the edge. In *Proc. of IEEE International Conference on Communications (ICC'18)*, pages 1–6, Kansas City, MO, May 2018.
- [96] J. Yoon, P. Liu, and S. Banerjee. Low-cost video transcoding at the wireless edge. In Proc. of IEEE/ACM Symposium on Edge Computing (SEC'16), pages 129–141, Washington DC, USA, October 2016.
- [97] P. Yuan, Y. Cai, X. Huang, S. Tang, and X. Zhao. Collaboration improves the capacity of mobile edge computing. *IEEE Internet of Things Journal*, 6(6):10610– 10619, September 2019.
- [98] M. Zakerinasab and M. Wang. Dependency-aware distributed video transcoding in the cloud. In *Proc. of IEEE Conference on Local Computer Networks (LCN'15)*, pages 245–252, Clearwater Beach, FL, USA, October 2015.
- [99] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee. The design and implementation of a wireless video surveillance system. In *Proc. of ACM Annual International Conference on Mobile Computing and Networking (MobiCom'15)*, pages 426–238, Paris, France, September 2015.
- [100] W. Zhang, Y. Wen, and H. Chen. Toward transcoding as a service: energy-efficient offloading policy for green mobile cloud. *IEEE Network*, 28(6):67–73, November 2014.
- [101] Y. Zhang, Q. Shang, and G. Zhang. pyDRMetrics- a python toolkit for dimensionality reduction quality assessment. *Elsevier Heliyon*, 7(2):e06199, February 2021.
- [102] Z. Zhang. Microsoft Kinect sensor and its effect. *IEEE MultiMedia*, 19(2):4–10, April 2012.

