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中文摘要

高樓火災會威脅到現代都市的生活安全品質，若火災發生在較高

樓層，消防人員無法確切掌握火勢和受災人的位置，故我們提出透過

無人機裝載多模態感測器，自動探索高樓環境，提供消防人員所需的

資訊，在過去已經有一些研究關於無人機群的工作和路線安排，但他

們並沒有考慮到抵達一個偵測點之後，應該如何做資料搜集才能達到

最好的準確率，我們的論文專注於補足這一塊的缺失，當無人機抵達

一個待偵測點時，提供給他一個偵測資訊串，告訴它該在哪些位子進

行拍攝，在每一個位子又該用哪個感測器和選擇哪一個分類器來分析

感測器搜集的資料。為了更加具體討論我們的方法，在我們的論文中

主要偵測的事件為窗戶開關和每扇窗戶後面有多少受災人，其他消防

人員所需資訊仍可運用相同的方法提供偵測資訊串給無人機。總結來

說，在這篇論文當中，我們搜集了第一個用多模態感測器拍攝而來的

窗戶資料庫，並將我們的選擇問題公式化，提出兩個演算法來解決我

們的問題，最後我們實作了一個事件驅動模擬器搭配虛擬城市環境評

估我們演算法的表現，也製作了使用者介面展示，並控制真實的無人

機展示我們系統的運作流程。從實驗數據中可知我們的方法優於沒有

產生偵測資訊串的方法，在偵測得準確度上提升了 50%，在眾多窗戶
的測試中，成功達到預設的偵測時間限制和偵測準確率的比例比沒有

產生偵測資訊串的方法高 100%，同時也降低了 6.78倍的能源消耗。
從真實的無人機展示證實了我們系統的可行性，以及我們具體如何將

狀況認知資訊提供給消防員。
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Abstract

High-rise fires are among the largest threats to safety in modern cities,
and autonomous drones with multi-modal sensors can be employed to en-
hance situational awareness in such unfortunate disasters. In this paper, we
study the fine-grained measurement selection problem for drones being dis-
patched to perform situation monitoring tasks in high-rise fires. Our problem
considers multiple sensor/media types, classifier designs, and measurement
locations, which were overlooked in prior waypoint scheduling studies. For
concrete discussion, we adopt window openness and human detection as the
target situations, while other situations can be readily supported by our so-
lution as well. More specifically, we: (i) collect a very first multi-modal
window dataset, (ii) mathematically formulate the fine-grained measurement
selection problem and solve it using two algorithms, and (iii) create an event-
driven simulator and real testbed to evaluate our algorithms individually. The
evaluation results from the event-driven simulator demonstrate that our pro-
posed algorithms achieve higher classification accuracy (up to 50% improve-
ment), deliver more feasible solutions (up to 100% improvement), and reduce
energy consumption (up to 6.78 times reduction), compared to the current
practices. The demonstration of our real testbed shows that the practice of
our work, and how may it provide the situational awareness in the real high-
rise firefighting.
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Chapter 1

Introduction

United Nations reported that 55% of people live in urban areas as of in 2018, which is

projected to reach 68% by 2050 [43]. Such a high rate of urbanization makes housing the

urban populations extremely challenging. Taller high-rise buildings have been constantly

built to vertically accommodate more people for living, working, socializing, and enter-

taining. These high-rise buildings, however, are more vulnerable to hazards, such as fires,

earthquakes, terrorism, and disease outbreaks. As the growth of multimedia technologies

and hardware devices, more and more innovative multimedia systems are developed to

improve the safety in these urban living environments.

In this thesis, we consider well-recognized urban safety concerns: high-rise fires,

which often result in severe casualties. For example, Grenfell Tower Fire in London led to

72 fatalities [113] in 2017. The challenges of firefighting in high-rise buildings are quite

different from firefighting in traditional buildings for many reasons [28]. For instance,

if fires break out at floors that are not reachable by fire ladders, firefighters must enter

the high-rise buildings with oxygen masks/tanks, which put them in great danger. Such

danger is mainly caused by the situational unawareness of firefighters when they are in

high-rise buildings. The most critical situations in high-rise fires include: (i) the locations

and severity levels of fires, (ii) regions affected by smoke, (iii) locations and vital signs of

inhabitants, and (iv) window openness. These situations are not independent, e.g., sudden

increases of fresh air due to a window loss could lead to rapid spreading of fires, known

as wind-driven high-rise fires, which in turn result in unsurvivable environments [50].

One way to improve situational awareness in high-rise fires is to deploy sensors

and surveillance systems throughout high-rise buildings. Doing so, however, is time-

consuming, expensive, and error-prone, while sensors (such as magnetic switches) often

work for homogeneous situations (such as window openness). Adding to that, sensors

(like smoke detectors) are typically connected through proprietary networks, which may

not interoperate with the communication networks used by firefighters. Therefore, it is
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very likely that firefighters are provided partial, if any, sensor readings, and have to search

through fire scenes in a brute force manner, putting them in danger of fatal casualties.

Ground Control Station

Waypoints

(a)

···

···

···

Ground Control Station

S C

S C
S C

S

C

: Sensor

: Classifier

Measurement

Results

Measurement

Location

(b)

Figure 1.1: Adaptive firefighting drones: (a) coarse-grained waypoint scheduling and (b)

fine-grained measurement selection.

In contrast, we aim to enhance the situational awareness in high-rise fires by lever-

aging fine-grained measurement selection from a suite of heterogeneous classifiers and

multi-modal sensors mounted on drones, which fly around the exterior of buildings. As

different sensors, classifiers, and measurement locations affect the detection results [54],

it is challenging to find the best combinations of them. Fig. 1.1 reveals the considered us-

age scenario, in which a ground control station instructs one or multiple drones to monitor

the situations in high-rise fires. Fig. 1.1(a) shows the coarse-grained waypoint scheduling

problem addressed in prior studies [177, 158, 93], where the ground control station sched-

ules waypoints for drones to perform different location-dependent monitoring tasks. To

the best of our knowledge, these existing studies largely ignored the detailed properties

of heterogeneous sensors, media types, and classifiers. Instead, they assumed that each

monitoring task can be completed within a given time duration while achieving a known

accuracy level. These assumptions, unfortunately, deviate from the reality. For example,

each reading of an ultrasound sensor is a single distance value, and a window openness

classifier may require multiple such readings at slightly different locations in front of a

given window. Adding to that, high-rise fire scenes are diverse and dynamic, rendering

the time and accuracy of different combinations of locations, sensors, and classifiers hard

to predict.

To fill in the gap, we zoom into the fine-grained planning within a bounding box of

each monitoring task, as shown in Fig. 1.1(b). We consider multiple sensor/media types,

2



Output

Measurement

(a) (b)

Figure 1.2: Representative one-shot and accumulated sensors: (a) RGB camera and (b)

ultrasound sensor.

classifier designs, and measurement locations to accomplish every monitoring task. More

specifically, our job is to select the best sequence of measurements, which are the combi-

nations of locations, sensors, and classifiers. Our problem has a general setup, e.g., some

sensors/classifiers are one-shot, where a single measurement gives rich enough data for

classifications (Fig. 1.2(a)); while others are accumulated, where all prior measurements

are jointly analyzed for classifications (Fig. 1.2(b)). RGB cameras and ultrasound sensors

are representative sensors that are one-shot and accumulated, respectively. Upon ana-

lyzed by machine-learning classifiers, semantically-meaningful measurement results are

sent back to the ground control station, and presented to firefighting officials. While our

system and algorithms can be applied to enhance the awareness of various high-rise fire

related situations, we adopt window openness as a representative situation for concrete

discussion.

Handling multi-modal sensor data and computing the best measurement sequence for

each monitoring task are not easy tasks for several reasons. First, we need to gener-

ate multi-modal sensor dataset by ourselves as most of existing datasets only come with

RGB images. Second, different sensors/classifiers achieve diverse accuracy levels while

consuming different resource amounts. Hence, finding a good trade-off between accuracy

and timeliness is critical to resource-constrained drones. Third, fusing results from differ-

ent sensor/classifiers may lead to even better trade-off mentioned above. Last, high-rise

fire scenes are highly dynamic, and thus the measurement sequence needs to be adaptive.

For example, fires may cause thick smoke, which renders RGB camera less accurate and

calls for other sensors/classifiers.

3



1.1 Contributions

Existing situation awareness work focus on coarse-grained waypoint scheduling [177,

158, 93], which do not consider the arrangement of multi-modal sensors, classifiers, and

detection locations when a drone arrives at a waypoint. In this thesis, we solve the mea-

surement selection problem by several steps. We create both real and virtual dataset with

multi-modal sensors. Then, we come up with our measurement selection algorithms to

generate the measurement sequence. Finally, we evaluate our system both in an event-

driven simulator and a real testbed. Our contributions can be concretized as below:

• A very first multi-modal window dataset. We collect our dataset both in real

(WinSet [54]) and virtual environments. Window images are collect at diverse dis-

tances and angles. All of them are well-labeled. We also design and implement

various classifiers for these multi-modal sensor data.

• Measurement selection algorithms. We mathematically formulate the measure-

ment selection problem considering the trade-off between accuracy and time cost

of diverse classifiers. We then propose efficient algorithms to compute the mea-

surement sequence, adaptively selecting the best combinations of sensors and clas-

sifiers.

• An event-driven simulator and real testbed. We build an event-driven simula-

tor connected with a photo-realistic simulator to evaluate the performance of our

algorithm. We also build a real testbed to demonstrate the whole process of our

system.

Some contributions above are accepted by two conference. The real window dataset,

WinSet, is presented as a note paper in ACM BuildSys in 2021. Our measurement selec-

tion algorithms and the event-driven simulator [53] are presented in the special session of

ACM MMSys is 2022.

1.2 Organizations

We briefly introduce our work and challenges in Chapter 1. Then, we talk about the gen-

eral idea of smart city, high-rise firefighting, drone-based applications, waypoint schedul-

ing, classifiers and regressors, and sensor fusions in Chapter 2. In Chapter 3, we analyze

the pros and cons of the related work. Then, we concretize our system design in Chapter 4.

Based on the components we need in our system, we introduce our real and virtual dataset

in Chapter 5 and Chapter 6, classifiers we designed and implemented for the multi-modal

sensor data in Chapter 7, and the measurement selection algorithms in Chapter 8. We

then show the performance of our work in Chapter 9 and the real testbed demonstration

4



in Chapter 10. Finally, our conclusion and future works can be viewed in Chapter 11.
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Chapter 2

Background

2.1 Smart City

We need many different systems and equipments to support humans’ life in a city, such

as transportation taking people to different places, water systems to bring people warm

showers, and gas pipelines for people cooking a delicious breakfast. As the technology

grows, the sufficient computation resources and large-scaled internet services can apply

more services for people in the city. The concept of smart city is collecting data from In-

ternet of Things and applying services that make people’s life more convenient in modern

cities [160]. The applications of smart city can across diverse aspects. For example, smart

transportation that can change the traffic signal frequency according to the traffic flow,

surveillance systems that can track suspicious people automatically to improve security,

and smart medical treatments by monitoring patients’ sensor data to protect inhabitants’

health.

2.2 High-Rise Firefighting

The definitions of high-rise buildings are various among cities. The most common defi-

nition is defined by National Fire Protection Association (NFPA). They define a building

with height greater than 75 feet (about 9 to 15 floors) as a high-rise buildings. How-

ever, to be practical, for any fire department, if they could not use their equipments to

reach the highest point of the buildings, the buildings should be considered as high-rise

buildings [104].

As this nature of high-rise buildings, firefighters need to go inside the building to

perform rescue operations. The first action when the firefighters arrive is to control the

lobby [42], which means to access all related devices and materials that could help fire-

fighting, such as the alarm panel showing the real-time progression of fire, and the depos-

6



itory box. There are three things inside the depository box. The first one are preplans,

which illustrate the design of the architecture, indicating where the stairwells, elevators

are, and recording the information of standpipe systems, ventilation system, elevator re-

call procedures and emergency numbers. The second one is the keys of the buildings and

the elevators. All of them should be labeled clearly, so that firefighters could access the

room or equipments rapidly. The third one are the fire phones, which can communicate

with the phones in the elevators. The phones are important to the communication between

the attack firefighting team inside the buildings and the incident commanders, especially

when the radio systems fail. Having the lobby control, firefighters could get into the sit-

uations and arrange the operations. Rescuing savable lives is the highest priority in the

operation, so firefighters would try to allocate the victims and carry out the rescue, which

is not an easy task in high-rise buildings [56, 145]. Then, after making sure the safety of

the victims, firefighters would start to control and extinguish the fires.

The above description just shows the standard priority during a fire operation. Most

of the work can be planned in advance. However, the past can not help the future all the

time. The incident commanders would adapt their strategies according to the real-time

fire report. According to this, we could know the importance of the situational awareness,

which could apply sufficient information to the incident commanders to make the suitable

plan.

2.3 Drone-Based Applications

A drone, which is also named as an unmanned aerial vehicle, can fly autonomously with-

out any pilot inside. People can use a pad to control the drone remotely. Drones are first

designed for the military purpose. They act an important role in the modern wars, which

can recon the target area, launch missiles, or decoy enemy. In these two decades, drones

become more popular to the public. As the development of emerging technology, people

invent diverse types of drones [174], which are different from the number of rotors, the

weight, the power source, and the degree of self-control ability. People could also install

diverse payloads on drones with various functionalities, such as multi-modal sensors for

monitoring, or medicine sending, based on their requirements.

Drones are used in widespread applications, such as delivering system, traffic or dis-

aster monitoring, agriculture, and pollution detection. Mogili [112] survey paper about

using drones for precision agriculture. For contries which economy relies on agriculture,

they often have large area of cropland (with an average area of 234 acres in 2013 [99]).

This could cost a lot of human power to manage such a large area. Therefore, people

implement drones for crop monitoring, and precision agriculture [119]. Using the sen-
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sors installed on the drones, farmers could estimate the height of crop [17] and even the

analyze soil and field [131]. Farmers could also combine the drones with spraying sys-

tems, which can precisely control the amount of insecticide or water [70], and spray them

to cover the whole cropland easily. Drones could also support the management of disas-

ters [138]. Based on different timing, drone can have different reaction for disaster. In day

life, drone could patrol around interested area to see if there is any clue that may cause

disasters, such as flood early detection. Unlike some sudden disasters, e.g. an explosion

by chemical materials, flood develops slowly, which can be observed. If we could have

early detection of flood, people could be evacuated completely and decrease the damage.

Early detection of flood could be detected by the satellites or helicopters, but both of them

cost a lot of money and can not cover large enough area. Srikudkao [159] proposed to

use small drones installed with multi-modal sensors (photographic, ultrasound and Global

Positioning System (GPS) sensors) to detect water flow. Different from flood, earthquakes

often happen without any sign. However, drones could still contribute to the rescue op-

erations. Different damage types of buildings are important factor that if people could

survive under the collapse. Using drones to collect aerial images could map the affected

area and help the incident commanders to prioritize their work [148]. Moreover, after any

disasters, drones could use their monitoring system to provide damage assessment, which

is a essential information for the government in recovery movements. Drones could also

be used in firefighting, either in forest fires or high-rise fires. We will discuss about it in

the related work.

To expand more applications for drones, people still need to overcome a bunch of

challenges for the drone applications [123]. For example, the flying time of the drone is

short. People need to consider the trade-off between power and the drone weight, and

find the best drone for their applications. They could also design some rapid charging

way to overcome this problem. Better computation capabilities are also important for

applications that require immediate response. Cloud computing is one of the solution,

but it generates another problem, communication latency. To name just a few, there are

still lots of challenges for drone applications need to conquer. They worth to call research

community to make efforts in them.

2.4 Sensor Fusion

Sensor fusion is to combine sensor data or the data generated by the original sensor data,

and achieve better performance instead of only using one input [46]. Based on the defini-

tion, we could know that sensor fusion is not limited to use multi-modal sensors for one

application. Using a series of data from the same types of sensors could also be a kind of
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sensor fusion.

With only one sensor input has several disadvantages. The first one is reliability.

As we only rely on one sensor, if it breaks out, we may lose the functionalities of our

applications. Besides, there are limitations for every kind of sensors, such as the field of

view (FoV), detection range, and the precision of the detection. These features then cause

the uncertainty of the detection from the sensors. All of these drawbacks could be solved

by sensor fusion, and implemented in diverse applications of sensor fusion, such as human

activity recognition [32], medical assistance [108], and automated driving [191, 180].

Figure 2.1: Sensor fusion category based on the input/output [46].

Sensor fusions could be categorized by their input/output [41]. Fig. 2.1 shows the

details of the categories of sensor fusion. There are many types of the input/output de-

pending on the processing degree. Following the order from the low processing degree

to the high processing degree, the input/output could be the raw sensor data, features that

generated from the raw sensor data (e.g. corners, edges, and textures), and the decision.

There are various fusion methods and architectures for fusing different types of input/out-

put.

2.5 Classifiers and Regressors for Multi-Modal Analytics

Classifiers and regressors are predictive models that learns from the training data to build

a predictive model. People could use the predictive model to map the input data to an

output prediction. The main difference between classifiers and the regressors are their

output format. The prediction from the classifiers are discrete, while the one from the

regressors are continuous. Take the house selling as an example. We have the details of

a house, such as how large it is and where it is located. A regressor could predict the
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selling price of the house, which is a real number that can be an integer or float, As for the

classifiers, they may separate prices into several range, such as 0–1000, 1000–2000, and

more than 2000 dollars. The output of the classifiers would be the price belongs to one of

the defined range, which has only three possibilities in our example. From this example,

we could know that the functionalities of classifiers and regressors are almost the same.

People could choose from them based on their output requirements.

There are many work using classifiers and regressors to analyze sensor fusion data.

Medina [97] collected the movement and orientation of human activity at home by in-

stalling sensors and inertial miniature board on basic commodities to build smart objects,

such as a cup, a toothbrush, and a spoon. Then, they used fuzzy logic to generate sensor

fusion features from spatial and temporal sensor data, and generated a activity recogni-

tion models to classify what the man was doing. Kumar [83] measured the speed, absolute

linear acceleration, change in altitude, the roll and pitch of the vehicles, and trained clas-

sifiers that can predict if the car collides something, rolls over, or falls off. They evaluated

the performance of three models with different structures, which were the Gaussian mix-

ture model, decision tree, and the naive bayes. As for the regressors, Hobson [117] built

a regressor to predict the level of occupancy by combining the data of lighting, CO2, plug

loads, and the counts of Wi-Fi enabled devices in an academic building. Mustapha [117]

collected data from the wear devices and use Support Vector Machine (SVM) or Con-

volotional Neural Network (CNN) for each sensor data first, and then use a regressor to

combine all data together to predict the speed and load of pedestrians.
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Chapter 3

Related Work

3.1 Heterogeneous Sensors on Drones

Using heterogeneous sensors to classify situations at high-rise fire scenes is challenging,

and the same challenge was faced by researchers building autonomous cars. For exam-

ple, Hu et al. [68] surveyed the latest work on multi-sensor fusion, where multi-modal

sensors were employed for classification applications like obstacle detection and collision

avoidance. The research community has also investigated the possibility of mounting

multi-modal sensors on drones. For fire detection, Lewicki et al. [89] developed a sys-

tem using multiple thermal cameras. Their system realized low-power joint autonomous

driving and multi-organ target detection. Dang-Ngoc et al. [40] proposed a fire detection

system based on RGB cameras, which recognized the color and motion features from im-

ages. In addition, Wolfgang et al. [82] proposed a drone-based fire detection system using

an aspirating smoke sensor, two gas sensors (H2 and CxHx), and a microwave radiometer.

Among them, microwave radiometer was used to detect hidden fire sources. Their design

was demonstrated to effectively reduce the possibility of fire re-ignition. Wang et al. [178]

proposed a fiber-lasers-based gas sensor to detect fires using the concentration of C2H2,

CO and CO2. In our project, we also plan to mount multi-modal sensors on drones for

the classifiers.

3.2 Firefighting Drones

Firefighters have always been considered as high-risk occupations. In order to ensure the

safety of firefighters, different drones have been used in the field of firefighting. However,

due to maneuverability and other reasons, it is often difficult for drones to directly reach

fire sources. Ando et al. [16] proposed a new type of fire extinguishing drone. It comes

with a 2-meter long robot arm, which can ensure stable flight when the water is discharged
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through the carried hose. By doing so, the drone can inject water into the fire sources.

Ogawa et al. [125] proposed a fire extinguishing mechanism by injecting gases (CO2, N2,

etc.). In particular, they installed a gas-filled rubber balloon on a four-axis drone and then

controlled the gas release remotely. Alshbatat et al. [13] proposed to have drones throw

fire extinguishing balls. Their drones can control the release of the fire extinguishing

balls. Upon being released, the fire extinguish ball will be activated once reaching any

fire sources. These projects on firefighting drones are also orthogonal to our project,

which aims to build situation classifiers.

3.3 Coarse-Grained Waypoint Scheduling for Drones

As the technology advances in sensing, mobility, and computing, drones have been em-

ployed for enhancing the security and safety of our living environments. In normal times,

drones can act as patrollers surveilling buildings [134]. During emergency, drones can

localize fire sources, throw extinguishing balls [51], aid in relief efforts [12], and even

assess the environments for hazards afterwards. Many of above-mentioned tasks can not

be done by a single drone. Therefore, how to coordinate drones to complete these tasks

is an important research problem. There are research papers on scheduling waypoints for

multiple agents in different settings to have drones monitor a large area for an extensive

time duration. Some of these papers cast the waypoint scheduling problem into combina-

torial optimization problems. Valavanis et al. [172] formulated such problems and proved

them to be NP-hard. Another work [105] proposed heuristic algorithms built upon Mixed

Integer Linear Programming (MILP), Markov Decision Process (MDP), and game theory

for the same problems. A few other papers took the monitoring quality and the safety

of drones into considerations. For example, Wallar et al. [177] designed a planner for

drones to continuously monitor risky regions on a 2D map. We note that the situations at

interested locations may change, and the accuracy levels of detected situations drop over

time. To keep classification results reliable, one needs to carefully choose the visiting

frequency of each location. For instance, Smith et al. [158] proposed a dynamic approach

to patrol areas with drones, and Sea et al. [149] balanced the workloads of drones visiting

multiple regions. There are several driving use cases for these settings. For example,

Beard et al. [22] and Kim et al. [80] controlled drones to visit target areas in the presence

of dynamic threats and hostile environments. Lin et al. [91] made drones to rendezvous at

unspecified locations, and Leary et al. [85] used drones to capture geo-dispersed targets

in no-fly zones. While drone coordination is a key component of our testbed, the current

proposal concentrates on the development of classifiers for high-rise fire situations.
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3.4 Window Dataset

Windows are the openings of high-rise buildings, and are crucial to situation dynamics

in high-rise firefighting. Among all window-related situations, window openness is the

most critical one to detect. To the best of our knowledge, there is only one dataset fo-

cusing on openness as a window state. Safavi et al. [144] collected a sound dataset with

four window states: open, close, open-to-close, and close-to-open. Unfortunately, such

a sound dataset is not useful to our project, in which image-based sensors are also used.

While not for window openness, RGB images of windows have been collected for appli-

cations, like window localization [94, 121]. Examples of such datasets include Tylecek

et al. [171], Teboul [165], Gadde et al. [57], Ceylan et al. [29], Daftry et al. [39], and

TSG-20 [151]. Besides RGB images, datasets from other sensors were also considered

for dataset collection. For example, Wang et al. [179] and Malihi et al. [101] employed

LiDAR to gather building structure datasets, while Sirmacek et al. [156] adopted ther-

mal cameras to capture a building opening dataset. The above mentioned window-related

datasets only considered a single sensor modality, and thus is different from what we

propose to do. There were also attempts on composing multi-modal datasets for window

localization. For example, Jarzabek et al. [74] and Lin et al. [90] concurrently collected

RGB and thermal images of buildings for detecting air leaks to save Heating, Ventila-

tion and Air Conditioning (HVAC) energy. Different from our proposed project, their

datasets only considered two modalities, and are not publicly available. Since there exists

no multi-modal window dataset, we have to collect a very first dataset ourselves.
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Chapter 4

Drone-Based High-Rise Firefighing

As illustrated in Fig. 1.1, a drone-based high-rise firefighting system enhances the situa-

tional awareness by instructing drones to fly through waypoints for detecting situations.

Our work focuses on the fine-grained planning at each waypoint. For completeness, we

give a high-level component diagram in Fig. 4.1, and present an overview on both the

coarse-grained waypoint scheduling and fine-grained measurement selection operations

in the following.

4.1 Coarse-Grained Waypoint Scheduling

Our system takes inputs form users, i.e., firefighting officials, for monitoring tasks based

on fire reports, earlier classification results, and their domain knowledge. Sample tasks

could be detecting the presence of fire, trapped humans, and opened windows. The task

generator at the ground control station assigns tasks for drones by specifying the loca-

tions, visiting frequencies, and so on. Then the waypoint scheduler associates waypoints

(3D coordinates) with individual drones, which then fulfill all tasks periodically. Here,

each waypoint specifies a single coordinate for performing a task, such as detecting win-

dow openness. The precise, or fine-grained, locations for activating sensors, such as RGB

cameras and ultrasound sensors, are not determined as they may need to be dynamically

adapted based on the earlier classification results.

4.2 Fine-Grained Measurement Selection

The ground control station sends waypoint sequences to drones. Drones capture and

analyze sensor data at each waypoint on the sequences. Whenever a drone reaches a way-

point, the measurement selection algorithm computes a measurement sequence within a

given bounding box to optimize the classification results fused from previous measure-
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Figure 4.1: Drone-based high-rise firefighting system; asterisks indicate considered com-

ponents.
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Figure 4.2: Our simulator: (a) high-rise buildings and (b) a flying drone.

ments at that waypoint. The computation of the best measurement sequence considers

accuracy level, resource consumption, available time, etc. A measurement leads to an

one-time execution of a particular classifier on collected sensor data at a specific loca-

tion. The three key components of our system are sensors, classifiers, and measurement

selection algorithms, which are developed in the next two sections. Last, we mention that

classifiers and measurement selection algorithms can be offloaded to the ground control

station if: (i) drones have stringent resource constraints or (ii) algorithms have high com-

plexity levels. The relevant data transfers are done via the communication managers at

the ground control station and drones.
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Chapter 5

Real Dataset Collection

RGB rmal Depth Lidar Ultrasound

Figure 5.1: Different sensor modalities and their captured images and representations.

We collect the first multi-modal window state dataset named WinSet [54] for smart

cities. We employ the following sensor modalities: RGB, thermal, depth, LiDAR, and ul-

trasound, as illustrated in Fig. 5.1. WinSet consists of two parts: datasets A and B. Dataset

A collects the multi-modal window images with distinct states from different angles and at

diverse distances. Possible usages of this dataset include finding the best sensor combina-

tion for detecting each window state, and designing concrete state classifiers.A classifier

for human behind, for example, could be a part of BMS [23, 24], applying data to help

victim rescue in firefighting, or used by the police department to locate active shooters

or prevent suicide cases, as mentioned earlier. Dataset B collects the multi-modal images

of various types of windows with different openness states at a given angle (0◦) and dis-

tances (1, 2, and 3 m). One possible usage of this dataset is designing state classifiers that

work across different window types. To the best of our knowledge, WinSet is the very first

multi-modal window dataset.

While we believe WinSet can be leveraged in many usage scenarios, we demonstrate

three sample ones in this thesis.

• Multi-modal image segmentation. We train a Neural-Network (NN) based classi-

fier to segment the captured window images. This classifier is multi-modal because

it takes both RGB and thermal images as inputs.

• Distinguishability of different sensors. We quantify the distinguishability of each
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sensor modality on window states. We report the sample results from window open-

ness.

• Open window detection. We propose two classifiers for window openness. We

then evaluate their performance using our dataset.

Our dataset is publicly available online [54]. We intend to make this dataset public and

open-source; future contributions from the research community are highly welcome.

5.1 Collection Procedure

We present our datasets A and B in this section.

Table 5.1: Specifications of Adopted Sensors

A B Modality Make/Model Technology
Sampling

Rate
Field

of View
Raw

Format

X X RGB
Intel

Realsense D435
Visible Light

680×480

@15 fps
69◦×42◦ .bag

X Thermal
FLIR

Lepton 2.0

Long Wavelength

Infrared

80×60

@8.6 fps
50◦×40◦

.bin,

.png

X Thermal
FLIR

Lepton 3.5

Long Wavelength

Infrared

160×120

@8.7 fps
57◦×45◦

.bin,

.png

X X Depth
Intel

Realsense D435

Active Stereo

Infrared

680×480

@15 fps
86◦×57◦ .bag

X LiDAR
Velodyne

Puck VLP-16
Laser

1875×16

@10 fps
360◦×30◦ .pcap

X Ultrasound
OSEPP

HC-SR04
Sonar

1×1

@10 fps
60◦×60◦ .txt

5.1.1 Dataset A

Hardware. We choose four off-the-shelf sensors to collect dataset A, as reported in Ta-

ble 5.1. The RGB camera captures visible lights into images. The thermal camera uses a

microbolometer to detect the infrared (emitted by objects), translates it into relative tem-

perature, and creates thermal images. The depth camera collects two parallel images, and

then calculates the depth of each pixel. Last, LiDAR emits laser beams, assesses the du-

ration for the beams to bounce back, calculates the distances to objects, and generates a

3D-map for the surrounding environment. Because we plan to collect dataset A from vari-

ous angles, we purchased a 7-meter tripod with a pan-tilt head, as illustrated in Fig. 5.2(a).
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Figure 5.2: Data collection setup: (a) 7-meter tripod, (b) tripod setup for dataset A, and

(c) sensor setup for dataset B.

To capture multi-modal data, we attach all sensors on a platform, which is then mounted

on the tripod.

Software. We use software tools provided by the sensor manufactures to capture im-

age frames. For example, we install Intel Realsense Viewer from their official GitHub [73]

on our laptop to record RGB and depth image frames. The tool compresses each pair of

RGB and depth image frames into a .bag file. For the thermal sensor, we set it up on a

Raspberry Pi 3, compile the code of Lepton module from Groupgets [62] to get thermal

image frames. We also save the original thermal data using a Python script into .bin files.

For LiDAR, we utilize VeloView [81] to capture the detected 3D points, which are saved

into a .pcap file, frame by frame.

Steps. We collect data from four exterior windows on our campus. We vary the

following parameters: (i) distance d ∈ {3, 6, 12} meter, (ii) polar angle θ ∈ {0◦, 30◦},
and (iii) azimuthal angleϕ∈ {0◦, 30◦, 60◦}, as shown in Fig. 5.2(b). We consider different

window states: (i) openness, (ii) human, and (iii) lighting. Each measurement lasts for 10

seconds. Because the tripod is heavy, and the ground is uneven, it took us a lot of time to

set up the tripod. We spent about 8 hours collecting all multi-modal data from a window,

letting alone processing and labeling the collected dataset.

5.1.2 Dataset B

Hardware. We also choose four sensors for dataset B, as reported in Table 5.1. Compared

to dataset A, we use a thermal camera with a higher resolution of 160 x 120. We also add

two ultrasound sensors. Both exterior and interior windows are considered in dataset

B. We set up all sensors on a platform, which is revealed in Fig. 5.2(c). We set two

ultrasound sensors at the two sides of the Intel Realsense, inspired by Bai et al. [19]. This

is to detect the two casements that are common among several window types. All sensors

are connected to a Raspberry Pi 4 for better mobility.
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Software. For RGB and depth sensors, we use Intel Realsense rs-capture instead

of Intel Realsense Viewer to conserve energy of Raspberry Pi 4. Different from other

sensors, the ultrasound sensors only gets readings rather than images. We program the

ultrasound sensors to detect ten times every second, and save the values into a .txt file.

Steps. In dataset B, we consider diverse window types, such as sliding, awing, barred,

and screened windows. We point the sensors to the center of each window (both θ and

ϕ are 0◦), and collect the dataset at three different distances d ∈ {1, 2, 3} m. Each

measurement lasts for 10 seconds. We focus on openness state. For each measurement, we

capture image frames from the RGB, depth and ultrasound sensors first, and then capture

the thermal image frames. This two-step approach is attributed to the RAM limitation

of the Raspberry Pi 4. We only save 20 image frames for each measurement, because

we observe extensive temporal redundancy. We have collected 12 windows, which can

be classified into 6 different types. This is not an easy task because most buildings have

homogeneous window types. Furthermore, campus buildings are crowded with students,

and we have to capture the dataset during off hours.

5.1.3 Semantic Labeling

We annotate each image pixel with multiple labels, including glass, window frame, wall,

floor, ceiling, human, open window, and background. Among them, background indicates

unlabeled pixels. In addition, each pixel may be annotated with two or more labels. In

particular, we choose Labelme [176] as our labeling tool to annotate our images. Because

RGB images have the highest resolution, we decide to label RGB images only. The labels

can be readily propagated to other sensor data. Moreover, for each RGB video, we only

label 20 equal-distanced images frames due to the temporal redundancy. We recruit six

students to label WinSet. The labelled images are visually inspected by an expert, and

about 32% of the labelled images were returned to the students for re-labeling. In total,

more than 236 human-hours were spent to label WinSet.

5.2 Dataset Format

We number all windows into a01–a04 and b01–b12 for datasets A and B, as summarized

in Table 5.2.

Data format conversion. To save data conversion time for engineers and researchers,

we provide alternate data formats other than the raw format from the multi-modal sensors.

Table 5.3 summarizes the file formats of datasets A and B. We note that the raw formats

are in italic fonts in this table. In addition to merge per-frame data files (e.g., images)
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Table 5.2: Type of Each Window

Window
Type

Sliding
Sliding

+ Screen
Sliding

+ Curtain
Sliding

+ Barred
Awing Casement

Window
Index

a01, a02, a03,

b01, b02, b03, b04
b05 b06

b07,

b08, b09

a04,

b10, b11
b12

Table 5.3: Data File Format

RGB Thermal Depth LiDAR Ultrasound Semantic Label

A
png,

mp4*

bin, png,

mp4*

bag*,

mp4*
pcap* N/A

json, img, txt,

label img, viz

B
png,

txt

bin,

png

bin, png,

txt
N/A txt

json, img, txt,

label img, viz

- Italic fonts indicate raw data formats from sensors.

- * indicates an aggregated file saved for each measurement.

into aggregated data files (e.g., videos), we also process the RGB, thermal, and depth

sensor data as follows. For RGB and depth sensors, we use the converter from the Intel

Realsense SDK to extract image frames from these two sensors. For dataset A, we encode

the .png image frames into a 10-second .mp4 video using H.264 codec. The resulting

video files can be used to detect moving humans in each measured video. For dataset B,

since we focus on window openness window, we leave the data in lossless .png format.

For the thermal sensor, we also use H.264 codec to encode the .png image frames into

.mp4 videos in dataset A. We keep raw .png files in dataset B. For the semantic labels,

we extract several file formats from the original .json files: img files are the RGB images

to be labeled, txt lists the names of labeled objects, and label img is a .png file with only

one channel, where the pixel value indicates the label. In addition, we also merge img

and label img into a multi-layer viz image. The aforementioned alternate data file formats

could speed up the adoption of WinSet.

Naming convention. We name the dataset files in a self-explanatory way by system-

atically encode the settings in the file/directory name. Take a01 03 00 00 cw np l0

as an example. a01 indicates the window number, while the next three numbers represent

the distance (3 m), polar angle (0◦), and azimuthal angle (0◦). These are followed by close

window cw (versus ow), no human np (versus wp), and lighting off l0 (versus l1). The

file directories are organized into the following hierarchical structure:

• Dataset (A or B)

• Sensor modality (such as rgb)

• Data format (such as png)
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• Window number (such as a01)

• Distance and angle (such as a01 03 00 00)

• Window state (such as a01 03 00 00 cw np l0)

The inner-most folders may contain multiple data files. WinSet contains 634 measured

files/folders for each sensor, which occupy about 152.3 GB space in total.

5.3 Sample Usage Scenarios

(a) (b)

(c) (d)

Figure 5.3: Sample results from MFNet testing set: (a) RGB image, (b) thermal image,

(c) segmentation results, and (d) ground truth.

5.3.1 Multi-modal Image Segmentation

Most existing segmentation studies solely consider RGB modality. However, RGB im-

ages may be less reliable in some situations, e.g., at night or under extremely brightness.

One way to cope with this issue is to leverage additional sensor modalities. For example,

MFNet [64] presents a multi-modal neural network to segment images concurrently using
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RGB and thermal images. There are two encoders in MFNet. One is for RGB images, and

the other is for thermal ones. They separately extract the features from the two different

sensor modalities, and combine them together with a decoder.

To show one possible usage of our dataset B, we retrain the MFNet with 719 pairs of

RGB and thermal images. We use the remaining 320 pairs for testing. More specially,

we upsample our thermal images from 160× 120 to 640× 480, and then stitch them with

the corresponding RGB images. The resulting 4-channel images and semantic labels are

sent into the MFNet for training. We set the batch size to 8, and train the model for 100

epochs.

We observe a testing accuracy of 70% on the image segmentation results. Fig. 5.3

demonstrates sample results from one of a fairly challenging window. The figure reveals

that while MFNet successfully segments glass, window frames, and open window, it fails

to segment walls. This, however, is not surprising because walls are often featureless.

This usage scenario demonstrates that WinSet can be used to build multi-modal neural

networks for computer vision applications.

5.3.2 Distinguishability of Different Sensors

(a) (b) (c)

Figure 5.4: measured results from the LiDAR sensors with open/close windows are hard

to distinguish: (a) RGB, (b) LiDAR with a close window, and (c) with an open window.

To understand which sensors have better distinguishability among different window

states, we analyze the image frames from dataset A. In the following discussion, we take

window openness as an example. Other window states can be analyzed with the same

approach.

Observations on raw sensor data. When we change the window states, difference

can be observed in the data from most sensors except the LiDAR. Fig. 5.4 shows the 3D

meshes built from the point clouds collected from the LiDAR sensor. The figure shows

that LiDAR can detect the classroom behind the window in both states. In other words,
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(a) (b)

Figure 5.5: Sample dataset of a whole image and a crop image: (a) whole image and (b)

crop image.

there is no distinctive difference between open and close windows. Hence, we exclude

the LiDAR sensor from the following discussion.

Distinguishability metrics. For any two images, X and Y , we define four metrics to

quantify their distinguishability. The first two metrics are based on the sample histograms

of X and Y .

• Histogram Correlation (HC) indicates how close the two (grayscale) histograms

match.

• Mutual Information (MI) is defined asH(X)+H(Y )−H(X, Y ), whereH(X) and

H(Y ) are the entropies of the histograms and H(X, Y ) is their joint entropy.

For HC and MI, higher values mean lower distinguishability. The next two metrics

are based on the analysis on pixel-wise difference Z = X − Y . Our intuition is: when Z

has higher uniformity, X and Y have lower distinguishability.

• Image Energy (ENG), a.k.a. the angular second moment, quantifies how often each

pair of values appear as adjacent pixels. It is computed by the sum of the squared

elements in the Gray-Level Co-occurrence Matrix (GLCM) [20] to characterize the

image texture.

• Number of Gaussian till Homogeneity (NG) recursively counts the number of the

Gaussian filter we need to apply until the sum of the square difference between the

input and output images converges. Here, we define convergence as the sum of the

square difference drops below 10−5.

Higher ENG values mean lower distinguishability, while lower NG values mean lower

distinguishability.

Comparison procedure. While our long-distance dataset contains 10-sec videos, the

above mentioned metrics work on individual images. To compute statistically meaningful

results, for each window, distance, and azimuthal angle, we randomly select 100 pairs
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Figure 5.6: Distinguishability using different sensors on whole windows at different dis-

tance. Different states : (a)–(d) and Same states : (e)–(h). With metrics ENG : (a), (e);

NG : (b), (f); HC : (c), (g); and MI : (d), (h).
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Figure 5.7: Distinguishability using different sensors on whole windows at different an-

gles. Different states : (a)–(d) and Same states : (e)–(h). With metrics ENG : (a), (e); NG

: (b), (f); HC : (c), (g); and MI : (d), (h).
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Figure 5.8: Distinguishability using different sensors on cropped windows at different

distance. Different states : (a)–(d) and Same states : (e)–(h). With metrics ENG : (a), (e);

NG : (b), (f); HC : (c), (g); and MI : (d), (h).
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Figure 5.9: Distinguishability using different sensors on cropped windows at different

distance. Different states : (a)–(d) and Same states : (e)–(h). With metrics ENG : (a), (e);

NG : (b), (f); HC : (c), (g); and MI : (d), (h).
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of images X and Y with different open-window states. We then compute their distin-

guishability. In this case, a good sensor selection should show as high distinguishability

as possible. In addition, we also randomly select 100 pairs of images X and Y with the

same open-window states (both open or close), and compute their distinguishability. In

this case, a good sensor selection should show as low distinguishability as possible. We

notice that for the 100 sample pairs, we report the average results with 95% confidence in-

tervals in the figures. Last, we run the same experiments with whole and cropped images,

where the whole images include both windows and surrounding walls and the cropped

images only include the windows. Fig. 5.5 are examples of a whole image and a cropped

image. Such cropping can be geometrically derived if the building blueprints and drone

position/orientation are known.

Results. We use bar charts to represent our analysis. We choose one of the buildings

in our dataset and make analysis. For whole images, we have Fig. 5.6 to show the dis-

tinguishability at different distance and Fig. 5.7 shows the distinguishability at different

angles across our four sensors. For cropped images, we use Fig. 5.8 and Fig. 5.9 to show

the results at different distances and angles. We talk about some general findings first,

then share what we find about the open-window state detecting ability of each sensor in

whole and cropped images, and discuss our analysis to other buildings and the best met-

rics for our chosen sensors. To prove that our analysis can generalize to other buildings,

we also analyze the data from other buildings. We choose data at distance d = 3 m and

azimuthal angle ϕ = 0 ◦ from every buildings as our sample result and we plot them at

Fig. 5.10.

We make the following observations:

• ENG has bad performance on analyzing the distinguishability of our sensors. The

values of every sensor from the different state (Fig. 5.6(a)/Fig. 5.7(a)) are almost the

same as the values from the same state (Fig. 5.6(e)/Fig. 5.7(e)). The discrimination

of ENG is too low to use.

• Depth sensor doesn’t work for any situation. Depth sensor gets almost the same

values in the different/same state from our four metrics, so it shows depth poor ability

at discriminating the open-window state.

Here are the findings of whole images:

• RGB works the best at 3 m, thermal works the best at 6 m, and no one has a sta-

ble distinguishability at 12 m. Although RGB doesn’t get the lowest value at 3

m in Fig. 5.6(c) and Fig. 5.6(d), we find its difference between the value from the

different state and the same state is the largest when comparing to Fig. 5.6(g) and

Fig. 5.6(h). At 6 m, the differences of the thermal sensor in the different state

(Fig. 5.6(b)/Fig. 5.6(c)) and the same state (Fig. 5.6(f)/Fig. 5.6(g)) are the largest.
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When getting to 12 m, values from all sensors are almost equal at the same state and

the different state.

• Thermal works better than RGB when the sensor is at the large angles to the window.

From Fig. 5.7, we can see thermal sensor gets the largest difference from the different

state and the same state. However, its ability to distinguish window is getting poor

when the angle is getting larger from Fig. 5.7(b). When the angle is 60◦, the values

from the different state (Fig. 5.7(c)/Fig. 5.7(d)) become almost equal with the same

state (Fig. 5.7(g)/Fig. 5.7(h)).

Here are the findings of cropped images:

• RGB has the best performance at every distance. From Fig. 5.8, all values from the

RGB meet our expectation, and the margins are also the largest ones. It also works

at 12 m, which differs from the whole images. Thermal works well at 3 m and 6 m,

but its results worse than RGB and cannot work at 12 m. We believe is because the

resolution of the sensor is too low to tell the difference of figures that are far away.

• RGB works the best at different azimuthal angles. From Fig. 5.9, we can see

that RGB is the best to detect object in different angles. Its values change the most

in the two experiment (same/different state), which is unlike to the whole images.

We believe the reason is that cropped images remove the artifact from parts except

for windows and make the metrics can focus on the window parts. Thermal works

well at 0 degree and 30 degree, but performance poor ar 60 degree. The data from

Fig. 5.9 proves our findings.

Based on our findings to the difference of the different/same state, we can use

RGB as our detecting sensor if having the blueprint of a building, and using thermal

to detect open-window states when we are not familiar with the building and can not

locally set up the position of windows.

• Our findings are general. Fig. 5.10 shows the sample results from different build-

ings in our dataset. Most of the result are the same as what we find above. It proves

that our result can be applied to various kinds of windows.

• MI is the most reliable to analyze the distinguishability of open-window state for

RGB, and NG and HC are the better metrics for thermal. We normalize the results

from our four metrics into values within 0–1, and show the difference from the dif-

ferent/same state in Fig. 5.11. The metric that get the largest values in Fig. 5.11 is the

best one for the sensor. We will use it as the criterion of our window state detector.

5.3.3 Open Window Detection

We design two open window detection algorithms using dataset B. Fig. 5.12 shows the

high-level architecture of our open window detection algorithms. The inputs are the sen-
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sor data, and the outputs are bounding boxes labeled with window states, i.e. open or

close. The first step is localization, which either: (i) leverages existing image-based win-

dow detection algorithms [92, 94, 74, 179, 101] or (ii) combines the GPS coordinates with

the building blueprints to localize the windows in sensor data. We assume the bounding

boxes are given and crop the windows from the sensor data. For the second step, we

propose two pipelines to determine if each window is open, which are detailed below.

Thermal Window Classification: TWC. Thermal sensors estimate temperature by

measuring the infrared emitted from objects. When a window is close, we expect to ob-

serve consistent temperature from the window. In contrast, when the window is open,

the temperature of the window (glass) would be quite different from that of the open-

ing. Based on this, we develop our Thermal Window Classification (TWC) pipeline in

Fig. 5.13. The first step is normalization. We normalize the raw thermal data in [0, 65535]

to [0, 255]. Next, we put the pixel values into a histogram with an empirically chosen bin

size of 20. We then find all local minima of the histogram excluding the boundary bins. If

there exists only one local minimum, we declare the window is open, since there are two

groups of thermal readings.

Ultrasound Window Classification: UWC. Depth sensors employ infrared to de-

tect the distance, which can go through transparent glass; in contrast, ultrasound sensors

employ sound waves to detect glass, but its coverage cones are nontrivial to model. For

example, Huang et al. [71] proposed to calibrate the coverage cone of their ultrasound

sensor to the depth image. They then compute the average distance in the coverage cone

on the depth image with the distance from the ultrasound sensor to determine if glass

exists. We follow their procedure to compute a theoretical coverage each distance to an

open window. We then move the center point of the ultrasound sensor around to derive an

actual coverage. Unfortunately, we have found that the two coverages are quite different,

i.e., we cannot compute the coverage cone simply using the FoV of our ultrasound sensor.

Fig. 5.14 shows a sample result at 50 cm.

Hence, we ditch the depth sensor and develop an Ultrasound Window Classification

(UWC) pipeline, which compares the distance returned by the ultrasound sensor mu with

the distance given in the window localization step du (e.g., using the GPS coordinates and

building blueprint). The pipeline first checks the ratio between the window dimension

and the distance to the building. It asks the robot, drone, or human to move closer if

the distance is too long. This is followed by a disparity check: iff mu > du + α, we

determine a window is close; here, α is a cushion parameter, which is empirically set

to 20 cm if not otherwise specified. We note that because the actual coverage may run

into window frame or wall easily, we propose to repeat the ultrasound measurement K

times with different center points. We either control robots/drones or ask human to point
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the ultrasound sensor at the chosen center points for individual measurements. Then, as

long as one center point returns an opening window state, we declare the window is open.

Fig. 5.14 shows a sample image with five center points, which are used in the rest of the

paper. Fig. 5.16 summarizes the UWC pipeline.

Baseline algorithms. We have also implemented two existing algorithms serving as

our baseline algorithms. Zheng et al. [190] analyzes RGB images to identify the lowest

pixel intensity to divide pixels into two portions, corresponding to window and open-

ing. However, they did not give details on how they identify the lowest pixel intensity.

Therefore, we reuse our approach of finding local minima in TWC to complete this work.

Huang et al. [71] considers depth and two ultrasound sensors to determine if there exists

glass. We have found that two ultrasound sensors could interfere with each other. Hence,

we only activate one ultrasound sensor throughout the experiments.

Results. Fig. 5.17 shows the overall performance of our two pipelines and two base-

line algorithms in terms of accuracy, precision, recall, and F1-scores. We observe that the

best performing pipeline is either our proposed TWC or UWC, except for the recall. In

particular, our TWC leads to 16% lower recall than Zheng; while both Huang and UWC

result in even lower recall values. The inferior recall performance of our TWC and UWC

pipelines may be attributed to the limited resolution of thermal sensors (160 × 120) and

ultrasound sensors (one reading per coverage cone). In contrast, for precision, Huang and

UWC performs the best. In fact, they all get 100% precision, because if the ultrasound

sensor detects glass, it is almost always correct.

Fig. 5.18 reports the performance at different distances. We make the following four

key observations on this figure. First, the ultrasound based algorithms (Huang and UWC)

perform worse at longer distance. For example, at 0.3 m, they both perform perfectly

in accuracy (100% is achieved). However, our proposed UWC constantly outperforms

Huang once the distance goes between 0.5 m. In terms of recall, Huang and UWC drops

to close to 0 at 1 m. Second, the RGB/thermal based algorithms (Zheng and TWC)

perform better at longer distance. Furthermore, our proposed TWC always outperforms

Zheng in both accuracy and F1-score, while the performance gap increases as the distance

is increased. For example, the F1-score of TWC is only 60% at 1 m, which is 9% lower

than that of Zheng. However, the F1-score of TWC increases to 88.7% at 3 m, which

is 22.7% larger than that of Zheng. Based on this figure, we recommend the UWC
pipeline for fine-grained detection (≤ 40 cm), and the TWC pipeline for coarse-
grained detection (> 40 cm).
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Figure 5.10: Distinguishability using different sensors on whole windows at different

buildings. Different states : (a)–(d) and Same states : (e)–(h). With metrics ENG : (a),

(e); NG : (b), (f); HC : (c), (g); and MI : (d), (h).
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Figure 5.11: Distinguishability of metrics using different sensors on whole windows at

different buildings. : (a) ENG, (b) NG, (c) HC, (d) MI.
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Figure 5.12: Open window detection in two steps.
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Figure 5.13: Our proposed TWC pipeline.
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Figure 5.18: The performance of our two pipelines and two baseline algorithms at differ-

ent distances: (a) accuracy, (b) precision, (c) recall, and (d) F1-score.

35



Chapter 6

Synthesized Dataset Collection

Even though we created the first multi-modal window dataset in Chapter 5 with multi-

ple (partially labeled) window states, such as openness, human behind, and light on/off,

and employed five sensor modalities: RGB/thermal/depth cameras, LiDAR, and ultra-

sound sensors, the resulting datasets are still too small for developing window openness

classifiers, especially the machine-learning ones. We opt for a photo-realistic simulator

rather than a real setup as Chapter 5 for: (i) larger datasets, (ii) lower cost, and (iii) more

diversity (like window types).

6.1 AirSim

We have decided to build a detailed simulator, implemented considered (virtual) sensors

in it, and collect different sensor data under interested situations. After carefully survey-

ing all open-source options, we have chosen AirSim [153] for its rich features. AirSim

is an active project for drone simulations, which is essentially a plugin of Unreal En-

gine [48]. Unreal Engine offers a virtual, yet realistic, environment for drones to fly. Built

on Unreal Engine, AirSim offers aerodynamic simulations and high-quality images (and

other sensor data) through a suite of APIs (Application Programming Interfaces). It cre-

ates a virtual environment, in which multiple APIs, including drone control and sensor

activation ones, are provided to applications. AirSim and Unreal communities have ac-

cumulated many diverse virtual environments that can be adopted. Leveraging on public

3D models [133], we have built several high-rise buildings in different styles and heights

to collect a realistic dataset. The virtual environment adopts lightmap to simulate the re-

flection of window glasses. Fig. 4.2 illustrates sample views of our high-rise community.
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(a) (b)

(c) (d)

Figure 6.1: Sample thermal images from: (a) an AirSim camera, (b) a FLIR camera, and

(c) our enhanced AirSim camera; (d) detection area of our AirSim ultrasound sensor.

6.2 Sensor Implementations

We consider the vision and non-vision virtual sensors in AirSim, including RGB/ther-

mal/depth cameras, LiDAR, and distance sensors. Depth cameras and LiDAR, however,

do not work well for classifying window states [54]. In AirSim, a RGB camera can be

configured following real cameras’ specifications, such as Field-of-View (FoV). If not

otherwise specified, we apply the specifications of Intel RealSense D435. A thermal

camera in AirSim only considers infrared emitted from the objects for the sake of sim-

plicity. More specifically, it gathers the temperature and emissivity of object materials,

such as humans, trees, and elephants, to derive colors of individual segments to form

thermal images. Fig. 6.1(a) shows such a sample thermal image in which each object has

a uniform color (temperature). This is quite different from images from a real thermal

camera, shown in Fig. 6.1(b). To address this issue, we have augmented the virtual ther-

mal camera to introduce Gaussian and uniform noises to emulate the Johnson, flicker, and

fixed-pattern noises [25]. Fig. 6.1(c) shows an improved thermal image captured by the

augmented thermal camera, which is more realistic. The distance sensor in AirSim emits

a ray to measure the distance of an object in front of it. This over-simplified design devi-

37



ates from real distance sensors, such as an ultrasound sensor, which analyzes the echoed

sound waves bounced back from a cone area rather than a single point. Therefore, we

have built a virtual ultrasound sensor in AirSim by introducing multiple rays covering

a circular detection area. To make the detection area more realistic, we add a Gaussian

noise to its radius, as illustrated in Fig. 6.1(d). The detection area is a function of the

distance and detection angle. If not otherwise specified, we set the detection angle to be

15◦, following the specifications of HC-SR04. Our ultrasound sensor returns the smallest

distance among all considered rays.

Among these virtual sensors, we adopt the RGB camera as a representative one-shot

sensor and the ultrasound sensor as a representative accumulative sensor in the rest of this

paper for brevity. Other virtual sensors can be classified into one-shot or accumulative

ones, and readily incorporated into the proposed solution.

6.3 Collection Procedure

Situation Generation. The situations we are interested in in this paper are open window

and human number detection classifiers. Therefore, we make a script to control each

windows of high-rise buildings in our virtual high-rise community. We can open and

close all windows by pressing a button. For human number detection, we choose the

human models created by Renderpeople [137] as our detection targets. Their human

models are various with gender, dressing, and shape, which can test the abilities of our

classifiers. We also make a script to generate a defined number of humans in a fixed area

behind each windows. The generated human model and their locations are set randomly

so that we can collect a human dataset with dissimilar images.

We target a 10-floor high-rise building for data collection. We select 20 windows (2

per floor), and define a bounding box with a width x = 7.1 m, a height y = 5.4 m, and

a depth z = 6.0 m for each window. Outside of this bounding box, the RGB camera or

ultrasound sensor cannot cover a good portion of the target window. For the RGB camera,

we equally cut the bounding box into 103 candidate locations. For the ultrasound sensor,

we place all candidate locations along the centered horizontal axis of each (horizontal

sliding) window. We vary the number of locations per half-window among {1, 2, 3, 4}
and the distance to windows among {0.5, 1, 1.5, 2} m. This leads to 16 location sets

clustering around the center of the two halves of the window, where any two adjacent

ones are apart by about 4 cm. To be more realistic, we also add some random noise to

the locations of drones. The situations we collect includes open/close windows, human

number from 0 to 6 and different light conditions (on/off). For each combination of the

situations, we collect data ten times for each sensors and locations. Note that we use both
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RGB and ultrasound sensor only when there is no people behind windows.

Segmentation Dataset. Unlike the real dataset, which need to label each image ar-

tificially, we collect a segmentation dataset to help our classifiers focus on the window

part only. We change the materials of the window glasses that can be recognized by the

segmentation function in AirSim. Then, we use the function to color our target window

frames and window glasses, and make other objects into black. Finally, we use the same

procedure as RGB sensors to collect the segmentation dataset.
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Figure 6.2: Sample RGB data from our realistic dataset: (a)

HR01 windowframe27 6 30 30 ow p1 l0 00, and (b)

HR01 windowframe15 12 30 30 cw p5 l0 00; sample ultraosund data from our

realistic dataset with different candidate locations along the centered horizontal axis of

a window: (c)

HR01 windowframe15 0.5 0 0 ow p0 l0 00 with 4 candidate locations; (d)

HR01 windowframe15 0.5 0 0 cw p0 l0 00 with 3 candidate locations.
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6.4 Dataset Format

We use the similar naming convention as our real dataset. Take

HR01 windowframe15 1 0 0 cw p1 l0 00 as an example. HR01 and windowframe15

indicate which building the target window is from, and the index of the target window

in the building. The following three numbers represent the coordinate in the defined

bounding box for RGB data, while for ultrasound data, 1 represents the distance (1 m) to

windows and 0 0 shows that the ultrasound sensors collect data around the center of win-

dows. These location messages are followed by close window cw (versus ow), one human

behind p1 (versus p0, p2, p3, p4, p5, p6), and lighting off l0 (versus l1). The last

element 00 specifies the serial number of the ten-times detection. Fig. 6.2 demonstrates

sample results of our realistic dataset.

The files directory is organized into the following hierarchical structure:

• Sensor modality (such as rgb and ultrasound)

• Number of candidate locations along the centered horizontal axis of a window

(we only have numCanLoc1 for rgb, and numCanLoc1 to numCanLoc4 for

ultrasound)

• Sensor data named with our defined naming convention

We do not separate our collected data into different window and situations in the realistic

dataset for the simplification of data accessing. As we have more windows and states than

the real dataset, our realistic dataset occupy about 2 TB space in total.
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Chapter 7

Classifier Designs and Implementations

XXX high-level illustration to show the idea of classifiersXXX

We develop and implement several classifiers for open window and human number

detection. In order to adapt to diverse environments in high-rise firefighting, we select

and design our classifiers with different computation resources, analyzing time, and the

accuracy performance.

7.1 Classifiers for Window Openness

Our classifiers are composed of two components: the data processor and analyzer. The

data processors gather and clean the sensor data to meet the input requirements of the

analyzers. Then, the analyzers determine the window states. The data processors of

single-shot classifiers take one measurement of rich-media data, such as images. They

crop the subject window out from the collected data1, and apply image filters (such as

color transform) required by the analyzers. The data processors of accumulative clas-

sifiers, on the other hand, combine all prior measurements at the current waypoint into

rich-media data (images) using interpolation/extrapolation. By doing so, the same set of

analyzers can also be leveraged.

Some classifiers may require sensor data from a site survey, which could be done

at different granularities. For example, ultrasound sensors only collect distances, and

thus may live with surveying a single window of the whole building. In contrast, RGB

cameras are sensitive to the difference among windows (e.g., at different floors), and thus

require surveying individual windows. Higher-value buildings, such as city halls, schools,

and hospitals are wroth for finer-grained site surveys for higher classification accuracy.

In addition to sensor modalities, some analyzers may also impose additional site survey

1We assume the window location/dimension are given by floor-plans (dictated for public build-

ings [145]) or vision-based localization approaches [120].
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requirements. We propose the following sample analyzers to determine window openness:

• Histogram [190]. The histogram classifier analyzes the pixel value distribution of

the collected sensor data, and does not require any window data from the planning

phase. We observe that the pixel values are quite similar when the window is close,

while the pixel values between the glass area and the opening are very different

when the window is open. Based on this feature, we generate a histogram for the

collected sensor data first. If we only find a local minimum in the histogram, then

the histogram classifier judge it as an open window.

• Sum of Absolute Differences (SAD) [189]. SAD is method that people calculate

the similarity between two images by pixel value difference. Even though the col-

lected data may not be images from our selected sensors, we still can compare the

value difference between them. We need a pair of window sensor data (an open

one and a close one) from the planning phase. These two sensor are our ground

truth. We compare the sensor data collected by drone with our ground truth value

by value. If the error to the open window ground truth is smaller, we can take the

collected data with open window situation. However, SAD requires the comparing

data to match one by one. If the number of values are different, or the values are

pointing to different places, SAD may not react the real error between two data.

• Oriented Fast and Rotated Brief (ORB) [143]. The principle of the ORB clas-

sifier is also an image similarity comparison. We collect a pair of window sensor

data (an open one and a close one) from the planning phase as our ground truth,

and compare the sensor data collected by drone with our ground truth. The differ-

ence from the SAD is that ORB extracts features between two comparing data, like

edges, or corners, then match the features between two comparing data, and cal-

culate the match rate as their similarity. If the collected data has higher similarity

to the open window sensor data, we judge it as an open window. ORB can fix the

problem we just mentioned above, but it can not work on sparse data as ORB may

not find any features on it.

• Support Vector Machine (SVM) [124]. SVM is a type of supervised learning

model. It could find a best hyperplane to separate the input labeled training data

into two groups, which meet the requirements of our open window classification.

We first label our window images into openness and closeness, and extract the fea-

tures of the target windows, such as the shapes [96], texture [161], and the color

distribution [31]. Then, we train the SVM model to find a hyperplane to classify

the images.

• Random Forest (RF) [129]. There are many decision trees in the RF. Each tree

take different features to make the decisions. Then, we select the decision agreed
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by most of the trees. We generate the same features as SVM from our sensor data

in RF, and train it to classify window states.

We have implemented and tested four sample classifiers for each of the representative

sensor modalities: the RGB camera and ultrasound sensor. We avoid the combination

of the RGB camera and SAD analyzer, because SAD is very sensitive to minor spatial

displacement. We also skip the combination of the ultrasound sensor and ORB analyzer,

because images interpolated/extrapolated from ultrasound measurements are smooth, and

thus featureless.

7.2 Classifiers for Human Detection

The topic of human detection has already been researched for many years. There is no

need to develop a unique one by ourselves. Most of the human detection classifiers include

three steps [47]: (i) region of interest (ROI) selection, predicting areas on the images that

might be humans, (ii) classification, classifying if the ROI is human, and (iii) tracking,

finding the moving trace of the detected humans in a series of images. For each step,

there are numerous strategies, we selected several existing work with diverse computation

resources, analyzing time, and accuracy performance as our human number detection

classifiers.

XXX the human classifiers we selected XXX

7.3 Classifier Certainty and Accuracy

The performance of classifiers in our system can be quantified in two different metrics:

certainty and accuracy. Here, certainty λ captures how confident when a classifier de-

termines the window state. Take ORB analyzer as an example, its certainty could be

the fraction of matched features. Certainty, by nature, is short-term: each measurement

gives a certainty. In contrast, accuracy a describes the long-term performance of a clas-

sifier: what the fraction of correctly classified states is. The long-term accuracy has been

shown to be a function of short-term certainty [15, 169]. We therefore model accuracy

as a function of certainty, i.e., a = R(λ), which can be built in various ways. In this

thesis, we adopt a regression model R(λ) for each location, sensor, and classifier, using

a large dataset collected from our simulator. With these models, we get to map classifier

certainty to its accuracy at run-time. Last, we notice that the definition of accuracy can be

generalized to the results from multiple classifiers in a measurement sequence, which is

detailed in the next section.
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Chapter 8

Measurement Selection Problems

We need to consider which sensors, classifiers and measurement locations for drones

when the drones arrive waypoints. The drones could conduct multiple measurements,

which we name them a measurement sequence, at a waypoint to get as high detection

accuracy as possible under a time budget. In this chapter, we discuss the measurement

selection problem, and propose algorithms to solve the problem.

8.1 Notations

A measurement sequence consists of a series of measurement mi = (pi, si, ci), specifying

the location pi, sensor si, and classifier ci. While the selections of sensors and classifiers

are discrete by nature, the selections of locations can be either continuous or discrete. We

opt to discretize the locations for two reasons. First, selections of continuous locations

lead to higher site survey and certainty/accuracy modeling overhead. Second, some sensor

modalities only work at very few locations. For instance, an ultrasound sensor emits

sound wave within a cone, which should completely fall on the window glass (without

hitting nearby wall). Considering the properties of sensors and classifiers, we define a

set of measurement candidates M = {m1,m2, . . . ,mM}. Given mi, we can compute

its expected accuracy ai = Θ(mi), sensing time tsi = Ω(si), and classification time

tci = Φ(si, ci), where Θ(·), Ω(·), and Φ(·) are empirically derived functions. We can

estimate the data transfer time tti by the bandwidth and data size.

The measurement selection problem computes a measurement sequence

L = (ml(1),ml(2), . . . ,ml(L)), where l(i) ∈ [1,M ], so that the accuracy of the final result

fused from the outputs of all L measurements can reach a user specified target Â within a

time limit T̂ . Since high-rise fire scenes are dynamic, our system recomputes a measure-

ment sequence after completing every measurement. Doing so allows us to: (i) check if

the achieved fused accuracy exceeds Â, and exits this waypoint earlier, and (ii) revise the

44



remaining measurement sequence to adapt to the fire-scene dynamics. To facilitate the

recurring re-computations, for each execution of our measurement selection algorithms,

we use L′ to denote the completed measurement sequence and M′ to denote the set of

unselected measurement candidates.

XXX a block diagram XXX

8.2 Fusing the Measurement Results

Suppose we get measurement results from L binary classifiers in L, whose accuracy levels

are al(1), al(2), . . . , al(L). We propose two policies to fuse the measurement results from L

for the binary classifiers and multi-class classifiers individually.

For the results from binary classifiers, we use ‘1’ and ‘0’ to represent the output of

the classifiers. We define all measurement results from L as R(L) = {L1,L0}, where

L1 ⊆ L indicates the measurements with result ‘1’, and L0 = L \ L1 represents the

measurements with result ‘0’. We use R̂(R(L)) to represent the fused result from all

measurement results, and following are the two proposed policies to derive it:

Majority vote. This policy adopts the majority results, i.e.,

R̂(R(L)) = arg maxi={0,1} |Li|. This policy is simple as it does not take the individual

measurement accuracy into consideration. However, L must be odd to avoid tie breaking.

Probability-based. We compute the final classification result using all measurement

accuracy. More specifically, we define P (1|R(L)) and P (0|R(L)) to be the probabilities

of results ‘1’ and ‘0’ being true, given L. We then go with the one with higher probability,

i.e., R̂(R(L)) = arg maxi∈{0,1} P (i|R(L)). We concretize these two probabilities in the

following theorem.

Theorem 1. The probability that ‘1’ being true equals to:

P (1|R(L)) =

∏
mi∈L1

ai
∏

mj∈L0
(1− aj)∏

mi∈L1
ai
∏

mj∈L0
(1− aj) +

∏
mi∈L1

(1− ai)
∏

mj∈L0
aj

and the probability of ‘ 0’ being true equals to P (0|R(L)) = 1− P (1|R(L)).

Proof. We define P (R(L)) as the probability that we get results R(L) which may happen

in two conditions. One condition is when the measurement results indexed by L1 are

correct (and the others are wrong), which occurs with probability

P (c1) =
∏

mi∈L1
ai
∏

mj∈L0
(1 − aj). Another condition is when measurements with

indexes L1 are incorrect, with probability P (c2) =
∏

mi∈L1
(1− ai)

∏
mj∈L0

aj . We have

P (R(L)) = P (c1) + P (c2). As ‘1’ being true is equivalent to the first condition happens

given results R(L), we have P (1|R(L)) = P (c1 )/P (R(L)).

For the results from the multi-class classifiers, XXX Majority vote. XXX Probability-
based.XXX
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8.3 Formulation

Our problem computes a complete measurement sequence L before the time limit T̂ so

that the expected accuracy A(L) can reach Â. Here, L is composed of the prior measure-

ment sequence L′ and the following measurement sequence L̂. It is not hard to see that

a Traveling Salesman Problem (TSP) can be reduced to our problem in polynomial time.

In a special case of our problem, we set an uniform measurement accuracy > 0.5 and

T̂ = ∞. Based on the condorcet’s jury theorem [84], more measurements with accuracy

larger than 0.5 could make the final accuracy close to 1, which is called the power of pub-

lic. Then, under this setup, the measurement selection problem becomes to use the least

time to reach all measurement candidates to get the largest accuracy, which is the same as

the concept of TSP problem. Hence, our problem is NP-hard.

The precise definition of A(L) depends on the adopted fusing policy and the type of

the classifiers (binary or multi-class). The following are the two definitions of A(L) for

the binary classifiers. With the majority vote policy, we define AM(L) by summing up

the probability of all measurement results, where more than half of them are correct. We

assume that the accuracy from each classifier is independent, and write:

AM(L) =
L∑

k=dL/2e

∑
L1⊆L,|L1|=k,

L0=L\L1

(
∏
mi∈L1

ai
∏

mj∈L0

(1− aj)). (8.1)

In this equation, ai represents: (i) the expected accuracy from long-term average models

Θ(mi) if the measurement belongs to L̂, and (ii) the mapped accuracy from short-term

certainty models R(λi) if the measurement belongs to L′.

Suppose the drone gets results R(L′) = {L′1,L′0} from its prior measurements. We

define AP (L) as expected accuracy gotten by L = (L′, L̂) following the probability-

based policy, and set P (1|R(∅)) = 0.5 if L′ = ∅. The following theorem derives the

fused accuracy.

Theorem 2. We can compute AP (L) by:

AP (L) =
∑
L̂1⊆L̂,

L̂0=L̂\L̂1

max

(
P (1|R(L′))

∏
mi∈L̂1

ai
∏

mj∈L̂0

(1− aj),

(1− P (1|R(L′)))
∏
mi∈L̂1

(1− ai)
∏

mj∈L̂0

aj

)
. (8.2)

Proof. Given L̂, we have 2|L̂| result combinations by enumerating all subsets L̂1 ⊆ L̂ and

letting R(L̂) = {L̂1, L̂0} with L̂0 = L̂ \ L̂1 and R(L) = {L′1 ∪ L̂1,L
′
0 ∪ L̂0}. For each
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result combination R(L), we can compute the probability of ‘1’ being true by:

P (1|R(L)) =

P (1|R(L′))
∏
mi∈L̂1

ai
∏

mj∈L̂0

(1− ai)

P (1|R(L′))
∏
mi∈L̂1

ai
∏

mj∈L̂0

(1− ai) + (1− P (1|R(L′)))
∏
mi∈L̂1

(1− ai)
∏

mj∈L̂0

aj
.,

following Theorem 1. Results R(L) occur in two possible conditions: all measurements

with result ’1’ are correct or wrong. The occurrence probability of these two conditions

P (R(L)) equals to the denominator in the above equation for P (1|R(L)). Next, we de-

rive the expected accuracy by summing up the products of all possible R(L)’s occurrence

probability and its fused accuracy, i.e.,∑
L̂1⊆L̂, L̂0=L̂\L̂1

R(L)={L′1∪L̂1,L′0∪L̂0}

P (R(L)) ×max(P (1|R(L)), 1 − P (1|R(L))), which can be sim-

plified to Eq. (8.2). Here we get the maximum from the probabilities of ’1’ and ’0’, as

the probability-based policy believes in the higher-probability one.

As for the multi-class classifiers, we also define two definitions for the expected accu-

racy A(L):

Majority vote.XXX

Probability-based.XXX

Next, we use T (L) to indicate the total time of finishing all measurements in L, which

equals to:

T (L) =
∑L

i=1(t
s
l(i) + tcl(i) +

|pl(i)−pl(i−1)|
V

+ tal(i) + ttl(i)), (8.3)

where tsl(i), t
c
l(i) , and ttl(i) are the sensing, classification, and data transfer times of ml(i),

respectively. The third term in the summation is the moving time. Here, V represents the

flying speed and pl(0) is the drone’s initial location at the current waypoint. The fourth

term tal(i) is the measurement selection algorithm’s running time.

With the above derived functions, we write our measurement selection problem as:

max
L

U(A(L), T (L)) =

√
(1− e−αA(L))× e−β

T (L)

T̂ (8.4a)

s.t. A(L) ≥ Â; T (L) ≤ T̂ . (8.4b)

Here, the objective function U(A(L), T (L)) in Eq. (8.4a) aims to find a good trade-off

between the accuracy and time, controlled by weights α and β, which are system parame-

ters. The utility value increases when: (i) the accuracy increases or (ii) the time decreases.

We normalize T (L) by T̂ to keep it between 0 to 1. Notice that, our proposed algorithms

work with utility functions other than the one in Eq. (8.4a), as no mathematical properties

are assumed. For example, a weighted sum of A(L) and T (L) could be adopted as the

utility function. The constraints in Eq. (8.4b) guarantee that A(L) is higher than the target

accuracy Â, and T (L) is less than the time limit T̂ . We emphasize that our formulation

does not specify the length of L, i.e., L is also an output of our problem. Last, we note
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that by adopting either AM(L) or AP (L), the same formulation works for either majority

vote or probability-based fusion.

8.4 Proposed Algorithms

Algorithm 1 Our Optimized Algorithm (OPT)

1: function EXHAUSTIVE SEARCH(M′, L̂, L′)

2: for every mi ∈M′ do
3: ˆLtmp ← L̂ ∪ {mi} . Add mi to L̂

4: Ltmp ← L′ ∪ ˆLtmp . Concatenate the visited L′ and ˆLtmp

5: if T (Ltmp) < T̂ then . Check if Ltmp can make the deadline

6: Utilitytmp ← U(A(Ltmp), T (Ltmp))

7: M ′
tmp ←M′ \ {mi}

8: Utilitynew, L̂new ← ExhaustiveSearch(M′
tmp,

ˆLtmp,L
′) . Go over

every measurement sequence

9: if Utilitynew > Utilitytmp then . Check if adding other measurements

can get larger utility

10: L̂← L̂new

11: Utility ← Utilitynew

12: else
13: L̂← L̂tmp

14: Utility ← Utilitytmp

15: end if
16: end if
17: end for
18: return Utility, L̂
19: end function

The measurement selection problem may be solved optimally using exhaustive search. We

refer to the optimal algorithm as OPT, which serves as a benchmark. Algo. 1 demonstrates

the pseudo code of our exhaustive search algorithm. We consider every element in the set

of unvisited measurement candidates M′. Every time we add one element to ˆLtmp, and

check if the time consumption of the Ltmp will still smaller than the time budget T̂ . If

yes, we calculate the fusion accuracy and utility of the Ltmp. Note that your could choose

AM(·) AP (·) to get the fusion accuracy based on your requirements. Then, We recursive

the function and try to go through every combination of mi in M′. Finally, we return the

L̂ with the largest value from the utility function. However, if the candidate measurement
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set M ′ is large, we need to take exponential time to check every possibility.

Algorithm 2 Our Heuristic Algorithms (HEUM , HEUP )

Require: M′, L′, A(L′) < A′, T (L′) < T̂

Initialize: Utility ← U(A(L′), T (L′)), L̂← ∅
2: for every mi ∈M′ do

ˆLtmp ← L̂ ∪ {mi} . Add mi to L̂

4: Ltmp ← L′ ∪ ˆLtmp . Concatenate the visited L′ and ˆLtmp

if T (Ltmp) < T̂ then . Check if Ltmp can make the deadline

6: Utilitytmp ← U(A(Ltmp), T (Ltmp))

if Utilitytmp > Utility then . Find the mi generating the largest utility

8: Utility ← Utilitytmp

L̂← ˆLtmp

10: end if
end if

12: end for

For real-time measurement selections, we propose an efficient heuristic algorithm that

greedily adds the measurement that leads to the highest utility function value increase.

We repeat the process until: (i) the time runs out, (ii) the target accuracy is achieved, or

(iii) the utility function value can not be further improved. We call this algorithm as HEU,

which comes with two variants: HEUM and HEUP depending on which usages of the

two accuracy fusion policies. Algo. 2 explains the details of our algorithms. We first

check if the existing L′ is already over the time limit T̂or reaches the target accuracy Â.

If no, we then use our algorithms to find and add a better measurement into the original

measurement sequence. We check every measurement mi in M′ iteratively. If adding a

mi may not exceed T̂ , we then calculate the utility and check if the utility is larger than

the current best utility. If yes, we change the best utility to the new one and update the
ˆLtmp. After the iteration, we could find a measurement sequence with the greatest utility

for the next step. Even though it may not find the best measurement sequence because of

considering one new measurement only, HEUM and HEUP could still provide satisfied

utility with fast response time.
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Chapter 9

Performance Evaluations

9.1 Implementations

In our high-rise community in AirSim, we chose the same 10-floor high-rise building

used for dataset collection in Chapter 6 to conduct our evaluations. This building consists

of 56 horizontal sliding windows. We separate them into two groups: (i) 20 windows

for site surveying (2 per floor), which are collected in Chapter 6 and (ii) 36 windows

for evaluations (half of them are open)1. We use the dataset as the site surveying to

construct look-up tables for expected accuracy Θ(·) for each candidate location we set

in the bounding box using different sensors/classifiers, as well as sensing time Ω(·) and

classification time Φ(·). We also model the certainty to accuracy mapping R(·) as linear

functions. These tables/models are used as inputs by our algorithms and simulator.
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Figure 9.1: Sample accuracy: (a) SVM an RGB (Z = 0.03 m) and (b) classifiers on RGB

at various Z’s (centered).

Our proposed classifiers achieve good accuracy after being trained with the 20 site-
1Real site surveys and measurements can be done if cost is not a concern.
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surveyed windows. We show sample accuracy results in Fig. 9.1. Fig. 9.1(a) reveals that

the SVM classifier works well with an RGB camera, especially at the center of individual

windows. Fig. 9.1(b) reports the performance of all four classifiers with an RGB camera

at different depth (while X and Y are centered). As we train our classifiers at the central

point of the bounding box, the accuracy gets better when close a location to center. An

exception is the histogram classifier, which requires no training (site surveying). Because

none of the classifiers/sensors perform well at all locations, our measurement selection

algorithm that fuses multiple measurements is crucial to achieve high accuracy.

We have built an event-driven simulator using C++. For each target window, we first

invoke the measurement selection algorithm to get L. We then fly the drone to the location

of the next measurement on L. Next, our simulator calls AirSim to gather the virtual

sensor (e.g., a photo-realistic RGB camera) data and then executes the classifiers. Upon

getting the (single) measurement result, we check if the time runs out. If not, we invoke

the measurement selection algorithm again for an updated L. Note that, the measurement

selection algorithms and classifiers can be hosted on the drone or at the ground control

station depending on the capabilities of hardware devices. If not otherwise specified, we

place these algorithms on the ground control station. Our simulator saves detailed log

files, which are analyzed offline to quantify the performance of different measurements

selection algorithms under the same scenarios.

We have implemented our proposed HEUM and HEUP algorithms. We have also im-

plemented the benchmark OPT algorithm by enumerating all possible measurements. We

are not aware of any prior work considering the fine-grained measurement selection al-

gorithm. Hence, we also implemented the following three algorithms to mimic the cur-

rent practices: (i) CHCR (Central Histogram Classifier) performs a measurement with the

RGB camera and histogram classifier at the center of the bounding box [190], (ii) CHCU

selects 4 locations at 1 m from the window for the ultrasound sensor [71], and (iii) RAN

(Random) selects random measurements until the time T̂ is up or the target accuracy Â is

met.

9.2 Setup

We run the same evaluation setup with our and other measurement selection algorithms to

compare their performance. We set the drone speed V = 3.5m/s and network bandwidth

to be 24 Mbps. We set the drone rotor power consumption to be 3800 W [44], WiFi energy

consumption to be 0.13 mJ/bit [162]. An RGB camera takes 0.36 W (and 1 s) to take an

image, and an ultrasound sensor takes 0.01 W (and 0.49 s) to collect a distance value.

We vary the following parameters. Target accuracy Â ∈ {0.7, 0.8, 0.9}, where 0.8 is the
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Figure 9.2: Results from a sample window: (a)–(b) expected accuracy and (c)–(d) utility

function. We circle the ultrasound measurements in (a).

default parameter. Time limit T̂ ∈ {5, 10, 30, 60} seconds for each window, where 30 is

the default parameter. To avoid unnecessary measurements, we remove candidates with

expected accuracy < 0.5. We define three candidate sampling policies to filter out some

measurement candidates for better accuracy and lower overhead. The policies are: (i) E8

(Equally-distance), which keeps 8 × 8 × 8 centered locations, (ii) E4, which skips every

other location of E8 along all three axes, and (iii) E2, which does the same to E4. We refer

to no sampling as E10, which is the default parameter. Note that candidate sampling is not

applied on the ultrasound sensor, as it has much fewer candidates.

We measure the following performance metrics:

• Overall accuracyOM(L) andOP (L) represent the accuracy compared to the ground

truth using the majority vote and probability-based fusion, respectively.

• Expected accuracy AM(L) and AP (L) represent the expected accuracy computed

by Eqs. (8.1) and (8.2).

• Utility function UM(·) and UP (·) represent the utility function values computed by

Eq. (8.4a) using the majority vote and probability-based fusing policies.
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Figure 9.3: CDFs from 36 windows: (a) expected accuracy, (b) utility, (c) measurement

time, and (d) energy consumption.

• Total measurement time T (L) computed by Eq. (8.3). We also report the running

time of the algorithm.

• Number of measurements is the length of L.

• Feasible ratio of measurements FM and FP are the fraction of computed measure-

ment selection that satisfy the accuracy Â and time T̂ constraints in Eq. (8.4b); the

subscript indicates the fusion policy.

• Energy consumption of the drone when moving, sensing, and transferring data.

9.3 Results

Our proposed algorithms outperform the baselines. We first plot the accuracy and

utility function values over time from a sample window in Fig. 9.2. We make several

observations from this figure. First, all considered algorithms complete all measurements

within T̂ . Second, our proposed HEUM and HEUP significantly outperform the baselines

in terms of expected accuracy (Figs. 9.2(a) and 9.2(b)), which could be as high as 40%.
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Third, our HEUP finishes much earlier with a single measurement while achieving very

high accuracy. The good performance of HEUM and HEUP could be attributed to the

higher utility values in Figs. 9.2(c) and 9.2(d), compared to other algorithms. Note that

the utility values drop along the time axis, because the penalty from longer measurement

time. This is however not a concern as the achieved accuracy increases over time. Last,

as similar observations are made with metrics defined with majority vote and probability-

based fusion, we only report the majority vote variant in the following figures for brevity.

Table 9.1: Overall Results with Default Parameters

Algorithm CHCR CHCU RAN HEUM HEUP

OM (%) 50 75 72.22 88.89 88.89

OP (%) 50 75 66.67 94 100

FM (%) 0 25 19.44 88.89 86.11

FP (%) 0 25 66.67 94.44 100

Mean (std.) L 1 (0) 1 (0) 9.36 (1.79) 1.22 (0.64) 1.67 (0.85)

Next, we plot the final results across all windows as Cumulative Distribution Func-

tions (CDFs) in Fig. 9.3. Fig. 9.3(a) reveals that baselines result in over 60% of win-

dows suffering from expected accuracy lower than 52% (CHCU), 62% (CHCR), and 78%

(RAN); while our HEUM and HEUP result in 90+% expected accuracy on 60+% win-

dows. Our good performance can be explained by the higher utility values reported in

Fig. 9.3(b). Fig. 9.3(c) presents the total measurement time. Our HEUM and HEUP are

both faster than RAN. This means that our algorithms achieve higher accuracy within

a shorter time. Shorter measurement times also lead to lower energy consumption as

reported in Fig. 9.3(d). Our algorithms consume one-seventh energy compared to RAN.

Table 9.1 reports the overall results compared to the ground truth. It is clear that

our HEUM and HEUP outperform the baselines in terms of overall accuracy (by at least

13.89%) and feasible ratio (by at least 27.77%). Such a good performance is achieved

without high overhead, on average only 1.67 and 1.22 measurements are needed for each

window. In summary, our proposed HEUM and HEUP achieve much higher overall and

expected accuracy (up to 100% and 50% improvement), realize much higher feasible ratio

(up to 100% improvement), and consume much less energy (only one-seventh), compared

to the baselines. Note that because OM and OP (and FM and FP ) lead to similar observa-

tions, we report sample results in OP (and FP ) in the rest of this thesis.

Implications of diverse parameters. We first plot the performance of different al-

gorithms under diverse target accuracy in Fig. 9.4, where errorbars represent the 95%

confidence levels across windows. Fig. 9.4(a) shows that our HEUM and HEUP deliver

good overall accuracy, which meets the increasing target accuracy. This can be observed
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Figure 9.4: Implications of diverse target accuracy: (a) overall accuracy, (b) feasible ratio,

(c) measurement time, and (d) energy consumption.

by the feasible ratios of 80% (HEUM) and 100% (HEUP) at Â = 0.90 in Fig. 9.4(b), which

are at least 25% higher than that of RAN. Fig. 9.4(c) reveals that the measurement times of

HEUM and HEUP do not increase even when Â = 0.90, showing that our algorithms scale

well with the target accuracy. This can be observed by the constant energy consumption

in Fig. 9.4(d). Our algorithms also perform well under different time limits between 5 and

60 s. The figures are omitted due to page limit. Fig. 9.5 gives the implications of different

sampling policies, where smaller E values mean fewer measurement candidates and thus

lower complexity. We report overall accuracy and energy consumption. We observe that

our proposed HEUM and HEUP still achieve almost perfect overall accuracy (Fig. 9.5(a))

when E is reduced. In addition, their energy consumption levels remain almost constant

when E is increased. Last, we compare our proposed algorithms against the benchmark

OPT using a sample window and highly-sampled measurement candidates (with 7 can-

didates in total) under default settings. We cannot consider larger problem size because

of the exponential complexity of OPT. Compared to the expected accuracy of OPT (0.68

and 0.83 in AM and AP ), our HEUM and HEUP achieve (almost) optimal accuracy, i.e.,
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Figure 9.5: Implications of diverse sampling policies: (a) overall accuracy and (b) energy

consumption.

0.69/0.83 and 0.63/0.74, respectively. In summary, our proposed algorithms achieve good

performance under diverse target accuracy and sampling policies.
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Chapter 10

Real Drone Implementations

We build a real high-rise building model, and control tello drones to be coordinated by

our system. The detection results are transferred back to our laptop, which acts as the

ground control station, and demonstrate to the users.

10.1 Environment Setup

City Model. We plan to use bookshelves pasted with window images as the high-rise

building models.

Hardware. As we plan to run an indoor simulation, we choose Tello [34] as our

firefighting drone. It is a quadcopter drone (shown in Fig. ??), weights about 80 gram,

and can fly about 13 minutes for one charge. As the drone is quite small, we decide not

to install multi-modal sensors on it for safe flight.

We select XXX laptop as our ground control station.

We use Wifi to connect with Tello. Tello could transfer collected data from 100 m

away at most.

Software. XXX talk about how we design and what we want to show on the dash-

board, the image processing part in the virtual environmentXXX

10.2 System Design

XXX talk about the connection between above mentioned components, and the working

processXXX
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10.3 Evaluations.

Setup. XXX talk about how we set the number, like waypoints, time budget, accura-

cyXXX Results. XXX Show some demo results, and show statistics drone take to detect

one waypoints, final accuracyXXX
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Chapter 11

Conclusion

We studied the problem of developing autonomous firefighting drones to improve situ-

ational awareness in high-rise fires. Different from prior arts that focus on the coarse-

grained waypoint scheduling problem, we solved the fine-grained measurement selection

problem at each waypoint. Our problem is to adaptively select the best combinations of

the sensor modality, classifier, and locations to achieve a target accuracy within a given

time limit. We formulated the problem into an optimization problem and proposed two

algorithms, HEUM and HEUP to solve it. We also implemented an event-driven simu-

lator leveraging on the photo-realistic AirSim to evaluate our algorithms. Our extensive

evaluation results revealed the merits of our proposed algorithms: they achieve high ex-

pected/overall accuracy, high feasible ratios, while consuming shorter measurement time

and lower energy consumption, compared to baseline algorithms. Furthermore, our algo-

rithms work well under diverse target accuracy, time limits, and sampling policies.

Our work can be extended in several dimensions:

• The various site survey strategies and more complex network conditions can be

further compared for pros/cons.

• The performance of our classifiers in diverse environments, such as different win-

dow types and lighting conditions can be tested.

• More comprehensive measurement selection algorithms can be developed for per-

formance guarantees at the cost of longer running time.

• The considered fine-grained measurement selection can be integrated with the coarse-

grained waypoint schedule algorithms for a coherent, complete system of autonomous

firefighting drones.
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