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Abstract

Solving classification problems to understand multi-modality sensor data
has become popular, but rich-media sensors, e.g., RGB cameras and mi-
crophones, are privacy-invasive. Though existing Federated Learning (FL)
algorithms allow clients to keep their sensor data private, they suffer from
degraded performance, particularly lower classification accuracy and longer
training time, than centralized learning. We propose a Heterogeneous Pri-
vacy Federated Learning (HPFL) paradigm to capitalize on the information
in the privacy insensitive data (such as mmWave point clouds) while keep-
ing the privacy sensitive data (such as RGB images) private because sensor
data are of diverse sensitivity levels. We mainly require that each client share
privacy insensitive data to server for fine-tuning server model, reducing the
performance between FL and centralized learning. To our best knowledge,
multiple media/modalities with diverse privacy sensitivity levels have never
been considered in the FL setup. We evaluate the HPFL paradigm on three
representative classification problems: (i) semantic segmentation, (ii) emo-
tion recognition, and (iii) food intake actively recognition. Extensive exper-
iments demonstrate that the HPFL paradigm can: (i) outperform the popular
FedAvg by 18.20% in foreground accuracy (semantic segmentation), 4.20%
in F1-score (emotion recognition), and XX.XX% in accuracy (food intake
actively recognition) under non-i.i.d. sample distributions, (ii) also outper-
form the state-of-the-art advanced FL algorithms by 12.40%–17.70% in fore-
ground accuracy, 2.54%–4.10% in F1-score and XX.XX% in accuracy, (iii)
achieve FedAvg’s maximum foreground accuracy 24 rounds sooner, and (iv)
incur no extra client-side computation overhead and negligible communica-
tion overhead of 5.95% (semantic segmentation), 0.15% (emotion recogni-
tion), XX.XX% (food intake actively recognition). These results show that
HPFL successfully reduce the impact of non-i.i.d. sample distribution in FL
and outperforms the related state-of-the-art FL algorithms in multi-modal ap-
plications. HPFL can be extended on multiple directions in the future, in-
cluding but not limited by convergence analysis, privacy leakage analysis,
complex multi-modal model structure, generation for split learning and other
distributive learning approaches.
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中文摘要

通過多模態傳感器數據解決分類問題再近幾年變得流行，包含

疾病診斷，安全保護，娛樂遊戲等應用。 考慮到一些高隱私敏感

度的傳感器，例如攝像頭和麥克風，收集資料進行中心化機器學習

容易造成隱私洩露風險。 儘管現有的聯合學習 (FL) 算法允許使用
者把高隱私敏感度資料保留在本地參與模型訓練，但是存在模型分

類準確度較低，訓練時間較長等缺點。 在這篇論文中，我們考慮到

不同傳感器收集的資料有不同的隱私敏感度，提出異質隱私聯合學

習算法 (HPFL) 來利用低隱私敏感度資料 (例如毫米波雷達收集的點
雲) 中的信息改善模型性能，同時使高隱私敏感度資料保持在用戶
本地。在我們提出的HPFL中，要求每個用戶把低隱私敏感度的資料
上傳到服務器，HPFL使用這些資料對服務器模型進行更進一步的訓
練。用了我們最好的知識，在相關的FL算法研究中沒有考慮到多模
態傳感器收集的資料有不同隱私敏感度的性質。 我們使用三種流行

的機器學習應用來測試HPFL算法的性能，語義分割，情感識別，和
進食動作辨認。 我們的實驗結果充分驗證了HPFL的性能。 在語義
分割應用中，HPFL在前景準確度上超過FedAvg 18.20%；在情感識別
應用中，HPFL在F1-score上超過FedAvg 4.20%；在進食動作辨識應用
中，HPFL在準確度上超過FedAvg XX.XX%；這三個實驗都建立在非
獨立同分佈的數據分佈上。與其他相關FL工作比較，HPFL在語義分
割上獲得12.40%–17.70%性能提升，在情感識別上獲得2.54%–4.10%的
性能提升，在進食動作辨識上獲得XX.XX%的性能提升。在收斂速度
方面，HPFL相比FedAvg提前24輪達到其最大準確率。同時，HPFL沒
有提升用戶的計算成本，在兩個應用中只提升了少量網絡通信成本，

相比FedAvg，HPFL消耗額外通信成本佔比：語義分割5.95%，情感
識別0.15%，進食動作辨識XX.XX%。上述實驗結果證明HPFL在FL多
模態應用中減少了非獨立同分佈數據分佈造成的性能損失，並比其

他FL工作結果更好。 HPFL具有很好的擴展性，在未來的工作中，我
們會進行收斂性分析，隱私洩露風險分析，HPFL在複雜模型的應用，
結合拆分學習，和其他分佈式學習方法。
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Chapter 1

Introduction

With the growth of Machine Learning (ML) and big data, more and more sensors are

getting researchers’ attention. Single-modal RGB cameras no longer meet the require-

ment of complex ML models and environments. The wide application of multimodal

sensing makes many sensors used in professional areas in ML, including depth cameras,

thermal cameras, mmWave radars, ultrasound sensors, and LiDAR sensors. For example,

depth cameras are used for 3D modeling [28], and thermal cameras are used for anomaly

detection [104], etc. Multimodal sensing has already widely used in many areas, e.g.,

self-driven cars [44, 122], healthcare [82, 91, 118], smart agriculture [21, 53], disease di-

agnosis [46, 99], robot system [25, 31], and so on. A recent market report [1] shows that

the market of global multimodal sensors will grow by millions of dollars over the next six

years. In addition to the development of smart homes affected by COVID-19, the number

of multimodal sensors required for the disease diagnosis robotics industry will continue

to grow.

Among these multimodal sensors, the RGB camera is widely used in multimodal ap-

plications because of its low cost and easy-to-use. Training an ML model by fusing data

from heterogeneous sensors is a promising method in the literature, which is referred to

as multimodal machine learning [9, 132]. For ML, a naive way to train a model is to

construct a central database that collects all training data. However, collecting datasets

from privacy-sensitive sensors for model training like RGB cameras has privacy risks.

Especially in applications with high privacy sensitivity, such as smart homes and health

care, almost no one wants to share this privacy-sensitive data.

Various technologies can cope the privacy concerns, contain Homomorphic Encryp-

tion [37] (HE), Differential Privacy [29] (DP), and Distributed Machine Learning (DML).

Both HE and DP methods have significant challenges in practical applications, mainly

including high computation and communication overhead. Federated Learning [87] (FL)

and Split Learning [124] (SL) are two popular privacy-protection DML algorithms. SL

1



(a) (b) (c)

Figure 1.1: Sample data from: (a) an RGB camera, (b) a depth camera, and (c) a mmWave
radar.

always works between big organizations; the one provides computation resources and

model technology, the others provide data, and SL is obviously slower than FL. In this

case, we consider multiple types of sensors deploying in homes and offices, similar to

a successful real-life FL application: Google Keyboard [47], so FL is the better choice

to solve this problem. However, there exists a fundamental gap between FL and central-

ized training in terms of model performance [60, 70], such as accuracy and convergence

speed. This gap is mainly due to data incompleteness, as each client only trains its model

using local sensor data, and the sensor data across clients are usually non-i.i.d. (non-

independent-identically distributed: each client’s feature and label distributions are not

the same as global distillation) [12, 60, 117]. Several attempts in the literature have tried

to reduce the gap by considering, e.g., non-i.i.d. data nature [106, 148], communication

cost [16, 19, 117, 130], etc. Let’s get a little closer to the problems. We classify the com-

mon sensors into two categories: privacy-sensitive sensors, including RGB cameras, and

privacy-insensitive sensors, including depth cameras, thermal cameras, mmWave radars,

ultrasound sensors, and LiDAR sensors. The dataset collected from privacy-sensitive sen-

sors needs to be protected, containing the client’s identity information. On the other hand,

it’s hard to distinguish identity information from the privacy-insensitive sensors collected

dataset. As an illustrative example, we could consider a human activity recognition sys-

tem [26] with an RGB camera, a depth camera, and a mmWave radar. Fig. 1.1 shows that,

data from heterogeneous sensors raise diverse degrees of privacy concerns. A person’s

identity can barely be recognized from a depth image, compared to an RGB image, while

a mmWave point cloud reveals virtually no information regarding the person’s identity. In

an FL system, each participant client holds a multimodal dataset containing multiple data

pairs of sensitive data and insensitive data. The goal of this FL system is to use the FL

framework to cooperatively train a multimodal model while protecting the client’s privacy

from being leaked, to solve the problem of performance degradation caused by non-i.i.d.

2



sample distributions.

Based on the above observations, we target a natural question: Can we utilize the

privacy-insensitive data to reduce the performance gap between centralized ML and FL?

To crop this challenge, we propose a Heterogeneous Privacy Federated Learning (HPFL)

paradigm to capitalize on the information contained in the privacy insensitive data for

achieving better FL performance. Here, we consider that each client has a multi-modal

dataset containing both privacy-sensitive and insensitive data of the same samples to be

classified. We instruct clients to upload their privacy-insensitive data to the server. Then,

we use these data to refine the server model before disseminating it to all clients. Two key

design rationales behind HPFL are: (i) the amount of the privacy-insensitive data collected

at the server is greater than that at individual clients and (ii) the non-i.i.d. property of the

privacy insensitive data at individual clients no longer exists at the server. Because the

server does not have access to the privacy-sensitive data, how to solely use the privacy-

insensitive data to improve the performance of FL is a critical challenge. To address this,

we propose to create a trimmed server model, referred to as the distillation model, by

taking out all the parameters related to the privacy-sensitive data. More precisely, we

carefully design a systematic procedure for the server to: (i) train the distillation model

and (ii) merge it with the server model aggregated from the client models. By integrating

this procedure with multi-round FL algorithms, our distillation model learns knowledge

from the client models that were built on the merged server model.

1.1 Contributions

This paper makes three main contributions:

• We considered multi-sensor (or multi-modal) classification problems in the FL

setup, where sensor data have diverse privacy sensitivity levels. We proposed to

have all FL clients send privacy insensitive data to the server, which has never been

done in the literature.

• We developed the HPFL paradigm to capitalize on the privacy insensitive data at

the server, to reduce the performance gap between FL and centralized training.

The HPFL paradigm applies to many real-world classification problems, including

but not limited to human activity recognition [150], fire detection [102], gesture

detection [142], semantic segmentation [36], emotion recognition [42], and sleep

stage detection [137], to name a few.

• We applied HPFL on a semantic segmentation network [45], an emotion recognition

network [81], and a food intake activity recognition network (under review). Our
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experiments demonstrate the merits of HPFL, which: (i) outperforms the popular

FedAvg [87] under non-i.i.d. sample distributions, (ii) outperforms the state-of-

the-art FL algorithms [2, 69, 71, 101], (iii) achieves FedAvg’s maximum accuracy

sooner, and (iv) incurs no client-side computation overhead and negligible commu-

nication overhead.

1.2 Limitations

Our demonstrate show that HPFL can outperform the state-of-the-art FL algorithms on

three real life applications, semantic segmentation [45], emotion recognition [81], and

food intake actively recognition. During the experiments, we found the following limita-

tions of HPFL:

• Dataset: Our HPFL can only work on multi-modal dataset and application. For

single modality dataset, such as popular MNIST [64], FashionMNIST [135] and

CIFAR [62] used by most work in advanced FL algorithm, applying our method on

them cannot obtain any performance improvement.

• Distillation model generation: For complex models, our proposed HPFL is more

intractable. Since all optimizations are based on the distillation model, the quality of

the distillation model directly determines the performance of HPFL. We do not have

a standard for generating distillation models, especially for complex models [123]

with many internal connections. The system performance will decrease if we break

too many internal connections when we create distillation model.

• System optimization: Our HPFL includes extra tuneable parameters. Compared

with FedAvg trains once (client-side) each round, HPFL needs to tune more pa-

rameters for two trainings (client-side and server-side). Specifically, the training

performed by the client and the server affects each other, and the difficulty of pa-

rameter tuning is greater than that of FedAvg and other advanced FL algorithms.

1.3 Organizations

The rest of this paper is organized as follows. We first introduce the background knowl-

edge, including machine leaning, federated learning, knowledge distillation and multi-

modal representation learning in Chapter 2. We survey the related works in Chapter 3.

We introduce the HPFL in Chapter 4.1, and the detail in Chapter 4. Chapter 5 intro-

duces multi-modal neural networks and the following Chapter 6 introduces multi-modal

4



datasets. We put the evaluations setup and results in Chapter 7. Finally, we discuss the

problems that the proposed HPFL may obtain in a real application and give the conclu-

sion.

5



Chapter 2

Background

In this chapter, we provide background knowledge before discussing the detail of HPFL.

We first introduce the bases of the HPFL algorithm including machine learning, dis-

tributed machine learning, and knowledge distillation. Then, we discussed the application

scenarios of HPFL, multi-modal representation learning.

2.1 Machine Learning

Machine learning (ML) [58] is a computer algorithm that uses existing data to improve

itself automatically. Even though the ability of traditional algorithms is getting stronger,

there are still some functions that cannot be directly obtained through programming. For

example, in a common classification problem, you want to let the computer classify the

animal by writing a program. It’s not as easy as letting computers classify numbers and

letters, and the computer cannot directly identify an image. ML can effectively solve this

problem in three steps, creating a model, optimizing the model with training data, and

making a prediction on testing data. There are many training scenarios in ML, including

supervised learning [23], semi-supervised learning [152], unsupervised learning [11], and

reinforcement learning [59]. We mainly consider supervised learning in this paper. A su-

Data Model
Input

Arbitrator
Prediction

Ground Truth

Loss

Figure 2.1: Sample supervised learning trainer.
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pervised learning scenario contains a model, a training dataset with multiple input data,

and expected outputs. A supervised learning scenario updates the model according to the

distance (also known as a loss) between the model’s prediction of the input data and the

expected output. This scenario is briefly illustrated in Figure 2.1, and it will repeat until

the model converges. Readers are referred to Burkart et al. [13], Sarker [105], and Jani-

esch et al. [54] for more complete survey and related knowledge on supervised learning,

machine learning and related research directions.

2.2 Distributed Machine Learning

The regular ML collects all training data to the server, is called centralized learning. How-

ever, the exponential growth of training data and complex model makes training on a sin-

gle device unrealistic. Distributed Machine Learning [68] (DML) was proposed to solve

this problem. In DML, a centralized server will distribute the subset of data and model

to other servers for training. Finally, the centralized server will collect the trained model

and assemble them into a complete model similar to centralized learning.

With the development of data privacy protection, Federated Learning [87] (FL) and

Split Learning [124] (SL) were proposed based on DML. FL and SL are different from

DML, and there is no unified organization to collect, manage, and distribute training data.

These two algorithms do not need to collect clients’ raw data, reducing privacy risk and

communication overhead. Privacy risk comes from the data collected from rich-media

sensors, such as RGB cameras and microphones. These data can reveal personal identi-

ties, especially when these sensors are installed in people’s homes and offices. Almost

nobody will share this private data with untrusted ML servers. Communication overhead

is caused by transferring data. Especially in a video analysis system, collecting one sec-

ond of 1080p video compressed in popular H.264 codec consumes 14 Mb of data.

McMahan et al. [87] proposed an FL algorithm. Here, we introduce the baseline

FL algorithm1, Federated Average (FedAvg) in Fig 2.2. At first, each participant client

uses its data to train a client model, which uses the supervised learning trainer illustrated

in 2.1. All clients upload the client model parameters to the server, which aggregates these

parameters using Federated Averaging (FedAvg) [87] into a server model. This server

model is then disseminated to all clients before the next training round. Multiple rounds

of FL are performed between client and server until the model converges. Compared with

centralized ML, FL (FedAvg) have the following shortcomings:

• Non-independent-identically distributed (non-i.i.d.): the training data for each client

depends on the usage scenario, resulting in different distribution for each client,
1We only consider horizontal FL architecture in this paper.
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Figure 2.2: Federated learning using the FedAvg algorithm.

called non-i.i.d. sample distributions [151]. This can lead to large discrepancies in

the trained client models [83], finally resulting in server model convergence slowly

and performance degradation. Non-i.i.d. sample distribution is the main considera-

tion in most related FL works.

• Computation overhead: edge devices usually have fewer computing resources, and

most do not have GPUs. The limitation of computing resources makes less appli-

cation of FL in real life.

• Security: malicious participation [7] in client models can compromise server model.

For example, given a certain input, the server model will output the result the at-

tacker wants. Besides, client models may leak the privacy information of the local

training data [84], which the malicious server inference from the client models.

Even with the above shortcomings, privacy protection in FL is always better than central-

ized ML.

Vepakomma et al. [124] proposed SL algorithm. The baseline SL algorithm is SplitNN [124],

shown in FIg. 2.3. At first, the complete model was cutted into two parts, client-side model

and server-side model. The break layer is referred as cur layer. In each participant client,

takes forward propagation at client-side model until cut layer. The output is referred as

client cut layer output that will send to server and complete the server-side forward prop-

agation. Then, the server will take back propagation until cut layer, and sent the gradient

to client for updating client-side model. All clients will repeat the above steps sequen-

tially, after multiple rounds of training, each client downloads the server-side model from

the server. Compared with FL, SL has lower client-side computation and communica-

tion overhead. The main disadvantage of SL is training effectively, compared with the
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parallelly training in FL. Similarly, the performance of SL is affected from non-i.i.d. dis-

tribution. Since SL cuts the model, the server cannot access the client-side model, which

has better privacy protection than FL. Some related work [119] optimizes the training

effectively in SL. Readers are referred to more complete surveys about DML [15, 38],

FL [4, 12, 140, 151], and SL [86].

2.3 Knowledge Distillation

Knowledge Distillation (KD) was proposed by Hinton et al. [49]. With the development

of deep learning, more complex models are applied in the Computer Vision (CV) and

Neutral Language Process (NLP) fields to face the increasingly complex demands. On

the other hand, it’s hard to deploy these complex models on Internet of Things (IoT) de-

vices, due to the limited power, computation overhead, and inference time. For example,

self-driving cars usually need to quickly make judgments about the environment to deal

with dangers, but deploying complex models on car computers, which has less computing

resources will increase the inference time and fail to respond to dangers in a tiny time.

KD is used for solving this problem, compressing the complex model (teacher model) to

a smaller one (student model), which has the similar performance but fewer parameters

to teacher model. Fig. 2.4 shows the general KD training workflow, including a teacher

model and a student model. The process of distillation is done by soft target and soft

prediction. Soft target and soft prediction are the probability distribution generated by

teacher modal, and student model, respectively. Different from the one-hot encoding of

hard target (ground truth), the probability distribution of soft target contains more infor-

mation, which makes the student model have better generalization ability. Increasing the

distillation temperature [116] can make the distribution smoother. The student model up-

dates the model by calculating a weighted sum loss based on the soft and hard predictions

9



Data

Teacher 
Model

Student 
Model

Softmax 
Temp=t

Softmax 
Temp=t

Softmax 
Temp=1

KD Loss

GT Loss

Soft

Pred.

Hard

Pred.

Soft Target

Ground Truth

Total

Loss

1 - α

α

Figure 2.4: Knowledge distillation example.

and corresponding targets. The above-mentioned KD usually works on fully connected

layer, so that the output distribution of the middle layer of the teacher and the student

network can be similar. In addition, KD is also used in compressing Convolutional neural

network (CNN). Apply KD in CNN [144] makes the teacher and student model output

similar feature maps or attention maps. The common distillation process has two types,

online distillation and offline distribution. More specifically, in offline KD, the teacher

model is pre-trained by a big dataset, and it’s frozen in the distillation process. In online

KD, train the teacher model and the student model at the same time. KD can apply on

many applications, self-driving car [61, 126], human actively recognition [20, 80], intru-

sion detection [128, 147], and so on. Readers are referred to more complete surveys about

KD [40, 131].

2.4 Multi-modal Representation Learning

Modality is how a person receives information, and common modality contains video,

audio, and text. Multi-modal data describes objects from different dimensions. Data

from different modalities are usually complementary, and people can understand objects

more comprehensively than a single modality data. Unlike humans, machines cannot di-

rectly perceive information from complex environments. Multi-modal Machine Learning

(MMML) is proposed to solve this problem and aims to enable the machine to process and

understand multi-modal information through machine learning methods. Early speech

recognition research [143] has leveraged multi-modal data. The researchers found that

training the model with both speaker’s audio modality data and video modality data (lips)

can achieve higher accuracy than models trained with a single audio modality.

The primary problem in MMML is Multi-modal Representation Learning (MMRL) [43,

145] that includes two sub-problems, representation, and fusion, shown as Fig. 2.5. The

vector representations of different modal data are usually in different dimensional spaces,
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resulting in their vector representations describing the same object being completely dif-

ferent. This is called the heterogeneity between multi-modal data. The main goal of

MMRL is to use a specific neural network to extract the most appropriate vector repre-

sentation of multi-modal data for a particular application. Here, the appropriate is indi-

cating that the vector representations of different modality data, which describe the same

object, are as consistent as possible, and meanwhile, these vector representations need

to retain the features of the original modality. The most popular representation general-

ization neural networks are Convolutional Neural Network (CNN) and Long Short Term

Network (LSTM) and their variants corresponding to computer vision and neutral lan-

guage processing tasks. A representative solution is to project the vector representations

of the different modalities into a common subspace [100]. Fusion is also an essential part

of MMRL, which fuses each modality vector representation into a single representation.

The intuitive fusion methods are concatenation [93] and weighted sum [149], almost re-

quiring no parameters. The widely used fusion method is attention-based fusion, such as

visual question answering system [111, 136].

As the variety of sensors and data grows, MMRL has become a hot topic. MMRL

has been applied in many applications such as video classification [94, 120], actively

detection [6, 67], sentiment analysis [51, 85], semantic segmentation [57, 96]. From the

results of the above works, the model trained with multi-modal data has always achieved

better performance in various applications than a single modality. It is foreseeable that

the application scenarios of MMRL will become more and more extensive. Readers are

referred to more complete surveys about MMRL [35, 43, 145].
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Chapter 3

Related Work

In this chapter, we analyze some work related to the HPFL paradigm design. This is

introduced from the core idea to outer layers for HPFL.

3.1 Data Sharing in FL

HPFL clients send privacy-insensitive data to the server, which can be seen as sharing data

among them. Data sharing has also been used in the literature to deal with the data incom-

pleteness problem at individual FL clients. Due to the privacy-preserving consideration

in FL, large-scale data sharing is not permitted. We can roughly classify these works into

two categories. First, the FL server may disseminate extra data, either uploaded by some

FL clients or from a public dataset, to FL clients before the training starts [52, 56, 127].

More specifically, Huang et al. [52] proposes that the server randomly shares a portion

(≤1% of the total data) of the data with each client participating in the training. Since the

selection of shared data is entirely random, the local data distribution of each client is not

considered, and the performance improvement is about 1.5%. Jeong et al. [56] propose

that each client uploads a small amount of sample data and reports the local sample dis-

tribution, the server trains a generative adversarial network to perform data augment on

all sample data and finally returns the corresponding type of data according to the distri-

bution reported by each client. The proposed method balances the client’s training data

distribution and achieves 6%∼8% performance improvement on different datasets com-

pared to Huang’s work. Wang et al. [127] proposed the K-Nearest-Neighbors Synthetic

Minority Over Sampling Technique (K-SMOTE) algorithm and applied it in the Peer-to-

Peer (P2P) FL architecture. K-SMOTE is used to generate new data from existing data.

During client communication in P2P FL, in addition to the model, two clients exchange

their synthetic data points generated by K-SMOTE to obtain more training data. Second,

the FL server may employ the collected data to carry out additional training on the model
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aggregated from the client models [30, 50, 141]. Yoshida et al. [141] propose the FL

server to collect training data for some clients and build an i.i.d. dataset in the server for

additional training after aggregating the client models. Elbir et al. [30] proposes a hybrid

training scenario where some clients upload all training data. The client with no uploaded

data performs FL, the server performs centralized ML on all uploaded data, and finally

merges the two models. Hong et al. [50] proposed a hybrid centralized and FL system

but consider, but its optimization algorithm considers the communication overhead, com-

putation overhead, and model performance. Unlike the data sharing strategy of the above

works, HPFL considers the characteristics of heterogeneous privacy sensitivity levels in

multi-modal datasets and shares all privacy-insensitive data for better model performance.

3.2 Federated Distillation

Distillation was initially proposed to compress neural networks by transferring knowl-

edge from a complex, teacher, model to a simple, student, model [22, 40, 49, 131]. At

first, Jeong et al. [55] proposed Federated Distillation (FD) to reduce communication

cost [41, 95, 108, 153]. Each participant client sends model-specific layer output (logits)

to the server after the local training epochs, and the server averages all received logits and

distributes them to clients. Finally, logits are used as a soft target to participate in the next

round of the client model training. Compared with the regular model parameter exchange

algorithm FedAvg, FD consumes only 1% of network bandwidth, although FD losses

some model performance. Park et al. [95] proposes a Federated Learning after Distilla-

tion (FLD) that merges regular FL and FD. Considering that the client upload bandwidth

is usually limited, FLD lets the client upload logits on the uplink and download the model

on the downlink. In addition, FLD requires clients to upload a small fraction of the local

dataset to perform server-side KD. Compared FedAvg, FLD reduces about a half of com-

munication overhead but keeps a similar model performance. Different from the above

works, the server directly averages the logits; Zhu et al. [153] proposes a knowledge gen-

erator at the server-side for extracting knowledge from logits and then distributing the

knowledge generator to help client model training. Guha et al. [41] propose to use an

unlabeled public dataset to distillate the resulting model into a smaller one and reduce the

server-to-client communication overhead.

In addition to reducing communication overhead, FD has some other different targets.

Li et al. [66] proposes a personalized FL method, which splits each round into three

steps: Each participant client calculates logits using the same public dataset and uploads

it to the server; the server calculates the average logits and distributes them to clients;

Clients perform KD with a public dataset and average logits on several epochs and fine-
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tune the client model with a private dataset. Moreover, FD allows heterogeneous client

model structures [75]. According to different client structure models, the server uses a

public dataset to distillate these models to transfer the knowledge between other structure

models. Unlike their work, HPFL focuses on improving server model performance, and

we do not have the luxury of accessing the privacy-sensitive data at the server. So, we

cannot perform regular offline distillation from client models to server model. Instead,

HPFL computes the model-specific layer outputs at the clients (similar to logits) and

sends them to the server to direct the distillation model training, which has never been

done before. Compared with these works that use client-upload or public datasets, HPFL

leverages the in-domain insensitive data for training with less privacy risk.

3.3 Federated Transfer Learning

Transfer learning [115] transfers the domain knowledge to a different but similar domain.

For example, a complex model with a million’s parameters is hard to converge on a small

dataset, so, we can pretrain the model at a big dataset and then fine-tune the model at

the target task dataset with a small scale and similar domain. In a deep neural network,

the shallow layers learn general features, and deep layers learn specific features. So,

the usual practice is to use a large public dataset to train the shallow layer to learn the

general feature, then freeze the shallow layer and use the target task dataset to fine-tune

the deep layer. In FL, transfer learning is used for personalized FL [63], the global model

may not adapt to each participant client because of the different data distributions at the

client, but the server model has more knowledge than each client model trained with

its dataset. FTL [18, 139] applied transfer learning in the FL setup to better transfer

knowledge from the server to client models. Similar FTL techniques have also been

applied for more secured systems [79, 109]. Both FTL and HPFL freeze some model

parameters during training for different purposes. FTL freezes the high-level, general

feature parameters to derive personalized client models. In contrast, HPFL freezes the

parameters related to privacy-sensitive data, as they are not available at the server. Since

the goals are orthogonal, FTL complements our proposed HPFL paradigm.

3.4 Advanced FL Algorithms

A wide spectrum of advanced algorithms has been proposed to enhance FedAvg in vari-

ous aspects. For example, Huang et al. [52] adjusted the number of epochs at the clients

to reduce the computation overhead. Techniques like compression and quantization of

models and parameters [55, 89, 106], as well as reduction of uploading and dissemination
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frequencies [19] have been proposed to control the communication overhead. Moreover,

tricks like uploading normalized gradients [129], keeping BatchNorm layer parameters

at clients [73], and not uploading client models significantly deviating from the server

model [130] have also been proposed. Last, personalized FL algorithms [27, 32] obtain

individual client models that fit to their datasets the best. The abovementioned optimiza-

tion approaches are orthogonal to our proposed HPFL paradigm.

A few other FL algorithms strive to replace the ordinary FedAvg [87], which has a

similar goal to our HPFL, and thus we need to compare their performance to our HPFL.

We select some representative works for analysis. FedProx [71] and FedDyn [2] observed

that the client model training enlarges the distance from the server model. Therefore,

FedProx [71] proposed to apply L2 regularization, while FedDyn [2] proposed to apply

linear regularization at clients to control such derivations. FedAdam [101] proposed the

server-size optimizer. We treat the server model aggregate scenario as SGD optimizer

with learning rate 1 in FedAvg, and the FedAdam apply the Adam optimizer at the server

aggregator for a smooth update. Especially, FedAdam treated each client model as a

regular model update, calculated gradient, and updated the server model. Leveraging on

contrastive learning [17], FedCon [69] proposed model-contrastive FL that pushes the

client models toward the server model. Different from the above state-of-the-art algo-

rithms, HPFL leverages the heterogeneous privacy sensitivity of multi-modal data, shar-

ing all privacy-insensitive data to the server to improve server model performance, which

previous works have never considered. Similarly, Wu et al. [134] considers the heteroge-

neous privacy level in the model; that is, different parts of the model need to be protected

in different ways. The author considered user modeling and typical NLP applications;

the embedding layer usually contains the private-sensitive data. The regular model pa-

rameter exchange is not working on these layers, so, the author proposes a fine-grained

personalized method to secure and share the privacy-sensitive embedding layers. More-

over, our HPFL paradigm is general and has also been applied to these advanced FL

algorithms [2, 69, 71, 101], which are detailed in Sec. 7.
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Chapter 4

Heterogeneous Privacy Federated
Learning (HPFL)

In this chapter, we illustrate the detail about HPFL workflow. At first, we provide a high

level overview of HPFL paradigm, then, we introduce the detail of each HPFL paradigm

component.

Table 4.1: Symbol Table

Symbol Description
k, K k-th client, K total amount of clients
t t-th communication round
D Complete dataset
DS Complete sensitive dataset
DI Complete insensitive dataset
Dk

S k-th client local sensitive dataset
Dk

I k-th client local insensitive dataset
DE Server testing dataset
MS,t Server model at t-th round
MD,t Distillation model at t-th round
Mk

C,t k-th client model at t-th round
T k
t k-th client learning target at t-th round
Tt Average learning target at t-th round

4.1 System Overview

Fig. 4.1 shows the HPFL procedure, which is evolved from the procedure of the original

FL. The clients collect privacy insensitive and sensitive sensor data1. The client trainer

takes both the insensitive and sensitive data to train a client model, where the model

1We refer to them as insensitive and sensitive data below for brevity.
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Figure 4.2: High-level network structures: (a) client/server and (b) distillation models.

parameters are indicated by a circled MC . The neural network structure of the client

model is depicted in Fig. 4.2(a). The client model is comprised of two encoders to convert

sensitive and insensitive data into features, which are then fed into a decoder to get the

classification output. Once all client model parameters have been uploaded to the server,

the aggregator at the server computes a server model based on all client models. Such

aggregation can be done using the FedAvg algorithm [87] or other more advanced FL

algorithms [2, 69, 71, 87, 101]; if not otherwise specified, we assume FedAvg is adopted.

The aggregated server model has the same structure as the client model. We denote the

server model parameters with a circled MS in Fig. 4.1.

Fig. 4.1 also shows that clients upload the insensitive data to the server, which happens

only once, at the beginning of the whole HPFL procedure. Directly using the insensitive

data to improve the server model is not possible as the sensitive data are not available at
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the server. Fig. 4.2(b) shows the neural network structure of the distillation model, which

only contains the insensitive encoder. The distillation model parameters are labeled as a

circled MD in Fig. 4.1. The server trainer takes the insensitive data to train the distillation

model. Unfortunately, training the distillation model directly leads to unstable results in

our pilot tests. We propose the following two unique designs to address the issue:

• Parameter initialization. A naive way to initialize the distillation model param-

eters is via random initialization. Doing so, however, is less optimal, because the

already derived server model parameters are not leveraged. Hence, a better way is

to copy the parameters from the server to distillation models using an initializer.

A sample test on semantic segmentation reveals that, compared to random initial

parameters, our initializer results in ∼7% boost in foreground accuracy.

• Learning targets. Because sensitive data are not available at the server, our HPFL

requires the clients to upload some hidden layer outputs, referred to as learning tar-

gets, to the server. Using the learning targets, the server trainer obtains the knowl-

edge from client model when training the distillation model. There are multiple

options when selecting the precise hidden layer for creating the learning targets,

which will be detailed in the next section.

Once the server gets the distillation and server model parameters, it invokes the merger to

compute the new server model parameters. The merger is needed because the distillation

model (Fig. 4.2(b)) has fewer parameters than the server model (Fig. 4.2(a)). Once the

server disseminates the server model parameters to all clients, our HPFL procedure moves

to the next training round, starting from the clients again.

4.2 Notations

We consider K clients; each client k ∈ {1, 2, . . . , K} holds a training set of sensitive data

Dk
S and a training set of insensitive data Dk

I . Server holds a testing set DE . Collectively,

we write all sensitive data as DS = D1
S ∪ D2

S ∪ · · · ∪ DK
S , insensitive data as DI =

D1
I ∪ D2

I ∪ · · · ∪ DK
I and, the whole dataset as D = DI ∪ DS . Let MS,0 be the initial

server model in round 0. We let MS,t, MD,t. Mk
C,t denote the model parameters of the

server model, the distillation model, and the k-th client model at round t, respectively.

4.3 Procedure

Client-side modification. We request each participant client k upload local insensitive

dataset Dk
I to server before the first training round start. In each training round t, client k
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Algorithm 1 The Proposed HPFL Procedure
1: Initialize MS,0 with random parameters
2: for client k = 1, 2, . . . ,K (in parallel) do
3: Upload insensitive data Dk

I to the server

4: for each round t = 0, 1, . . . do
5: for client k = 1, 2, . . . ,K (in parallel) do
6: Replace MC,t by MS,t transmitted from the server
7: Update Mk

C,t using Eq. (4.1) // Client trainer
8: Transmit Mk

C,t+1 T
k
t to the server

9: Compute MS,t,Tt using Eq. (4.2) // Aggregator
10: Initialize MD,t // Initializer
11: Compute MD,t+1 using Eq. (4.3) // Server trainer
12: Compute MS,t+1 using Eq. (4.4) // Merger
13: Break if MS converges

trains Mk
C,t using its own data, Dk and labels Y k. Namely:

Mk
C,t+1 = argmin

MC,t

Lk(D
k, Y k|Mk

C,t), where

Lk(D
k, Y k|Mk

C,t) =
1

|Dk|

|Dk|∑
i=1

CE(MC,t(D
k
i ), Y

k
i ),

(4.1)

where Lk(·) is the client loss function. The loss function can be Cross Entropy (CE),

Mean Squared Error (MSE), etc. The client also generates the corresponding learning

targets Tk
t at each round, which are used to train the distillation model at the server. Our

HPFL is general as Tk
t can be the output of the encoder or decoder, which will be detailed
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below. Last, the client uploads Mk
C,t and Tk

t to the server.

Server-side modification. We consider four components in server-side, aggregator2,

initializer, server trainer, and merger, which we will illustrate the detail later. After col-

lecting all Dk
I , Mk

C,t, and Tk
t from the clients, the aggregator aggregates the server models

and the learning targets collected from the clients with:

MS,t =
1

K

K∑
k=1

Mk
C,t+1, Tt =

1

K

K∑
k=1

Tk
t . (4.2)

Then, the server initializer generates the distillation model from server model. The distil-

lation model MD,t is essentially a subset of the server model, but only contains the insen-

sitive part. We consider multiple designs when deriving MD,t as illustrated in Fig. 4.3.

For the baseline approach, we only take the whole insensitive dataset DI as input, no

learning target applied, referring as HP. Then, we consider three learning target usage

scenarios, making the distillation model learn from all client models. The first is intu-

itive, we consider the impact of missing sensitive data on training the distillation model.

Learning target comes from averaged outputs of the sensitive data encoder from all train-

ing batches, working like an input of distillation model. We refer to this design as HPP,

where the last P stands for Passive inputs. We also consider two other designs that em-

ploy learning targets for knowledge distillation: (i) HPE computes the averaged outputs

of insensitive data encoder from all training batches and (ii) HPD computes the average

outputs of the decoder from all training batches. We compare the performance of these

three design alternatives in Sec. 7.

Upon receiving the learning targets (or inputs), the distillation model MD,t is trained

at the server trainer using the loss function3:

MD,t+1 = argmin
MD,t

LS(DI , Y, Tt|MD,t), where

LS(DI , Y, Tt|MD,t) =
1

|DI |

|DI |∑
i=1

(λ× CE(MD,t(DI,i), Yi)

+ (1− λ)×KLD(MD,t(DI,i), Tt)).

(4.3)

Here LS(·) is a weighted sum of: (i) the label loss, which is a function between the

prediction and ground truth and (ii) the distillation loss, which is a function between

the learning targets and the corresponding outputs of the distillation model. The hyper-

parameter λ controls the impacts of the two loss terms. KLD(·) is the KL-divergence

loss function. Once the distillation model MD,t is trained, we merge it MD,t back to the

2Unless stated otherwise, we use the FedAvg as the base aggregator.
3HPP works as an input, the result is not affected by the selection of λ.
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server model MS,t to obtain the final server model:

MS,t+1 = α×MS,t + (1− α)×MD,t+1, (4.4)

with a balanced hyper-parameter α. Finally, MS,t+1 is disseminated to all clients k for the

next training round. The whole HPFL procedure stops when MS converges, which can

be defined by a fixed number of rounds, based on a minimum improvement threshold per

round, etc. We summarize the HPFL procedure in Algorithm 1.
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Chapter 5

Multi-modal Neural Networks and
Applications

Output
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Modality N

Encoder Decoder

Figure 5.1: Joint representation model structure for multi-modal machine learning.

While HPFL can potentially be applied to diverse types of neural networks to solve

different multi-modal representation learning problems [43, 145], we focus on a popular

structure, called joint representation. Joint representation network projects multi-modal

data to a single feature space as illustrated in Fig. 5.1. From the bottom of the figure,

we have inputs with multiple modalities, where each modality goes through an encoder,

which can be Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),

Multilayer Perceptron (MLP) etc. The outputs of these encoders are combined with a

weighted sum or concatenation, and sent into a decoder. We consider three sample appli-

cations.
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5.1 Semantic Segmentation

The first application is for the semantic segmentation problem [74, 92, 146], which la-

bels each pixel of an image with one or multiple classes, such as car, people, and bicy-

cle. Semantic segmentation is widely used in medical imaging [77, 138], autonomous

driving [78, 121], smart agriculture [24, 34], and geo-sensing [97], etc. We choose the

MFNet (Multi-spectral Fusion Networks) [45] as a sample semantic segmentation appli-

cation, which takes RGB and thermal images as inputs. Fig. 5.2(a) illustrates the detailed

MFNet neural network structures, including two encoders and a decoder. Each encoder

has the stack of multiple convolutions, pooling, and inception (deploy multiple convolu-

tions with multiple filters simultaneously in parallel with in the same layer) layers, for

encoding the RGB and thermal input, respectively. The decoder contains multiple con-

volutions, unpooling, and shortcut layers (sum the middle layer’s output of encoders), for

decoding the representations into segmentation results. To apply HPFL on MFNet, we

create their distillation models by removing the RGB image encoder and relevant decoder

parameters. Fig. 5.2(b) shows the distillation model for MFNet. More specifically, we

perform HPE at the thermal encoder output and perform HPD at the final output. Based

on our prior experiment, HPP has poor performance on MFNet, mainly due to the HPP

only providing the RGB encoder output but none for shortcut layers.

5.2 Emotion Recognition

The second application is for the emotion recognition problem [107]. Recent emotion

recognition studies employ sensors other than RGB cameras [5, 42, 65, 81, 98, 110],

probably for the sake of privacy preservation. We select LMF (Low-rank-Multimodal-

Fusion) [81] as a sample emotion recognition application, which takes video, audio, and
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Figure 5.3: Sample neural network structures: (a) LMF for emotion recognition and (b)
corresponding distillation model.

text data as inputs. Fig. 5.3(a) illustrates the detailed LMF neural network structures,

including three encoders and multiple fusion layers. The encoder consists of three fully

connected layers (MLP) and one fusion layer for audio and video inputs. The text en-

coder uses an LSTM layer to capture the time series information and contains both a fully

connected layer and a fusion layer. The decoder contains one fusion layer, performing

vector multiplication of three encoder outputs as input and output the prediction results.

To apply HPFL on LMF, we remove the text and video encoders in the distillation model

with no modification to the decoder. Fig. 5.3(b) shows the distillation model for LMF. We

perform the HPD and HPE at the audio encoder and final output, respectively. Different

from MFNet, we can perform HPP on LMF. More specifically, the server trainer takes

averaged learning target from each client’s video encoder and text encoder as an input

and performs vector multiplication with output from the server-side audio encoder.
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Figure 5.4: Sample neural network structures: (a) FIAR for human actively recognition
and (b) corresponding distillation model.
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5.3 Human Activity Recognition

The third application is for the human activity recognition problem [26]. Recent hu-

man activity recognition works typically use two sensors, wearable and in-situ sensors.

Wearable sensor includes bioelectric sensor [76, 90, 103], smartphone [3, 48, 113], and

smartwatch [8, 88], which causes high recognition accuracy but low convenience. The

popular in-situ sensor for human activity recognition is the RGB camera [10, 33, 112].

We consider a privacy-preservation Food Intake Activity Recognition (FIAR) problem as

a sample human activity recognition application, which targets recognizing the different

food intake activities. Fig. 5.4(a) demonstrates the detailed FIAR neural network struc-

tures and contains two encoders that have a similar structure. These encoders mainly

contain multiple CNN and Bi-LSTM layers for feature capture. Moreover, we employ

2D-CNN on the mmWave encoder and 3D-CNN on the depth encoder, corresponding to

MaxPooling2D and MaxPooling3D. The decoder fuses two encoders’ output and predicts

the food intake actively. To apply HPFL on FIAR, we remove the depth encoder in the

distillation model. Fig. 5.4(b) shows the distillation model for FIAR. In the FIAR model,

we perform HPD/HPE in the same position, final output. For HPP, we provide the aver-

aged learning target from each client’s depth encoder and fuse it into the fully connected

layer in the mmWave encoder.

The modification on implementation took about 1 hour of a seasoned software engi-

neer.
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Chapter 6

Multi-modal Datasets

Different from the single-modal dataset, the multi-modal dataset contains multi types of

input data. Leveraging the multi-modal datasets, the ML model can achieve better perfor-

mance by combining cross-domain knowledge. We conduct a simple prior experiment to

illustrate this: split a multimodal dataset, train with one modality separately, and compare

the results of both modality. The results shown in Fig. 6.1. Various data types correspond

to different privacy levels. Generally, data that can be identified the identity or that leaks

privacy is regarded as sensitive data, on the contrary, data from which private information

cannot be obtained is regarded as insensitive data. HPFL is built on this observation, and

we consider three multi-modal datasets, corresponding to three multi-modal applications.

0 50 100
Rounds

0

20

40

60

A
cc

u
ra

cy
(%

)

Modality-1
Modality-2
Both

Figure 6.1: Prior test about single modality and multi modalities.

6.1 MFNet Dataset

For semantic segmentation application MFNet [45], we adopt the authors’ dataset, which

contains 1600 and 300 pairs of labeled RGB and thermal images in the training and testing

sets, respectively. The example data shown in Fig. 6.2. The dataset contains multiple
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Figure 6.2: Sample images from MFNet [45]: (a) RGB image, (b) depth image, and (c)
designed ground truth.
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Figure 6.3: MFNet dataset allocation: (a) i.i.d. and (b) non-i.i.d. sample distributions.

segmentation classes, including car, person, bike, curve, car stop, guardrail, cone, bump,

and palette, which labeled as different colors. Each input data contains a pair of RGB and

thermal images in 640×480 resolution. We treat RGB images as sensitive and thermal

images as insensitive data. We also augment the RGB/thermal image pairs using flipping,

cropping, and scaling for better accuracy.

We conduct both i.i.d. and non-i.i.d. sample distributions. For i.i.d. sample distribu-

tion, we distribute samples with each label to individual clients in a round-robin fashion.

For non-i.i.d. sample distribution, we apply a special non-i.i.d. generation method in

segmentation task, simply illustrates as the following steps: (i) calculate the maximum

data amount of each client can get (D/K), (ii) calculate the total number of pixels for

each class (ignore the background pixel) and sort them as descending, (iii) select a client

that is not assigned data and a class (from descending sequence of step (ii)), (iv) sort all

unassigned images in descending order according to the number of pixels for the selected

class, (v) assign the D/K images to a client based on unassigned images (from descend-

ing sequence of step (iv)), and (vi) repeat step (ii) - (v) until all clients obtain data. The

above method ensure that each client gets data of different classes as much as possible in

segmentation task. We visualize the resulting MFNet dataset allocations in Fig. 6.3. The
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disk areas are proportional to the numbers of assigned sample pairs.

6.2 LMF Dataset

0 1 2 3 4 5 6 7

Client

0

1

L
a
b
e
l

(a)

0 1 2 3 4 5 6 7

Client

0

1

L
a
b
e
l

(b)

0 1 2 3 4 5 6 7

Client

0

1

L
a
b
e
l

(c)

Figure 6.4: LMF dataset allocation with different non-i.i.d. degrees: (a) 0.1, (b) 1, and (c)
10.

For emotion recognition application LMF [81], we adopt the IEMOCAP [14] dataset

with neutral emotion1, which contains 3515 and 938 triplets of video, audio, and text

in the training and testing sets, respectively. Due to the lack of access to the original

dataset, we take the features pre-processed by the LMF author’s as input. Each input data

contains a triplet of audio, video, and text features. We treat audio as insensitive and

others as sensitive data. We aim to study the implication of different non-i.i.d. degrees on

the HPFL performance. Hence, we generate multiple non-i.i.d. sample distributions using

different Dirichlet distribution parameter [151]. We visualize the resulting LMF dataset

allocations in Fig. 6.4, where smaller parameters lead to higher non-i.i.d. degrees.

6.3 FIAR Dataset

We adopt the authors’ dataset for human actively recognition application FIAR, which

contains 216 depth videos and corresponding mmWave point clouds. The author collected

12 fine-grained food intake activities from 6 subjects, divided into three major types,

eating, drinking, and others. We divide the training and testing datasets according to

different subjects, in which the data of subject 1∼5 is attributed to the training set, and

the data of subject 6 is attributed to the test set. Finally, the training and test datasets have

180 and 36 groups of depth videos and mmWave point clouds, respectively. We adopt

different data pre-processing methods on depth videos and mmWave point clouds. We

crop each frame into 240×240 resolution for depth video, and we sample 60 frames in one

depth input. For mmWave point clouds, we adopt the author’s proposed pre-processing

1We focus on neutral emotions because they are harder to recognize.
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algorithm, and each mmWave input includes 60 frames of voxelized point clouds. Finally,

we obtain 5110 and 928 pairs of labeled depth and mmWave input in the training and

testing sets, respectively. (Data partitioning and experiments part in FHAR is still in

progress. . . )
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Chapter 7

Evaluations

7.1 Implementations

We have implemented FedAvg [87], FedProx [71], FedDyn [2], FedAdam [101], and

FedCon [69]. We have applied our HPFL paradigm on these FL algorithms. For com-

parisons, we have also implemented centralized training. All implementations were done

on PyTorch 1.7.1 and Python 3.8.5 with CUDA 10.1 acceleration (also tested on PyTorch

1.10.2 with CUDA 11.6). We ran the experiments on an Intel E5 server at 2.50 GHz with

4 NVIDIA GTX 1080Ti GPUs.

7.2 Hyperparameters

We carry out pilot tests to select proper hyperparameters. For MFNet, we set the follow-

ing parameters: (i) 30 rounds, (ii) a batch size of 6, (iii) 10 and 3 epochs per round at

the client and server trainers, respectively, (iv) MSE as the HPE’s loss function, (v) KL

Divergence as the HPD’s loss function, (vi) cross entropy for the label loss, (vii) learning

rate ηt = 0.01 × 0.95t−1, and (viii) an SGD optimizer for client/server trainers with mo-

mentum of 0.9 and weight decay of 0.0005. For LMF, we set the following parameters:

(i) 300 rounds, (ii) a batch size of 16, (iii) MSE as the HPD and HPEs’ loss function, (iv)

learning rate ηt = 0.003×0.965t−1, (v) an Adam optimizer for client trainers with weight

decay of 0.002, and (vi) an SGD optimizer for server trainer with momentum of 0.9 and

weight decay of 0.0005. We also empirically choose the hyperparameters of advanced FL

algorithms, which are listed below:

• FedProx: We set the regularization parameter as 0.001.

• FedDyn: We set the regularization parameters as 0.01 and 0.001 for MFNet and

LMF, respectively.

30



• FedAdam: We let the server update rate be 0.01, first momentum parameter be 0.9,

second momentum parameter be 0.99, and epsilon be 10−3.

• FedCon: We let the layer after the concat layer of MFNet and the layer before

the last fusion layer of LMF be the representation layers. We also let temperature

parameter as 0.1. We set model-contrastive loss parameter as 0.005 and 10 for

MFNet and LMF, receptively.

7.3 Parameters and Metrics

We conducted the experiments by varying the following parameters, where the bold font

represents the default: (i) α ∈{0.1, 0.3, 0.5, 0.7}, (ii) λ ∈{0.05, 0.1, 0.2}, (iii) K ∈{2, 4,

8}, (iv) distillation method ∈{HP, HPP1, HPD, HPE }, where HP indicates that the distil-

lation is disabled, and (v) sample distribution ∈{i.i.d., non-i.i.d.} (MFNet), or Dirichlet

distribution parameter ∈{0.1, 1, 10} (LMF).

The following metrics are considered:

• Background accuracy: The ratio of background pixels that are correctly classified

in the semantic segmentation problem.

• Foreground accuracy: The ratio of non-background pixels that are correctly clas-

sified in the semantic segmentation problem. Intuitively, the foreground accuracy

is more important because: (i) foreground labels are of-interest semantics and (ii)

92.21% pixels in the considered dataset are labeled as background.

• F1-score: The weighted F1-score in the emotion recognition problem.

7.4 Parameter Selections

Table 7.1: HPFL Communication Overhead

Method Model Parameters Insensitive Data Learning Targets

MFNet
HP

5.96
MB

96.62%
6.25
MB

3.38% / /
HPD 36.86% 1.29% 10 MB 61.85%
HPE 94.05% 3.29% 169 KB 2.67%

LMF HP 1.07
MB

99.87% 413
KB

0.13% / /
HPP 99.85% 0.13% 0.26 KB 0.02%

The percentage represents the proportion of overhead during training.

1Limited by the MFNet network structure, HPP is only applied to the LMF network.
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Figure 7.1: HPFL results for MFNet under different α and λ values: (a), (c) foreground
accuracy, and (b), (d) background accuracy.

MFNet. Fig. 7.1 presents the overall performance under different α and λ values,

as well as diverse distillation methods using MFNet with the default settings. We make

several observations. First, Figs. 7.1(a) and 7.1(b) reveal that smaller α values lead to

slightly higher foreground accuracy but much lower background accuracy. To understand

the importance of these two metrics, we plot a sample classification result from α = 0.1

in Fig. 7.2. This figure demonstrates the negative impact of low background accuracy

(69.35%): many background pixels are misclassified. Such a low background accuracy

renders the classification results useless in most applications. Based on the above findings,

we recommend setting α = 0.5, which gives a background accuracy of 94.27% for this

sample input. Second, λ = 0.1 results in the highest foreground accuracy (Fig. 7.1(c));

while all λ values leads to comparable background accuracy (Fig.7.1(d)). Hence, we rec-

ommend setting λ = 0.1. Third, Fig. 7.1(a) shows that, at α = 0.5, FedAvgHPD and

FedAvgHPE (distillation) improve the foreground accuracy by 7.51% and 7.99%, com-

pared to FedAvgHP (without distillation). On the other hand, at α = 0.5, the background
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(a) (b)

Figure 7.2: FedAvgHPE (with α = 0.1) misclassifies some background pixels (in white)
into foreground objects (other colors): (a) the ground truth and (b) classification results.

accuracy difference among the distillation methods is negligible: less than 0.6% as shown

in Fig. 7.1(b). Therefore, our proposed distillation methods result in better accuracy in

general. To select between FedAvgHPD and FedAvgHPE, we present their communica-

tion overhead of each round in Table 7.1. While FedAvgHPD and FedAvgHPE incur the

same amount of network traffic due to model parameters and insensitive data, FedAvgHPE

generates a marginal fraction of learning targets: only 1.69% of FedAvgHPD. Hence, we

recommend using FedAvgHPE, i.e., HPE distillation method.

LMF. Fig. 7.3 presents the overall performance under different α values and dis-

tillation methods using LMF with the default settings. This figure clearly shows that

FedAvgHPP outperforms other distillation methods in all cases. Hence, we recommend

using FedAvgHPP, i.e., HPP distillation method. Moreover, with Dirichlet distribution

parameters of 0.1 and 1, FedAvgHPP performs the best with α = 0.1, while FedAvgHPP

delivers comparable performance with different α values under Dirichlet distribution pa-

rameter of 10. Hence, we recommend α = 0.1. Last, we find that λ values do not affect

the performance of FedAvgHPD and FedAvgHPE (figures omitted). Moreover, because

FedAvgHP and FedAvgHPP are independent to knowledge distillation (see Fig. 4.3), their

performance not affect by λ. Hence, we do not recommend any λ value for LMF.

Our parameter selection experiments reveal that different neural networks work the

best under different parameters, e.g., FedAvgHPE works the best for MFNet, while FedAvgHPP

works the best for LMF. Our experiment design can be adopted to fine-tune the parame-

ters when applying HPFL paradigm to new neural networks. In the rest of this paper, we

only report the results form our recommended parameters, if not otherwise specified.
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Figure 7.3: HPFL performance under different α values, Dirichlet distribution parameter:
(a) 0.1, (b) 1, and (c) 10. Results from LMF are shown.

7.5 Performance Comparisons

HPFL is more resilient to non-i.i.d. sample distributions. Fig. 7.4 shows the per-

formance comparison of MFNet between i.i.d. and non-i.i.d. sample distributions. Par-

ticularly, Fig. 7.4(a) gives the foreground accuracy of FedAvg and FedAvgHPE across

training rounds. This figure shows that FedAvgHPE achieves the maximum of FedAvg’s

foreground accuracy 25 and 24 rounds sooner under i.i.d. and non-i.i.d. sample distribu-

tions, respectively. Fig. 7.4(b) gives the Cumulative Distribution Function (CDF) curves

of the foreground accuracy of the testing samples. With i.i.d. sample distribution, FedAvg

results in 18.11% testing samples with 75+% foreground accuracy, while FedAvgHPE re-

sults in 40.05%, which is a staggering 21.94% increase. More importantly, under the

non-i.i.d. sample distribution, the performance increase is boosted to 37.34%. Fig. 7.4(c)

gives the CDF curves of the background accuracy. The gap between these algorithms are

small as all curves overlap with one another. This demonstrates that FedAvgHPE is more

resilient to non-i.i.d. sample distributions. Fig. 7.4(d) reports the overall accuracy, which

depicts that FedAvgHPE outperforms FedAvg by 12.10% and 18.20% in terms of fore-
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ground accuracy under i.i.d. and non-i.i.d. sample distributions. The figure also reveals

that the background accuracies between FedAvgHPE and FedAvg are almost identical.

We next vary the number of clients to make the non-i.i.d. sample distributions even more

challenging. Fig. 7.4(e) reports the overall foreground accuracy. This figure shows that

FedAvgHPE constantly outperforms FedAvg: at least 14.42% improvement on foreground

accuracy is observed. The background accuracy difference, on the other hand, is less than

0.81%, shown as Fig. 7.4(f). We will further analyze the difference between background

and foreground accuracy in the inference results. The above findings demonstrate that

our HPFL paradigm works well under challenging non-i.i.d. sample distributions. We

report results from non-i.i.d. sample distributions only in the rest of this section.

Fig. 7.5 gives the performance comparison of LMF under different non-i.i.d. de-

grees. Figs. 7.5(a) ∼ 7.5(c) give sample F1-score of FedAvg and FedAvgHPP across

training rounds with different Dirichlet distribution parameters. These figures reveal that

our FedAvgHPP clearly outperforms FedAvg in terms of F1-score. Fig. 7.5(d) compares

the overall F1-score under different Dirichlet distribution parameters. We observe that

when the non-i.i.d. degree increases (distribution parameter drops from 10 to 0.1), the

performance improvement of FedAvgHPP increases from 3.06% to 7.90%. Fig. 7.5(e)

presents the results from more clients, where each client has fewer training samples and

thus higher non-i.i.d. degrees. This figure reveals that our FedAvgHPP outperforms Fe-

dAvg, and the improvement becomes larger, as high as 8.41%, when the number of clients

increases. In the following experiments, we only consider the distribution parameter 1,

which causes the smallest performance gap between FedAvg and FedAvgHPP among three

experiment settings. Based on Figs. 7.4 and 7.5, we conclude that the HPFL paradigm is

more resilient to non-i.i.d. sample distributions, thanks to the shared insensitive data.

Table 7.2: Performance of FL Algorithms with and without HPFL Paradigm (%)

Algorithms
and Models

FedAvg FedProx FedDyn FedAdam FedCon
Orig. HPFL Orig. HPFL Orig. HPFL Orig. HPFL Orig. HPFL

MFNet
(Fore. Accu.) 39.39 +18.2 39.89 +17.21 45.19 +12.98 42.63 -0.36 40.42 +14.25

LMF
(F1-score) 53.12 +4.2 53.22 +3.54 54.78 -0.81 53.62 +1.42 53.75 +5.48

HPFL outperforms the state-of-the-art FL algorithms. Thus far, we only con-

sider the ordinary FedAvg algorithm as the baseline. Next, we extend our compari-

son to state-of-the-art FL algorithms. Specifically, we first compare the performance of

FedAvgHPE/FedAvgHPP against the state-of-the-art FL algorithms in Fig. 7.6. Fig. 7.6(a)

shows that FedAvgHPE outperforms all state-of-the-art algorithms by at least 12.39% in

foreground accuracy, and approximates the centralized training with a negligible gap of

0.22%. Fig. 7.6(b) shows that the difference between FedAvgHPE and other algorithms on
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background accuracy is less than 0.64%, which is negligible. Fig. 7.6(c) demonstrates that

FedAvgHPP also constantly outperforms state-of-the-art algorithms in F1-score, although

it trails centralized training. Fig. 7.6 shows sample qualitative classification results, which

shows that our HPFL paradigm results in classifications closer to centralized training

compared to advanced FL algorithms. As we mentioned above, FedAvgHPE losses a bit

foreground accuracy (less than 1%), compared with other advanced FL algorithms, but it

has little effect on inference results. We conclude that by applying HPFL paradigm on the

ordinary FedAvg, we already outperform the state-of-the-art FL algorithms. Moreover,

our HPFL paradigm can also be applied to these state-of-the-art algorithms2 for (poten-

tial) performance gain. To quantify the gain, we summarize the performance of different

FL algorithms with and without the HPFL paradigm in Table 7.2. This figure reveals that

almost all FL algorithms can be enhanced by incorporating the proposed HPFL paradigm:

as high as 17.21% improvement is observed (excluding the ordinary FedAvg). For a cou-

ple of cases, where the HPFL paradigm does not help, the drops are quite minor: 0.36%

and 0.81%. Hence, we conclude that our HPFL paradigm can boost the performance of

most state-of-the-art FL algorithms.

HPFL incurs low resource overhead. We report the communication overhead

in Table 7.1, which is marginal. Particularly, FedAvgHPE incurs 5.96% communication

overhead in MFNet, and FedAvgHPP incurs 0.15% in LMF. We also measure the com-

putation time at clients, which are more resource-constrained than servers. We find that

the overheads after applying HPFL paradigm to FedAvg, FedAdam, FedProx, FedCon,

and FedDyn are less than 1.01%, which is virtually zero. We conclude that our HPFL

paradigm incurs negligible overhead, but significantly improves the performance.

2We note that advanced FL algorithms developed in the future may also benefit from our HPFL
paradigm.
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Figure 7.4: Impacts of MFNet’s non-i.i.d. sample distributions: (a) convergence speed,
(b) foreground accuracy distribution, (c) background accuracy distribution, and (d) overall
accuracy. (e) Foreground accuracy and (f) background accuracy from more clients.
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Figure 7.5: Impacts of LMF’s different non-i.i.d. degrees: (a) convergence speeds with
Dirichlet distribution parameter 0.1, (b) 1, (c) 10, and (d) overall F1-score. (e) F1-score
from more clients.

38



Fed
Avg

HPE

Fed
Avg

Fed
Prox

Fed
Dyn

Fed
Ada

m

Fed
Con

Cen
tra

liz
ed

0

20

40

60

Fo
re

gr
ou

nd
A

cc
ur

ac
y

(%
)

(a)

Fed
Avg

HPE

Fed
Avg

Fed
Prox

Fed
Dyn

Fed
Ada

m

Fed
Con

Cen
tra

liz
ed

60

70

80

90

100

B
ac

kg
ro

un
d

A
cc

ur
ac

y
(%

)

(b)

Fed
Avg

HPP

Fed
Avg

Fed
Prox

Fed
Dyn

Fed
Ada

m

Fed
Con

Cen
tra

liz
ed

40

50

60

70

F1
-s

co
re

(c)

Figure 7.6: Comparison with state-of-the-art FL algorithms: (a) MFNet’s foreground
accuracy, (b) background accuracy and (c) LMF’s F1-score.
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Figure 7.6: Qualitative sample results: (a) RGB input, (b) thermal input (c) FedAvg, (d)
FedAvgHPE, (e) ground truth, (f) centralized, (g) FedProx, (h) FedDyn, (i) FedAdam, and
(j) FedCon.
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Chapter 8

Conclusion

8.1 Concluding Remarks

While multimodal sensing has become a hot topic, a bunch of sensors, including RGB

cameras, depth cameras, mmWave radars, thermal cameras, ultrasound sensors, and Li-

DAR sensors move into our life. The RGB camera is widely used in multiple ML tasks

among these sensors. However, a critical privacy concern exists when we collect data

from an RGB camera, which includes identical user information. McMahan et al. [87]

have proposed the FL for a privacy-preservation distributed ML system, which can pro-

tect the training data from leakage. Unfortunately, there is a fundamental gap between

FL and centralized training in model performance. This gap is mainly due to the differ-

ent data distribution on the client-side, and each local-trained model cannot access all the

data.

This thesis presented a new federated learning system, HPFL, to reduce the perfor-

mance gap between federated learning and centralized learning. We made a crucial ob-

servation: different sensors (or modalities) have quite diverse privacy sensitivity levels.

Based on this observation, we can update the multimodal federated learning by classi-

fying the local dataset into two types, sensitive and insensitive datasets. Compared with

sensitive data (e.g., RGB image), insensitive data (e.g., mmWave point cloud, thermal

image) always contains less privacy information. HPFL requires participant clients to up-

load insensitive data to the server that ensures the privacy settings are not destroyed. To

the best of our knowledge, we are the first group to consider diverse privacy sensitivity

levels in the FL setup. HPFL trains a distillation model at the server-side with knowledge

distillation to fine-tune the server model. We considered three popular neural networks

for evaluations: semantic segmentation, emotion recognition, and human activity recogni-

tion. Then, we implemented four state-of-the-art advanced federated learning algorithms,

including FedProx [71], FedDyn [2], FedAdam [101], and FedCon [69], as baselines.
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Our experiment demonstrated that HPFL outperforms these state-of-the-art algorithms

on three applications under non-i.i.d. sample distillation. Moreover, we show the com-

patibility of HPFL, which can work with these advanced algorithms simultaneously for

performance gain. Finally, HPFL incurs no extra client-side computation overhead and

negligible communication overhead (compared to model transmitting) for performance

improvement.

8.2 Future Work

In this paper, we experimentally demonstrated that HPFL outperforms related state-of-

the-art algorithms on two common applications. The modularity and compatibility with

other algorithms allow researchers to develop further optimize algorithms based on HPFL.

In this section, we provide some possible extends and research directions for HPFL.

• Support more complex multi-modal network structures. We conduct experi-

ments based on existing applications and models, and we only consider joint repre-

sentation neural network structure in our experiments. As we mentioned in the lim-

itation section, generating distillation models from complex models is challenging.

Eventually, this led to the low performance of the distillation model. This problem

limits that apply HPFL on some complex but high-performance multi-modal neu-

ral networks. In the future, we will select some representative multi-modal model

structure [35, 145], and carefully generate the distillation model of them, then con-

clude a high-level summary. We want to know which multi-modal model structure

is compatible with HPFL to achieve higher performance and mentor other model

designers who wish to use HPFL in their applications.

• Optimization on communications and computations. The system efficiency of

HPFL depends on the network and computing performance of the server. First, the

insensitive data and learning target transmit may cause network congestion. The

performance improvement of HPFL compared to other advanced FL algorithms

comes from using the complete insensitive data to fine-tune the server model. In

environments with insufficient network resources, the performance of HPFL will

suffer, even if the insensitive data and the learning target consume only a small

fraction of network resources in our experiments. We should develop an efficient

algorithm to decide which insensitive data or learning target needs to be collected

to meet the limited network resource and uploading time. Hence, we need to upload

these data in different network bandwidth environments selectively and explore how

the quantization [89] inference the system performance. Second, the HPFL server
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takes a long time to train the distillation model. Recall the workflow of FedAvg.

The server does three simple steps, receiving client models, aggregating client mod-

els, and distributing the aggregated model. The HPFL server requires additional

work, receiving insensitive data and learning targets, training the distillation model,

and merging into the server model. Among these works, distillation model training

will consume more computing resources than other related FL works. Almost none

of the recent work on FL considers the consumption of server computing resources.

Measured by our experiments, the server takes about three minutes to train the dis-

tillation model each round (after the client training consumes about half a minute).

Even if HPFL can converge quickly and the total training time is less than other

methods, more flexible and efficient insensitive data sharing and training methods

under HPFL setup are also a research direction.

• Deeper privacy leakage analysis. Privacy concern [140] is also an essential part

of FL work. We will discuss two privacy concerns, including the insensitive data

and learning target that HPFL requires clients to upload and the client model param-

eters. Common insensitive data contains mmWave point cloud, depth, and thermal

images, which is assuming difficult to identify sensitive personal information. But,

the Multi-modal Machine Translation (MMT) [114] may break this assumption.

MMT is designed to translate one modality input to another modality output, such

as generating a description from an image. Attackers can put insensitive data into

the trained MMT model, generate roughly sensitive data, and destroy the privacy

settings of HPFL. Compared with sharing insensitive data, sharing learning targets

may cause more profound privacy concerns. An experienced attacker can infer the

corresponding approximate input and output through the data in the middle layer

of the model. In this paper, we did not qualitatively or quantitatively analyze the

degree to which HPFL damages privacy because it’s out of our scope. The future

direction may mathematically analyze HPFL’s impact on privacy and introduce two

privacy protection algorithms on the HPFL to reduce the degree of privacy leakage.

The privacy leakage degree is also known as the privacy-preserving metrics [125],

which quantitatively analyzes the extent of privacy leakage. The first privacy pro-

tection technology is Homomorphic Encryption (HE) [39]. Computing the homo-

morphically encrypted data to get an output, decrypting this output, the result is

the same as the output obtained by computing the original unencrypted data. The

above work applies HE to sensitive data. Correspondingly, using HE on insensitive

data and learning targets will increase privacy protection. The second one is Differ-

ential Privacy (DP) [133]. Through the shared data, attackers can obtain only the

characteristics of the whole data, and attackers cannot get the personal information
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contained in a particular piece of data. The above work applies DP to the client

model, adding noise to it before the aggregation. Similarly, the introduction of pri-

vacy protection methods in FL will reduce performance, including but not limited

to computational resource consumption, convergence speed, model availability, etc.

• Convergence analysis. We don’t provide mathematical convergence analysis in

this paper, while experiments show that HPFL can work on these applications. At

first, we provide our analysis target:

lim
t→∞

1

t

∞∑
t=1

|LS(DE, Y |MS,t)− LS(DE, Y |M∗
S)| = 0, where

MS,t comes from Eq. 4.4,

M∗
S is the optimal server model, and

LS(DE, Y |MS,t) =
1

|DE|

|DE |∑
i=1

CE(MS,t(DE,i), Yi).

(8.1)

Here, the key part in the above equation is MS,t, which includes the aggregated

model MS,t and the trained distillation model MD,t+1. The aggregated model

comes from FedAvg, and the trained distillation model comes from the server

trainer. The convergence guarantee has been provided [72] and the training of the

distillation model is centralized training. The difficulty is that there is no similar

work for convergence analysis of merged models. Meanwhile, the merged parts of

the different applications are not the same and are controlled by a tuneable param-

eter α. We leave an open problem here, mathematical analysis of HPFL.

• Server-side distillation method. Review our experiment results shown in Fig. 7.1

and 7.3, the results of FedAvgHPD and FedAvgHPE have little improvement, com-

pared with the method without knowledge distillation, FedAvgHP. Limited by

communication overhead, we generate a learning target averaged from all train-

ing batches, resulting in less information contained in the learning target. Then,

the model becomes more and more complex, and transmitting the learning target

may cause a high communication overhead in some applications. Motivated by the

above observations, we propose a new server trainer shown in Fig. 8.1, extending

from the old one (Fig. 4.1). Unlike the old one, we don’t require a learning target

to input. Considering the server has no permission to access sensitive data, we first

remove the weight relevant to sensitive data in each client model, similar to distilla-

tion model generation. Then, we train the distillation model to follow the standard

knowledge distillation method. All client models work as a teacher, and the distil-

lation model works as a student. We still use the loss contribution parameter λ to
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balance two losses. Compared with the old server trainer, we use client models and

insensitive data to train the distillation model and reduce communication overhead.

We will try this direction soon.

• Generalization for split learning. Split learning reduces the client-side communi-

cation and computation overhead. Complex models increase the cost of training and

uploading models on the client-side. Recall our proposed FedAvgHPP, server takes

sensitive encoder output as distillation model input, which is averaged in client-

side training batches. As we mentioned above, average learning target in training

batches will lose much information. One possible solution is, client uploads sensi-

tive encoder output for each sensitive data input, to help the better distillation model

training at server, similar to split learning. This solution has an obvious disadvan-

tage, heavier client-side communication overhead. The split learning server only

requires client upload middle layer output, rather than the whole model, but the

above solution required both. More specifically, we want to merge HPFL and split

learning, keeping distributed sensitive data training at client-side and centralized

insensitive data training at server-side, and propose an adaptive model syntonize

algorithm.
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Figure 8.1: Proposed server trainer with server-side distillation method.
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