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中文摘要

基於深度神經網路的物聯網分析應用愈來愈普及。過去我們習慣將

深度神經網路這種需要高強度運算的工作佈建到雲伺服器進行運算，

然而，隨著物聯網設備的普及，他們產生的資料量也跟著增加，將資

料全部送到雲伺服器進行運算反而會因網路壅塞增加延遲。因此，隨

著物聯網設備的規格提升，學術界提出將深度神經網路切割並在不同

設備上執行。在本篇論文中我們提出了一個提供多用戶在物到雲連續

部署深度神經網路的系統。為了最大化服務的需求數量，我們使用了

（一）多任務（multi-task）、（二）順帶服務（hitchhiking）、（三）
可伸縮終點（early exit）與（四）重新調整（reconfiguration）四個功
能。我們將深度神經網路的佈建決策過程分成規劃與執行兩階段，並

在各階段提出演算法來解決問題。在規劃階段，我們根據當下的資源

狀況決定佈建計畫；在執行階段，我們根據服務品質與當下資源狀況

決定是否重新調整已佈建的模型的計畫來達到更好的服務品質。最後

我們實作了一個實驗性平台來評估我們提出的系統。實驗結果表明，

在規劃階段，我們的系統比起其他作法提升了 6.8倍的服務數量；在
執行階段，我們可以提升 35%的服務滿意度。我們更觀察到（ㄧ）多
任務和順帶服務提升了 5.4倍的服務量、（二）可伸縮終點在不違反
準確度需求的條件下降低了延遲、（三）我們的系統在高工作量的環

境下有更好的表現。因此，我們建議在一般狀況下使用多任務、順帶

服務與可伸縮終點功能，然後在環境變化大的狀況下使用重新調整功

能。
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Abstract

Deep Neural Networks (DNN) based IoT analytics is getting popular.
With the growing amount of IoT sensor data, offloading the computation to
the cloud becomes inefficient due to traffic congestion. With the improved
capabilities of IoT devices, the concept of dividing DNN among IoT devices,
edge servers, and cloud servers is proposed. In this thesis, we propose a
multi-tenant system, called T2C, to dynamically choose, deploy, monitor, and
control IoT analytics implemented via DNN in a thing-to-cloud continuum.
T2C leverages (i) multi-task, (ii) hitchhiking, (iii) early exit, and (iv) recon-
figuration to maximize the number of served user requests, satisfying the ac-
curacy and latency requirements. We divide the deployment decision-making
process into the planning and operation phases. In the planning phase, we
make the deployment plan under the current resource status. In the operation
phase, we check model’s runtime Quality-of-Service (QoS) and decide if we
should conduct a reconfiguration for better performance. We propose a suite
of deployment planning and dynamic reconfiguration algorithms to dynami-
cally deploy and migrate layers among the IoT device, edge server, and cloud
server. We implement our proposed system in a prototype testbed. The re-
sults show that our system: (i) achieves a 6.8X throughput boost compared
to baseline algorithms in the planning phase and (ii) improves the satisfied
ratio by up to 35% in the operation phase. Furthermore, we observe that (i)
multi-task and hitchhiking improve throughput by up to 5.4X, (ii) early exits
reduce latency without violating accuracy requirements, and (iii) T2C leads
to a higher performance boost under a higher workload. Hence, we suggest
using T2C with multi-task, hitchhiking, and early exits in normal cases and
enabling reconfiguration if the environment is highly dynamic.

ii



致謝

我要感謝在研究所期間陪伴我並幫助我進行研究的所有人。首先

非常感謝我的家人提供我生活上的支持，並在我心情低落時開導我。

感謝實驗室的學長姐、同學以及學弟妹提供我在實驗上的幫助，特別

謝謝范孜亦，這兩年我們都一起在實驗室跑實驗、做作業、寫論文並

互相給予研究建議，讓我能夠順利度過研究所生涯，也很謝謝她把我

帶回排球的世界，讓我重回運動的懷抱。另外也特別感謝我的朋友林

奕昀和廖敏君在研究所期間給我的開導和陪伴。接著我要感謝加州大

學爾灣分校的Nalini Venkatasubramanian教授、Praveen Venkateswaran、
以及Tung-Chun Chang的幫助，研究所期間每週的會議讓我在英語、研
究以及報告等方面都有大幅提升，在我的研究陷入瓶頸時也是他們的

建議以及幫助讓我能夠順利完成研究。最後非常感謝我的指導教授，

徐正炘教授，教授總是在我遇到任何問題時不遺餘力的幫助我，在各

方面都能夠指引我進步的方向，並提供我很多機會去接觸不同的人以

及研究領域，讓我進步良多。感謝以上的所有人讓我能夠健康順利地

完成學業並留下美好的碩班回憶。

iii



Acknowledgments

Special thanks to all the accompany and help I received during the past
two years. First, I appreciate my family for providing the environment to
support my research. Thanks to all the lab mates for the help on my research,
especially Tzu-Yi Fan. We worked together, played together, and provided
comments to each other during the past two years. She also encouraged me
to get back to playing volleyball, which made me healthier. I also want to
thank Yi-Yun Lin and Min-Chun Liao for their mental support. Next, I would
like to thank professor Nalini Venkatasubramanian, Praveen Venkateswaran,
and Tung-Chun Chang from the University of California Irvine. The weekly
meeting over the past few years helped me improve the ability of English,
research, presentation, and so on. Last, many thanks to my advisor, professor
Cheng-Hsin Hsu. He provided lots of help with my study, pointed out the
right way for my research, and let me meet different people and research
areas. I appreciate all the people mentioned above. I have been through a
healthy and memorable research life.

iv



Contents

中文摘要 i

Abstract ii

致謝 iii

Acknowledgments iv

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Internet-of-Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Thing-to-Cloud Continuum . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 12
3.1 Multi-task Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Early Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 DNN Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 IoT Analytics Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 System Overview 16
4.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Planning Phase: Deployment Planning 19
5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Our Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Operation Phase: Dynamic Reconfiguration 25
6.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Our Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



7 Implementations 28
7.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Kubernetes and Model Deployment . . . . . . . . . . . . . . . . . . . . 29
7.3 Multi-task Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Evaluations 32
8.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Planning Phase Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Operation Phase Results . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.4 Implications of System Parameters . . . . . . . . . . . . . . . . . . . . . 47
8.5 Discussion and Recommendations . . . . . . . . . . . . . . . . . . . . . 48

9 Conclusion 49
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 52

vi



List of Figures

1.1 Sample applications of IoT analytics in smart environments. . . . . . . . 1

1.2 IoT devices are connected to edge and cloud servers. . . . . . . . . . . . 2

1.3 Sample DNNs in our T2C system demonstrate the following T2C fea-

tures: (a) multi-task and early exits, (b) hitchhiking, and (c) reconfiguration. 4

2.1 SOA-based architecture for the IoT middleware [8]. . . . . . . . . . . . . 7

2.2 Paradigm of (a) cloud computing and (b) edge computing [50]. . . . . . . 10

4.1 The component diagram of our proposed T2C system. . . . . . . . . . . . 16

5.1 Our proposed deployment planning algorithm. . . . . . . . . . . . . . . . 24

6.1 Our proposed dynamic reconfiguration algorithm. . . . . . . . . . . . . . 27

7.1 A photo of our testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Network topology of our testbed. . . . . . . . . . . . . . . . . . . . . . . 29

7.3 The implementation of our Kubernetes-based testbed. . . . . . . . . . . . 29

7.4 The layer structure of a sample multi-task age-smile-gender classification

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.1 CDF from a sample run with default settings: (a) latency, (b) normalized

accuracy, and (c) satisfied ratio. . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 Results from a sample run with default settings: (a) throughput and (b)

queuing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.3 Overall results from the default settings: (a) throughput, (b) satisfied ratio,

(c) latency, and (d) normalized accuracy. . . . . . . . . . . . . . . . . . . 36

8.4 Overall overhead from the default settings: (a) control overhead, (b) data

plane throughput, (c) CPU utilization, (d) number of deployed models,

and (e) deployment time. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.5 Overall results under different workloads normalized to NEU: (a) through-

put, (b) satisfied ratio, (c) latency, and (d) queuing time. . . . . . . . . . . 39

vii



8.6 Overall overhead under different workloads normalized to NEU: (a) CPU

utilization, (b) control overhead, and (c) deploy time. . . . . . . . . . . . 40

8.7 Overall results from T2C with and without dynamic reconfiguration: (a)

throughput, (b) satisfied ratio, (c) latency, (d) data plane throughput, and

(e) queuing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.8 Overall overhead from T2C with and without dynamic reconfiguration:

(a) CPU utilization, (b) control overhead, and (c) deploy time. . . . . . . 43

8.9 Overall results under different workloads normalized to T2CMHE: (a) sat-

isfied ratio, (b) throughput, (c) latency, and (d) queuing time. . . . . . . . 44

8.10 Overall overhead under different workloads normalized to T2CMHE: (a)

CPU utilization, (b) control overhead, and (c) deploy time. . . . . . . . . 45

8.11 Satisfied ratio with and w/o reconfiguration of a sample model under: (a)

light and (b) heavy workload. . . . . . . . . . . . . . . . . . . . . . . . . 46

8.12 Impact of scaling factors under dynamic environment at 80X arrival rate:

(a) prediction error, (b) satisfied ratio, and (c) latency. . . . . . . . . . . . 47

8.13 Queuing time with different aggregation period under: (a) light and (b)

heavy workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



List of Tables

5.1 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.1 Average Computing Latency of Layers . . . . . . . . . . . . . . . . . . . 30

8.1 Considered Network Conditions . . . . . . . . . . . . . . . . . . . . . . 32

8.2 Compared Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x



Chapter 1

Introduction

Fish 
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Figure 1.1: Sample applications of IoT analytics in smart environments.

Emerging Internet-of-Things (IoT) devices and Deep Neural Networks (DNNs) have

been deployed in numerous domains [49], such as smart cities, healthcare, manufactur-

ing, etc. Fig. 1.1 shows sample applications enabled by IoT and DNNs, such as traffic

management, senior living, and water quality monitoring in smart environments. In these

smart environments, IoT devices with sensors are deployed in different geographical ar-

eas and IoT analytics turn raw sensor data into useful and actionable information. A naive

way to deploy these IoT analytics is to host all DNNs on IoT devices. However, doing

so may lead to prohibitively long running times due to the limited computing power of
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Figure 1.2: IoT devices are connected to edge and cloud servers.

IoT devices. A better way is to leverage edge servers, as well as cloud servers, which are

connected to IoT devices via the edge network and Internet, respectively, as illustrated in

Fig. 1.2. Decisions on where to host DNNs and perform inference across IoT devices,

edge servers, and cloud servers can result in trade-offs between analytics accuracy, com-

putation and transmission latencies, and network overhead, among others. Hence, the

DNN deployment decision becomes a key research problem to guarantee the Quality-of-

Service (QoS) of IoT analytics in terms of latency, accuracy, cost, etc. Jointly managing

the resources across IoT devices, edge servers, and cloud servers is referred to as thing-

to-cloud continuum [10] in the literature.

We make the following crucial observations that may allow us to serve IoT analyt-

ics more efficiently. Multiple analytics could share the same sensor data or even some

common prefix layers of their DNNs. For example, Fig. 1.1 reveals that: (i) surveillance

videos and LiDAR point clouds can be used for pedestrian counting and accident detec-

tion at intersections, (ii) surveillance videos and mmWave radar spectrograms can be used

for activity recognition and fall detection in senior houses, and (iii) underwater cameras

and pH sensors can be used for stormwater contamination and fish population monitor-

ing in creeks. Hence, by consolidating the prefix layers of several DNNs, we may avoid

duplicated data processing.

In this thesis, we develop a multi-tenant system for deploying DNNs in a thing-to-

cloud continuum, called T2C. T2C allows the administrators of IoT infrastructures to dy-

namically choose, deploy, monitor, and control IoT analytics under resource constraints.

Furthermore, it considers multi-tenant scenarios in that resources are shared by different

2



analytics requests from all the users, trying to maximize the throughput of analytics re-

quests. Designing T2C is not an easy task because of: (i) limited resources, (ii) diverse

QoS requirements, (iii) different request arrival patterns, and (iv) dynamic environments.

To cope with these challenges, our T2C system adopts the following features:

• Multi-task networks [15], where each DNN performs multiple tasks or analytics by

leveraging shared prefix layers to avoid duplicated computations and lower resource

consumption.

• Early exit [55], where some suffix layers can be skipped to reduce resource con-

sumption while achieving acceptable QoS levels.

• Hitchhiking, where incoming user requests may be served by already-deployed

DNNs to further consolidate the executions of DNNs.

• Reconfiguration, where layers are migrated among the IoT devices, edge servers,

and cloud servers to meet QoS requirements in dynamic environments.

Fig. 1.3 shows sample neural networks demonstrating the four unique features of T2C.

Fig. 1.3(a) shows a multi-task DNN model for both pedestrian counting and car accident

detection tasks. Each task of this model has three exits with different accuracy levels. The

circled exits are chosen based on the QoS requirements. The dashed boxes indicate the

layers deployed on individual computing devices. Fig. 1.3(b) reveals that an incoming

request hitchhikes on a deployed DNN if meeting the new request’s QoS requirement.

Fig. 1.3(c) presents the idea of reconfiguration: two layers are moved from the edge to

the cloud server, when the workload of that edge server surges.

1.1 Contributions

Our multi-tenant T2C system exercises the above mentioned four features to serve more

users requests while maintaining the required QoS levels. We make the following contri-

butions:

• We propose a suite of T2C algorithms to optimize the deployment of multiple DNNs

across the IoT devices, edge servers, and cloud servers for maximum throughput

under resource constraints.

• We build a prototype testbed with heterogeneous computing devices and network

conditions to demonstrate the practicality and efficiency of our proposed system

and algorithms.

• We conduct extensive evaluations and show that: (i) multi-task and hitchhiking

can improve throughput by 5.4X, (ii) early exit can reduce latency by 7.68%, (iii)

reconfiguration improves satisfied requests by up to 35%, and (iv) our system results

in almost 6.8X throughput boost under a heavy workload.

3
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Figure 1.3: Sample DNNs in our T2C system demonstrate the following T2C features:

(a) multi-task and early exits, (b) hitchhiking, and (c) reconfiguration.
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1.2 Limitations

We assume that:

• The containers of each DNN are already downloaded to computing devices.

• DNN information such as the number of tasks, the number of exit points, the num-

ber of layers, and the topology are given.

• The layers of the DNNs are chain topologies. For those DAG topology DNNs,

the layers can be grouped into units so that the unit-wise layers are chain topolo-

gies [34].

1.3 Thesis Organizations

We first introduce our work in Chapter 1. We then discuss the related techniques of IoT

analytics deployment in Chapter 2. We summarize the related studies of our proposed

features and DNN deployment in Chapter 3. Next, we show the design of our proposed

system in Chapter 4. In Chapters 5 and 6, we formulate and present our proposed de-

ployment planning algorithm and dynamic reconfiguration algorithm, respectively. We

show our prototype testbed implementation in Chapter 7 and evaluate the performance of

our system in Chapter 8. Last, we conclude our work and give some future directions in

Chapter 9.
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Chapter 2

Background

In this chapter, we introduce the concept of IoT, deep neural networks, and the devel-

opment of computation offloading techniques from cloud to edge. Last, we discuss the

thing-to-cloud continuum.

2.1 Internet-of-Things

The concept of Internet-of-Things (IoT) was proposed by Kevin Ashton in 1999 [7] for

radio-frequency identification (RFID). They try to let the computers manage objects in the

real world. Nowadays, physical objects, including sensors, appliances, vehicles, etc., are

often connected to networks for data exchange. It is estimated that over 75% of devices

will be IoT by 2030 [24]. The data from the objects are analyzed and inter-exchanged for

intelligent human lives. Sample applications include:

• Smart home. Sensors such as temperature, humidity, and light sensors are de-

ployed in the houses for environment monitoring. These sensors are further inte-

grated with actuators and smart home assistants like Amazon Alexa and Google

Assistant, which allow humans to change the indoor environment, such as light

and temperature with voices. Appliances such as smart refrigerators can monitor

the inventory with the built-in surveillance camera and remind you to buy food.

Moreover, house security can be improved by smart devices such as doorbells with

surveillance cameras.

• Transportation. Cars, trains, buses, and other vehicles are integrated with sensors

and actuators to help the drivers know the conditions of the vehicles. For example,

the power, oil quantity, and tire pressure, to name a few. Some sensors, such as

cameras and LiDAR are installed outside the vehicles to detect obstacles or monitor

the angles that drivers can not see. Surveillance cameras can also be deployed at

the train station, bus stop, and intersections to monitor traffic conditions.
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• Healthcare. Smart watches or smart bands are getting popular nowadays. Multiple

sensors, such as accelerometer, heart rate monitor, and oximetry sensor are installed

in the watch to track the users’ daily physical conditions. It can also detect user’s

fallsand call the ambulance automatically, which is useful for elder care. In hospi-

tals, surveillance cameras can also be deployed to monitor the patients’ situations

and medical inventory, and RFID can be used to track the specimen.

Object

Abstraction

Service

Management

Objects

Applications

Service

Composition

Figure 2.1: SOA-based architecture for the IoT middleware [8].

The abovementioned applications can not be done by objects themselves. In fact, there are

some middleware layers between objects and applications to make the objects and their

data usable for humans, as shown in Fig. 2.1. The services upon the object abstraction

layer are also called IoT analytics, which analyzes the raw data given by the objects

and provides information for applications. IoT analytics can be implemented by statistic

analysis, artificial intelligence, and so on.

2.2 Deep Neural Networks

Deep neural network, or deep learning, is one of the most popular techniques in artificial

intelligence [54]. The concept of the neural network is proposed in the 1940s, using

mathematical functions to simulate the computation of the neurons in the brains. Multiple

neurons form a layer, and a neural network has an input layer, which passes the computed

values to the middle layers, and an output layer, which gives the results to the users. The

middle layers are also called hidden layers. Deep neural network is referred to the neural

networks that obtain more than one hidden layer. The number of layers of DNNs can be

more than a thousand. The neural networks are trained to determine the weights between

7



layers, and after training, the weights are applied to the computation for inference.

The first applications of neural networks is the LeNet, which performs handwriting

digit recognition [32]. After that, DNNs are applied in the domain of speech recog-

nition [17], image recognition [29], and so on. Nowadays, DNNs are largely used in

different domains for different purposes. For example, videos and images are analyzed

to detect objects or backgrounds, which can be further used for object classification and

background elimination [11,53]; voices and texts are analyzed for translation [52] or nat-

ural language processing (NLP) [62], so that computers can translate different languages

and speak the sentences. Moreover, DNNs can be applied in the medical domains to help

humans detect diseases [18].

2.3 Cloud Computing

With the growing demands on computation, cloud computing is proposed. The Na-

tional Institute of Standards and Technology defined cloud computing as a model to pro-

vide shared, on-demand computing resources such as networks, servers, storage, and so

on [40]. Essential characteristics include: (i) on-demand self-service, users can require

computing resources without human interaction with the service provider, (ii) broad net-

work access, the computing resources can be accessed remotely via client platforms, (iii)

resource pooling, the computing resources are pooled for multi-tenant usage and dynam-

ically assigned to the users, (iv) rapid elasticity, resources can be assigned or released

on demand, and (v) measured service, resource usage is monitored and reported to both

users and provider. Hence, with cloud computing, users can access fruitful computing

resources remotely on a client platform, which provides the demanded resources with

scalability and transparency.

The service models of cloud computing can be categorized into: (i) Software as a Ser-

vice (Saas), (ii) Platform as a Service (PaaS), and (iii) Infrastructure as a Service (IaaS).

SaaS provides applications running on the cloud, which multiple client devices can access.

For instance, Google Workspace, Dropbox, and Cisco WebEx are SaaS that is highly used

in our daily lives. Users have little control to these applications, however, users do not

need to install, manage, or maintain the applications alone. PaaS allows users to deploy

applications using the given framework. Users create their software applications upon

the framework without consideration of infrastructure. Example includes AWS Elastic

Beanstalk, Windows Azure, and OpenShift. Last, IaaS allows the users fully controlling

the infrastructure. Compared to PaaS, the users of IaaS need to manage the operating

system, middleware, data, and other aspects by themselves. With the ”pay-as-you-go”

model, users select their own needed hardware (CPU, GPU, RAM, storage, and so on)
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and build their applications on their chosen operating system. For example, Amazon Web

Services (AWS) is one of the most popular IaaS in the world.

2.4 Edge Computing

With the growth of IoT, data generated by the IoT devices is estimated to exceed the

amount of traffic the Internet can hold. The resulting traffic congestion makes the trans-

mission latency from IoT devices to the cloud unacceptable. Hence, sending all these data

to the remote cloud for analysis is inefficient. To cope with this issue, edge computing is

proposed to perform the computation at the edge of the network, for example, a gateway

between the IoT devices, i.e., the data sources, and the cloud is considered as an edge

server that can hold the computation at the edge. Fig. 2.2 shows the differences between

cloud computing and edge computing.

Shi et al. [50] analyzed that edge computing is needed for the following reasons:

• Low response times are needed. The bandwidth of the network is a bottleneck of

response time with the growth of the data amount, applications such as automatic

driving can not stand for high response time.

• The number of data producers is increased. The electrical devices will become

part of IoT, which will generate tremendous amount of sensor data at the edge of

the network. Moreover, taking photos or recording videos on mobile phones and

share on the social media becomes human’s daily lives. The pre-processing of these

multimedia before uploading to the cloud is needed to prevent the traffic congestion.

• Data is private. Nowadays, humans focus more on their privacy, and the data

generated at the network’s edge is usually privacy-sensitive. Processing the data at

the edge provides more security than sending the raw data to the cloud since the

sensitive information is not sent to the public server. [48, 51].

They also argued that some features should be supported for a reliable system at the edge

of the network, including:

• Differentiation. Services should be given different priorities. Urgent services, such

as fall and car accident detection should be executed first.

• Extensibility. When a new service is needed, the system should be flexible enough

so that the previous services are not impacted.

• Isolation. The crash of one service should not impact the whole system.

• Reliability. The system should be able to maintain the components in the system

and network topology, and it should take action when a node failure is detected.

Last, for the workload allocation between edge and cloud, multiple metrics that should

be considered: (i) latency, the trade-off between computation and transmission latency
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should be considered, (ii) bandwidth, despite the consideration of transmission time,

users’ data plan may also be the limitation when deciding to upload the data to the

cloud, (iii) energy, the energy consumption of running the computation or sending the

data should be considered, and (iv) cost, using the cloud resources or leveraging cache

resources at edge add additional costs.
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Figure 2.2: Paradigm of (a) cloud computing and (b) edge computing [50].

2.5 Thing-to-Cloud Continuum

IoT devices are getting more computation powerful with the advance of technologies.

It is also possible to put the computation on the IoT device itself to further reduce the

transmission of the data for lower transmission latency. Furthermore, people are focusing

more on their data privacy. Sending the raw data to a public and shared server results

in privacy concerns. With the rice of putting computation on IoT devices, a continuum

among IoT devices, edge servers, and cloud servers are formed, as illustrated in Fig. 1.2.

To orchestrate the computation among the continuum, several techniques can be applied.

For example, containers [41] are used to create an isolated environment to prevent the

library conflicts on different computing devices. Kubernetes [2] is originally proposed

to manage and deploy the containers among the distributed cloud clusters [9], but it can

also be applied in edge computing [20,25,57] and edge-cloud cooperation scenarios [21].
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Furthermore, a lightweight version of Kubernetes [1] is built for resource-constraint IoT

devices, making it more suitable for the thing-to-cloud continuum.
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Chapter 3

Related Work

In this chapter, we first present the studies related to our proposed features: multi-task,

early exit, and reconfiguration. Last, we survey the studies of computation deployment in

the thing-to-cloud continuum.

3.1 Multi-task Networks

Reusing intermediate data from common prefix layers across several similar IoT analyt-

ics is called multi-task learning [15]. Studies related to shared layers can be roughly

grouped into two classes: (i) hard and (ii) soft parameter sharing [47]. The former class

shares the identical DNN layers among multiple IoT analytics. In contrast, the latter class

shares the parameters across different neural network layers of different DNNs. Hard

parameter sharing reduces the possibility of overfitting. Soft parameter sharing provides

more flexibility for each tasks but may not scale well. Most multi-task studies focused on

training, only a couple of them [16, 27, 35] studied the DNN inference with shared prefix

layers. For instance, Jiang et al. [27] trained several DNNs for multiple video analytics

with different numbers of shared layers to trade accuracy and complexity. They adap-

tively adopted different models during inference depending on available resources. Ma

et al. [35] searched for common shared subgraphs in DNNS and stored these subgraphs

in memory. They dynamically adjusted the subgraphs in memory to meet the demands

of individual IoT analytics. Chao et al. [16] chose a few popular networks, and replaced

the classifier (fully-connected layers) and some convolution layers with the target tasks.

The number of convolution layers replaced depended on the size of the target task dataset.

They trained the task-specific models with transfer learning [45]. Although multi-task in-

creases the efficiency, deploying a multi-task model in the thing-to-cloud continuum has

not been thoroughly studied.
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3.2 Early Exit

DNNs with multiple exits have been proposed, which enable IoT analytics to trade accu-

racy levels for lower resource demands. Teerapittayanon et. al [55] originally proposed

the early exit concept to infer with prefix layers as long as the accuracy reaches the tar-

get. The layers where inference can be stopped are referred to as exit points. They then

created an exit point for each computing device, and sent the intermediate data to the next

computing device only if the current accuracy was insufficient [56]. Li et al. [33] dynam-

ically computed the deployment plans that specify partition and exit points between an

IoT device and an edge server. They implemented a prototype system on a Raspberry Pi

and an Intel PC. They showed that more layers are preferred when network bandwidth

is increased, which leads to higher accuracy. Laskaridis et al. [31] trained DNNs with

exit points. They partitioned the DNNs and guaranteed that the local device has at least

an exit point so that the request could still be served even when the link is down. Torres

et al. [58] introduced a framework based on Kafka-ML with fault-tolerance and efficient

communication layers to manage DNN models. They combined the advantage of early

exit and edge-cloud architecture to reduce the latency.

3.3 Dynamic Reconfiguration

Dynamic reconfiguration, or repartition, has been studied to cope with estimation errors

of QoS levels. Yang et al. [61] considered the dynamic mobile cloud environments. They

proposed reconfiguring mobile apps during cloud offloading to maximize the execution

speed. They predicted the network status by users’ mobility and designed an algorithm to

make the reconfiguration decision for the predictable duration. Their evaluation showed

that reconfiguration reduced the application execution time by at least 35%. McNamee et

al. [39] considered the reconfiguration of DNN under diverse resource conditions. They

investigated if reconfiguration is useful in edge computing area. They run eight pre-

trained DNNs under different conditions such as CPU/memory load and network rate.

The results showed that network condition has larger impacts on the performance and

reconfiguration can provide better performance. Majeed et al. [36] considered reducing

resulted service downtime when reconfiguring DNNs between edge and cloud. Instead of

the ”Pause and Resume” method, they decided to deploy a secondary pipeline and switch

to the new pipeline after the deployment was finished. Their proposed method reduced

the service downtime from 6 seconds to less than one millisecond. However, twice the

amount of resources is needed.

Existing work has focused only on singular aspects between multi-task, early exit,
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and dynamic reconfiguration. To the best of our knowledge, T2C is the first system to be

capable of performing all of them.

3.4 DNN Deployment

Although the deployment of DNNs for inference has been proposed [19,38], prior studies

often deployed individual DNNs in their entirety. In particular, Fang et al. [19] proposed

to prune models into compact versions, referred to as seeds, which can be converted back

to original models. When conducting the inference, the model that best fits the current

available resources is selected. Mathur et al. [38] classified layers into: (i) convolution

and (ii) fully-connected ones. They then scheduled these two layer classes in FIFO and

greedy manner, respectively, which resulted in reduced inference time without accuracy

drop by utilizing more resources. Deploying entire DNNs on IoT devices or edge servers

may overload the devices/servers, potentially turning the users away.

With the improved capabilities of IoT devices, approaches to split DNN models and

distribute them across IoT devices, edge servers, and cloud servers have gained popularity

through the use of container architectures. One way is to divide the input raw sensor

data [37, 63]. Each device/server hosts a complete DNN. By reducing the input data size,

the workload on each device/server is reduced.

A more popular way is to divide the DNNs by layers. Kang et al. [28] proposed to

partition DNNs for mobile devices and cloud servers in the unit of layers. Because each

device/server now handles a smaller number of layers (and neurons), the workload on

each device/server is reduced. Li et al. [34] considered diver DNN topologies: for chain

topology, they partitioned models by layers; for DAG topology, they partitioned models

in a grouped-layers unit. Hu et al. [26] considered DNNs in graph representations. For

light workloads, they proposed to convert the problem to a weighted min-cut problem

and solve it; for heavy workloads, they reduced the problem from the most balanced

minimum st-vertex cut problem and proved it is NP-hard. Besides cutting by layers, some

approaches used units smaller than a layer. Hsu et al. [25] presented a container-based

solution for slicing TensorFlow-based [6] DNNs in the unit of an operator, the smallest

computing unit of a model. The authors consider visual analytics, such as surveillance

and traffic monitoring, at the edge devices as the driving usage scenario. Mohammed

et al. [42] employed matching theory from economics to partition DNNs into multiple

subgraphs. They then adaptively offload these subgraphs to individual devices/servers.

They employed a python based simulator for evaluations, showing that they achieved up

to 4.2 times faster performance than the state-of-the-art.

Distributed inference of conventional DNNs offers all-or-nothing IoT analytics, as
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only one exit (output) is supported, which could lead to abandoned IoT analytics when

the available resources of the IoT infrastructure are limited. Note that these papers only

considered the deployment plan between thing-edge or edge-cloud, the topology of thing-

edge-cloud had not been fully studied yet.

3.5 IoT Analytics Deployment

Bonomi et al. [12] propose the concept of fog computing, which extends the cloud com-

puting to end devices. The authors focus on the advantages of fog computing. Moving

resources closer to IoT devices makes fog computing suitable for IoT deployment [22,

23, 59]. Cardellini et al. [14] implement a QoS-aware scheduler for stream processing

systems using fog computing. They place the applications near to the data sources and

subscribers and show that it outperforms the centralized scheduler. Lakshmanan et al. [30]

surveyed the operator placement problem for streaming tasks, concluding the character-

istics of operator placement and compare to the existing works. They drew a decision

tree for future researchers to find the related operator placement algorithms. In recent

years, data streaming processing (DSP) applications have been transferred from cloud to

edge. Thus, the placement problem starts to take the heterogeneity of computing and

network resources into account. Hong et al. [22] consider the diverse QoS levels and

heterogeneous devices to make the optimal placement decisions in a fog computing plat-

form. Cardellini et al. [13] propose a general formulation of the optimal DSP placement

(ODP) and further show several DSP placement heuristics to compare the performance of

different ways under different configurations [43].

Our proposed system deploys multi-task DNN over the thing-to-cloud continuum and

we enable the early exits to trade the accuracy and latency considering request require-

ments. While most of existing studies focus on one-time requests, we consider long-term,

recurring requests from multi-tenant in a smart environment when making the deployment

plans. We also look into the performance of our plans and reconfigure them at runtime,

which is not been thoroughly considered before.
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Chapter 4

System Overview

Device/Edge/Cloud

Device/Edge/Cloud

Device/Edge/Cloud

Partition

Partition

..
.

..
.

Users

Controller

Resource 

Monitor

Reconfiguration 

Manager

Partition

Partition

Partition

Agent

Reconfiguration 

Plan

Models status

Requests

Request 

Queue

Hitchhiking

Manager

Request

Aggregator

Request Manager

Requests

Requests

Results

Data

R
aw

 D
ata..

.

Partition

Partition
Sensor

..
.

Deployment

Planner

Container 

Deployer

..
.

Deployment Manager

Deployment plan

Model Status/Resources

Model Status

Control Flow

Data Flow

Unserved 

requests

Requested

Models

Current 

Resources

D
ep

lo
y

ed
 M

o
d

el
s

Figure 4.1: The component diagram of our proposed T2C system.

In this chapter, we present the design and workflow of our proposed T2C system.

Fig. 4.1 presents the design of our T2C system. The gray outer boxes represent different

machines, namely the controller and computing devices, which can be IoT devices, edge

servers, and cloud servers. The controller manages the system and the computing devices

execute the DNN models. Users send requests to the controller for recurring IoT analytics

results, which are delivered by computing devices.
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4.1 Components

The controller makes the key decisions on the deployment of the DNNs based on user

requests with the following components:

• Request manager takes the requests from users. These incoming requests first go

through the hitchhiking manager, which checks the already-deployed models to see

if any of them can satisfy the requirements of the requests. If found, users are

pointed to the results of these models, and the requests are considered handled.

Other requests are pushed into the request queue. The request aggregator period-

ically aggregates the requested tasks in the request queue into as few multi-task

DNN models as possible. The interval of each aggregation is referred to as the

aggregation period, which is a system parameter. In the aggregation process, the

aggregator takes the strictest requirements from the requests of the same task to be

the requirements of that task.

• Deployment manager computes and executes the deployment decisions. Within

it, the deployment planner takes the aggregated models from the request aggrega-

tor and computes the decisions under the available resource levels. The container

deployers then deploy the DNN models following the deployment plans. Each con-

tainer deployer is responsible for monitoring the model it deployed. Note that some

DNN models may fail to be deployed due to resource limitations, and their cor-

responding requests are pushed back to the request queue for future deployment.

Those requests that are considered unserviceable with the current resource status

are also pushed back to the request queue.

• Resource monitor keeps track of the computation/network resources of the system

and the status of already-deployed models reported by the container deployers.

• Reconfiguration manager monitors the QoS levels of the deployed models. It is

triggered once every reconfiguration period, and decides whether a model needs to

be reconfigured to handle changes in the system and environment dynamics.

Each computing device runs the subsets of layers belonging to the deployed DNN

models, i.e., partitions. Each partition is managed by an agent. The agent facilitates

internal communications, including:

• Receive data from sensors.

• Send/receive intermediate data from other partitions.

• Report DNN status to container deployers.

• Listen to the commands from reconfiguration manager and reconfigure the partition.

Furthermore, the agent sends IoT analytics results to users via message exchange services.

17



4.2 Workflow

When a user request comes, it first goes through the hitchhiking manager to check if any

matched deployed models exist. If yes, the request is served. Otherwise, it is pushed

into the request queue and then aggregated to a model by the request aggregator. The

deployment planner takes the aggregated models from the aggregator and gets the current

resource status from the resource monitor. It makes the deployment plan and lets the

container deployer deploy the model to the computing devices. Those unserved requests

are pushed back to the request queue. At run time, the agent sends the results to the users

and reports the status of the model to the container deployer. The container deployer logs

the model status to the resource monitor. The reconfiguration manager then monitors the

QoS of the model by the logs in the resource monitor and makes the reconfiguration plan

with the current resource status if a QoS drop is detected. When the model is finished,

the agent informs the container deployer and terminates the corresponding partition. The

container deployer then lets the resource monitor know that the model is terminated.

With these software components, we divide the deployment decision-making process

into two phases: planning and operation. In the planning phase, we solve a deployment

planning problem, which generates a deployment plan given resource levels. In the oper-

ation phase, we solve a dynamic reconfiguration problem, which checks the QoS of the

already-deployed DNN models and reconfigures the deployment plans if needed. These

two problems are solved by the deployment manager and reconfiguration manager, re-

spectively. We present these two problems and algorithms in the next two chapters.
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Chapter 5

Planning Phase: Deployment Planning

In this chapter, we formulate the deployment planning problem and present our system

models for latency prediction. We summarize frequently used symbols in Table. 5.1. Last,

we present our deployment planning algorithm.

Table 5.1: Frequently Used Symbols

Symbol Description
M Number of models

Tm Number of tasks of model m

Lm Number of layers of model m

Rt Number of requests of task t

δr Latency requirement of request r

ar Accuracy requirement of request r

pm Partition points of model m

xm Exit points of model m

ht Throughput of task t

Ym Layer computing latency table of model m

Ŷm Exit layer computing latency table of model m

C Computing power

B Network bandwidth

N Background traffic throughput

τ Scaling factors
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5.1 Notations

There are M DNN models in each deployment planning problem. Each model m ∈ M ,

contains Tm tasks and Lm layers in total. Each task t ∈ [1, Tm], comes with Lm,t layers

and Xm,t exits. We notice that the indices of model layers Lm and those of task layers Lm,t

are different. We define a function µ(lm) = lm,t to map a model layer index lm into its

corresponding task layer index lm,t, and µ′(lm,t) = lm as its inverse function. For notation

convenience, µ(lm) returns Lm + 1 if layer lm is irrelevant to task t. We use Rt to denote

the number of requests asking for task t. For a specific request r, where r ∈ [1, Rt], we

write its accuracy requirement as ar and its latency requirement as δr.

Several types of resources in thing-to-cloud continuum need to be carefully allocated.

We assume that each IoT device is connected to a single edge server, which is then con-

nected to a single cloud server. This is reasonable because IoT devices are resource-

limited and thus each of them only connects to a single gateway, serving as its edge server.

For computing power, we let C = ⟨c, c′, c′′⟩, where c, c′, c′′ ∈ N denote the numbers of

free CPU cores on the IoT device, edge server, and cloud server, respectively. Although

we only consider three computing devices, sensors are often connected to IoT devices

with short-range wireless links such as Bluetooth and Zigbee. Therefore, for networking

resources, we let B = ⟨b, b′, b′′⟩ be the network bandwidth of the sensor-device, device-

edge, and edge-cloud links. B represents the link capacity, which could be partially con-

sumed by background traffic due to, e.g., already-deployed DNN models. Therefore, we

also define N = ⟨n, n′, n′′⟩ as the background traffic throughput, which is measured at

the run-time.

The decision variables of our problem are composed of partition points and exit points

of each m, where m ∈ [1,M ]. Partition points pm = ⟨pm, p′m⟩, where pm, p
′
m ∈ [1, Lm],

specifies the boundary layer indices between: (i) the IoT device and edge server and

(ii) the edge and cloud servers. In typical cases, layers of task t with task layer indices

l ∈ (0, µ(pm)] are deployed on the IoT device, l ∈ (µ(pm), µ(p
′
m)] are deployed on the

edge server, and l ∈ (µ(p′m), Lm,t] are deployed on the cloud server.

To keep track of resource consumption, we introduce auxiliary boolean variables

⟨ĉm,t, ĉ
′
m,t, ĉ

′′
m,t⟩ for task t and ⟨ĉm, ĉ′m, ĉ′′m⟩ for model m to indicate whether the IoT

device, edge server, and cloud server participate in task t and model m, respectively.

We let ĉm,t = 1 iff the IoT device helps execute task t. It is not hard to see ĉm =

maxt∈[1,Tm](ĉm,t). We define ĉ′m,t, ĉ
′
m, ĉ

′′
m,t, and ĉ′′m in a similar way. These auxiliary vari-

ables are functions of pm. There are seven cases of ⟨pm, p′m⟩, which affect the definition

of auxiliary variables. For the sake of brevity, we give two examples: (i) if 0 < µ(pm) <

µ(p′m) < Lm, t uses all three computing devices, i.e., ĉm,t = ĉ′m,t = ĉ′′m,t = 1, and (ii) if

20



µ(pm) = 0, µ(p′m) = Lm,t, all layers of t run on edge server, i.e., ĉm,t = ĉ′′m,t = 0 and

ĉm,t = 1.

Last, for exit points, we let xm,t ∈ [1, Xm,t] be the exit point index of task t. We use

ϵ(xm,t) to denote the last task layer index of task t at exit point xm,t. We collectively write

all pm as p, all xm,t as xm, and all xm as x for the ease of presentation.

5.2 System Models

We construct the latency and accuracy models to estimate the QoS levels achieved by any

given solution of a deployment planning problem. Considering model m, we denote the

expected latency of task t as δm,t and the expected accuracy as am,t. We first write the

latency of t as a function of pm and xm,t, i.e., δm,t = δ(pm, xm,t) = δc(pm, xm,t) +

δs(pm, xm,t), where δc(·) and δs(·) represent the computing and transmission latency

components, respectively. Like prior studies [28, 33], we empirically build δm,t func-

tions. Particularly, we construct lookup tables through performance profiling, although

other modeling techniques, like regression analysis and machine learning techniques can

also be adopted.

Upon profiling, the computing latency table ⟨Ym,t,l, Y
′
m,t,l, Y

′′
m,t,l⟩ ∈ Ym estimates the

computing latency of executing layer l on IoT device, edge server, and cloud server. Note

that, the fully-connected layers of task t are identical at all exit points. Hence, instead of

profiling them individually for multiple times, we aggregate the fully-connected layers of

t at any exit point of m as an exit layer l̂m,t. We then model l̂m,t using another lookup

table ⟨Ŷm,t, Ŷ
′
m,tŶ

′′
m,t⟩ ∈ Ŷm,t for the computing latency of the exit layers.

To better adapt to dynamic environments, we employ scaling factors τ to accom-

modate the ratio between real (from live profiling) and estimated (from current model)

QoS levels. Take the computing latency as an example, we calculate the scaling fac-

tors τc = ⟨τc, τ ′c, τ ′′c ⟩ in a sliding window and multiply the estimates from Ym and Ŷm,t

by the proper τc for the final, corrected, estimations. With the above models, we write

δc(pm, xm,t) as:

min(pm,t,
Lm,t,x)∑
l=1

τcYm,µ′(l) +

min(p′m,t,

Lm,t,x)∑
l=min(pm,t,
Lm,t,x)+1

τ ′cY
′
m,µ′(l) +

Lm,t,x+1∑
l=min(p′m,t,

Lm,t,x)+1

τ ′′c Y
′′
m,µ′(l)+

τcŶm,t1pm,t<
Lm,t,x

+ τ ′cŶ
′
m,t1Lm,t,x≤

pm,t

1p′m,t<

Lm,t,x

+ τ ′′c Ŷ
′′
m,t1Lm,t,x≤

p′m,t

, (5.1)

where we sum up the latency before exit points, and use the indicator function 1expr to

add that of the exit layer. In this equation, we write pm,t = µ(pm), p
′
m,t = µ(p′m), and

Lm,t,x = ϵ(xm,t) for brevity.
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The transmission latency can be written as a function of bandwidth b from B, through-

put n from N, and size of layer l of task t belonging to model m, denoted as Zm,t,l. In

particular, we profile Z into a lookup table. We then write the transmission latency on

sensor-device link as:

sm,t,l =
Zm,t,l

α(b− n)
, (5.2)

where α is a decimal number between 0 and 1, providing a cushion for possible surges of

background traffic. The transmission latency of device-edge s′m,t,l and edge-cloud s′′m,t,l

can be defined similarly. As a corner case, we write the transmission latency of raw

sensor data as ⟨sm,t,0, s
′
m,t,0, s

′′
m,t,0⟩ based on Zm,t,0. We also apply scaling factors τs =

⟨τs, τ ′s, τ ′′s ⟩ on transmission latency. We collectively write τc and τs as τ . With the above

definitions, we write δs(pm, xm,t) as:

[τssm,t,0 + (1− cm)max(c′m, c
′′
m)τ

′
ss

′

m,t,0+

(1− cm)(1− c′m)c
′′
mτ

′′
s s

′′
m,t,0]+

1pm,t<Lm,t,x [max(c′m, c
′′
m)τ

′
ss

′
m,t,pm,t

+ c′′mτ
′′
s s

b′′

m,t,pm,t
]+

1p′m<Lm,t,x [max(c′m, c
′′
m)τ

′
ss

b′
m,t,p′m + c′′mτ

′′
s s

b′′
m,t,p′m ]. (5.3)

Here, we use auxiliary variables ⟨cm, c′m, c′′m⟩ to determine if a link is used. As an instance,

the link device-edge is used iff edge server or cloud server is used, i.e., max(c′m, c
′′
m) = 1.

The first term in Eq. (5.3) accounts for the transmission latency of raw data. The second

and third terms account for the transmission latency between partitions, where indicator

functions determine if this latency should be included in task t, as t may exit earlier. Last,

we calculate the expected latency by δm,t = δc(pm, xm,t) + δs(pm, xm,t).

Finally, for the expected accuracy, we define a function a(xm,t), which gives the av-

erage accuracy at exit point xm,t. The values are also profiled in an offline process, and

compiled into a lookup table. The expected accuracy of task t at exit xm,t is written as

am,t = a(xm,t).

5.3 Formulation

Our goal is to maximize the number of requests satisfying both the latency and accuracy

requirements. For each model m, where m ∈ [1,M ], we define throughput ht, where

t ∈ [1, Tm], to account for the number of satisfied requests of task t. ht can be defined as:

ht =
∑Rt

r=1 1δr≥δt and ar≤ar
. (5.4)
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Next, we write the deployment planning problem as:

maximize
p,x

∑M
m=1

∑Tm

t=1 ht (5.5)

s .t . :
∑M

m=1 ĉm ≤ c;∑M
m=1 ĉ

′
m ≤ c′;∑M

m=1 ĉ
′′
m ≤ c′′.

(5.6)

Eq. (5.5) maximizes the number of satisfied requests and Eq. (5.6) ensures sufficient com-

puting power. Note that, we do not explicitly limit the network resources, because they

are captured by δt and then by ht.

5.4 Our Proposed Algorithm

We design an efficient algorithm to solve the deployment planning problem in Fig. 5.1.

We first sort all M models in the descending order of a model weight:

gm =
∑Tm

t=1Rt, (5.7)

which represents the number of requests that can potentially served 1. We then iterate

through each model m, and select the most conservative xm so that all tasks’ accuracy

requirements are met. We enumerate all feasible pm for the task with the largest number

of layers, but without exceeding the available computing powers into a set P. Within P,

we pick p̂m that leads to the largest number of served requests for model m. Here, we

break ties by shorter expected latency. We then update the consumed computing powers

and move on to the next iteration. We stop once no computing power is available or all

the models are served. Our algorithm has a polynomial time complexity of O(ML2),

where L = maxMm=1 Lm. L2 comes from the enumeration in line 14, which dominates the

for-loops in lines 5 and 7.

1Different definitions of gm can be adopted in diverse scenarios, as our algorithm does not rely on any

property of gm.
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Input: M , C, B, and N

Output: p and x.
1: sort M models with weights gm in the desc. order

2: for m ∈ [1,M ] do
3: do
4: Calculate ⟨sm,t,l, s

′
m,t,l, s

′′
m,t,l⟩, l ∈ [0, Lm]

5: for t ∈ [1, Tm] do
6: am,t = max(ar), ∀r ∈ [1, Rt]

7: for xm,t ∈ [1, Xm,t] do
8: if a(xm,t) ≥ am,t then
9: Put xm,t into xm

10: Break

11: end if
12: end for
13: end for
14: Enumerate all feasible pm into P

15: Let p̂m be the pm ∈ P with the largest
∑Tm

t=1 ht

16: Add p̂m into p

17: Calculate ⟨ĉm, ĉ′m, ĉ′′m⟩ of p̂m

18: c = c− ĉm; c′ = c′ − ĉ′m; c′′ = c′′ − ĉ′′m

19: while c+ c′ + c′′ > 0

20: end for
21: Return p and x

Figure 5.1: Our proposed deployment planning algorithm.
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Chapter 6

Operation Phase: Dynamic
Reconfiguration

In this chapter, we formulate the dynamic reconfiguration problem and present our pro-

posed dynamic reconfiguration algorithm.

6.1 Problem

The dynamic reconfiguration problem is working for a deployed model m that is consid-

ered having a drop on QoS levels at run time. A deployed model m contains Tm tasks,

each task t ∈ [1, Tm] serves Rt requests. Each request r ∈ [1, Rt] has a latency require-

ment δr and accuracy requirement ar. When the runtime latency and accuracy can not

meet the requested latencies or accuracies, we consider changing the decision of partition

points pm and exit points xm to maximize the throughput
∑Tm

t=1 ht given the assigned

computing devices ⟨ĉm, ĉ′m, ĉ′′m⟩ from the planning phase and runtime network resources

B and N.

We let ⟨cm, c′m, c′′m⟩ to be the auxiliary boolean variables of the new decision of pm.

To estimate the throughput of the new decision, we applied the system models presented

in Sec. 5.2 and applied Eq. (5.4) to calculate the throughput. Hence, we write the dynamic

reconfiguration problem as:

maximize
pm,xm

∑Tm

t=1 ht (6.1)

s .t . :
∑M

m=1 cm ≤ ĉm;∑M
m=1 c

′
m ≤ ĉ′m;∑M

m=1 c
′′
m ≤ ĉ′′m.

(6.2)

Eq. (6.1) maximizes the number of satisfied requests and Eq. (6.2) ensures we only use

the assigned computing power.
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6.2 Our Proposed Algorithm

We used optimal algorithm to solve the dynamic reconfiguration problem since the algo-

rithm only considers one model and it is only executed when the model has a drop on QoS

levels. We consider a model as having a QoS drop if any of its requests are not satisfied.

Different definitions of QoS drop can be adopted in diverse scenarios.

Fig. 6.1 gives the dynamic reconfiguration algorithm. We first enumerate all set of exit

points xm into a set X, then for each x̂m ∈ X, we enumerate all feasible partition points

pm with the largest number of layers and the assigned computing powers. We then select

p̂m with the shortest expected latency, i.e., the one that can potentially satisfy most latency

requirements with current exit points x̂m. By now, we have a pair of exit points and par-

tition points candidates that has an expected latencies δm,t = δc(pm, xm,t) + δs(pm, xm,t)

and expected accuracy am,t = a(xm,t) for all task t ∈ [1, Tm]. Then the expected through-

put hm =
∑Tm

t=1 ht can be calculated with Eq. (5.4). Finally, after searching all possible

exit points and the corresponding partition points, we adopt the x̂m and p̂m that lead to

the highest throughput.

In this algorithm, we consider exit points that may not satisfy the accuracy require-

ments of all requests, which is different from the deployment planning algorithm. We are

doing this because the drop on QoS levels is indicating that the current environments can

not satisfy the latency requirements with the given accuracy. Our algorithm in Fig. 6.1

has a time complexity of O(XTL2), where X = maxTm
t=1Xm,t, T = maxMm=1 Tm, and

L = maxMm=1 Lm. We consider the complexity acceptable since T is usually a small

number.
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Input: m, ⟨cm, c′m, c′′m⟩, B, and N.

Output: pm and xm.
1: Let hm = 0

2: Let X be the set of all possible xm

3: for x̂m ∈ X do
4: Let P be the set of all feasible pm with x̂m

5: Let p̂m be the partition points in P with the shortest expected latency

6: Calculate expected throughput hm with x̂m and p̂m

7: if hm > hm then
8: xm ← x̂m

9: pm ← p̂m

10: hm ← hm

11: end if
12: end for

Figure 6.1: Our proposed dynamic reconfiguration algorithm.
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Chapter 7

Implementations

This chapter introduces the prototype testbed used for our T2C system. We then show the

implementation of DNN partitions upon Kubernetes. Last, we offer the multi-task models

we trained for our system.

7.1 Testbed

We have implemented our proposed T2C system and algorithms. Our implementation

is built upon multiple open-source projects, including Docker [41], Kubernetes [2], and

ZeroMQ [4]. The detail is given below.

• Docker [41]. We pack the DNNs into containers to avoid library conflicts. More-

over, containers can take arguments at initialization time for higher flexibility. We

assume all the devices have downloaded and cached the required container images.

• Kubernetes [2]. Kubernetes clusters help us to deploy containers and monitor their

resource consumption. It can also automatically recover or restart the containers

under exceptions.

• ZeroMQ [4]. ZeroMQ (ZMQ) exchanges data among the DNN models and agents.

With ZMQ’s socket-based Request-Reply pattern, each agent on a computing de-

vice sends the intermediate (or raw) data to the next agent using a Request, and

waits for an acknowledgement in a Reply. The socket-based pattern enables faster

data transfer.

We deploy our implementation on a Kubernetes cluster with three computing devices.

In particular, we adopt: (i) an Upboard [5] with an Intel Atom CPU @1.44 GHz and 4

GB RAM as the IoT device, (ii) an NUC with an Intel i3 CPU @1.7 GHz and 16 GB

RAM as the edge server, and (iii) a laptop with Intel i7 CPU @2.3 GHz and 32 GB

RAM as the cloud server. Fig. 7.1 shows our IoT device and edge server. Moreover,

we have a PC with Intel i7 CPU @3.6 GHz and 16 GB RAM serving as the controller.
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Fig. 7.2 shows the network topology of our testbed. The devices are connected with

Ethernet cables. Specifically, the control plane allows the controller to communicate with

computing devices and the data plane exchanges data among DNNs. The resulting testbed

serves as a proof-of-concept, and is used for evaluations.

Figure 7.1: A photo of our testbed.

Switch

Sensor Device Edge Cloud

Controller
Control Plane

Data Plane

Figure 7.2: Network topology of our testbed.

7.2 Kubernetes and Model Deployment
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Figure 7.3: The implementation of our Kubernetes-based testbed.

Fig. 7.3 illustrates our implementation of our Kubernetes-based testbed. We used three

components of Kubernetes for each model partition: (i) pod, (ii) deployment, and (iii) ser-

vice. A pod holds one or more docker images in the Kubernetes. We pass the arguments in

the config file of the pod to execute the assigned layers in the partition. Deployment holds

the pod, configuring the pod’s behavior. In our implementation, we leverage deployment

to: (i) set the CPU limits of each pod to 1000 m, so that each deployed partition can only

consume a CPU core, (ii) determine where to run the pods, and (iii) restart the pods if any

of the exceptions occurs. Finally, the service describes how to connect the pods. Here, we

assign a cluster-internal IP to each pod for the data exchange. Service also provides DNS

service with the name of the pod, this helps us find the target pod IP for communication.
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Next, we edit the network configuration services on each computing device, restricting

that the communication between the computing devices can only go through the specific

network interface. Hence, we can separate the data plane and control plane illustrated

in Fig. 7.2. With this setting, we monitor the throughput of each network interface with

Linux ifstat. We set the monitor period to 5 s and report the values to the runtime system.

To send the data between partitions, we use the assigned cluster IP (the DNS name)

with ZeroMQ and record the timestamp when sending out the message to determine the

transmission latency. To cope with the timestamp synchronization issues, we run Linux

Precision Time Protocol (PTP) on each computing device. After finishing the inference,

the results are published to the users who subscribe to the model. Here, we use the pub-

sub service provided by MQTT [3].

7.3 Multi-task Models

CV: Convolution Layer

MP: Max Pooling Layer

FC: Fully Connected Layer

S
m

il
e

G
en

d
er

A
g

e

Exit 1

Exit 2

Exit 

Layers

Exit 3

Figure 7.4: The layer structure of a sample multi-task age-smile-gender classification

model.

Table 7.1: Average Computing Latency of Layers

Layer Type Avg. Computing Latency Norm. to Convolution
Convolution 7.24 ms 100%

Max Pooling 1.40 ms 19.33%

Fully Connected 1.24 ms 17.11%

We train the Age-Smile-Gender multi-task DNNs based on Viet and Bao [60] on top
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of PyTorch [46], which enables the early exit features with BranchyNet structure [55],

as illustrated in Fig. 7.4. To build the lookup tables, we execute the inference 100 times

and get the average computing time of each layer reported by Pytorch profiler. We then

record the output data size of each layer after the compression with zlib. The results show

that different types of layers incur different complexity. For example, our profiling re-

veals that max-pooling and fully-connected layers consume 19.33% and 17.11% running

time compared to convolution layers in our multi-task networks, as reported in Table 7.1.

To exercise the trade-offs between accuracy and complexity, we develop five variants of

the model by varying the numbers of the convolution, max-pooling, and fully-connected

layers in the DNN variants.
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Chapter 8

Evaluations

In this chapter, we introduce the setup, metrics, and baselines of the evaluation. We then

present the results of our T2C algorithms in both the planning and operation phase. Last,

we show the implications of system parameters.

Table 8.1: Considered Network Conditions

Links Simulate Bandwidth Latency
Sensor-Device Bluetooth 1 Mbps 1 ms

Device-Edge WiFi 24 Mbps 3 ms

Edge-Cloud Broadband 40 Mbps 5 ms

Table 8.2: Compared Algorithms

Feature NEU Edgent T2CM T2CMH T2CMHE T2CMHER

Multi-task ✓ ✓ ✓ ✓

Early Exit ✓ ✓ ✓

Hitchhiking ✓ ✓ ✓

Reconfiguration ✓

8.1 Setup

We employ Linux Traffic Control (tc) to emulate different network conditions on indi-

vidual data plane links. More specifically, we assume that the sensor-device link is over

Bluetooth with 1 Mbps bandwidth and 1 ms delay, the device-edge link is over WiFi with

24 Mbps bandwidth and 3 ms delay, and the edge-cloud link is over broadband access

with 40 Mbps and 5 ms delay. Following the specifications of the computing devices, we
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set the computing powers of the IoT device, edge server, and cloud server to 3, 3, and

7, respectively. We set the aggregation period to 10 s and 20 s in the experiment of the

planning phase and operation phase, respectively. We set the value of α for estimating

transmission latency to 0.9. We also configure the reconfiguration period to 45 s, sliding

window of τ to 1 m, and the experiment duration for each run to 5 m.

For the workload, we generate user requests based on a public 311 call trace [44]

following Poisson arrival processes. We take arrival rates from the top most frequently

requested events and randomly assign them to our tasks. To exercise T2C under different

workload, we amplify the arrival rates by {1X, 20X, 40X, 60X, 80X} in the planning

phase and {40X, 60X, 80X, 100X, 120X} in the operation phase when conducting the

experiments. For sensor data, we employ real surveillance videos collected from our

smart campus testbed on the NTHU campus.

We have implemented our deployment planning and dynamic reconfiguration algo-

rithms. To understand the merits of individual T2C features, we create four variants with

different features: T2CM, T2CMH, T2CMHE, and T2CMHER, as summarized in Table 8.2.

For comparison, we also implemented two baseline algorithms: Neurosurgeon (NEU)

and Edgent. NEU [28] partitioned the DNN models between the mobile device and cloud

server at the boundaries of layers. They selected the partition point for either the shortest

latency or lowest mobile energy consumption. Edgent [33] adopted models with early

exits and dynamically selected the exits and partition points between the IoT device and

edge server. They sorted the exit points with the expected accuracy in the descending or-

der and searched if there was any partition point for a given exit that satisfied the latency

requirement. If not, they considered the next exit point with lower accuracy until the par-

tition point was found or no other exit was available. Note that while the original Edgent

algorithm only considers latency requirements, we augment Edgent always to select the

exits meeting the accuracy requirements for a fair comparison.

We measure the following metrics:

• Throughput. The number of served requests.

• Satisfied Ratio. The fraction of requests meeting both requirements over served

requests.

• Latency. The inference time of IoT analytics.

• Accuracy. The accuracy of IoT analytics.

• Queuing time. The waiting time of each user request in the request queue.

• CPU utilization. The fraction of algorithm running time on our Intel i7 PC @3.6

GHz.

• Deployment time. Time difference between deployment plan generation and con-

tainer launch.

33



• Data plane throughput. The bandwidth consumption among DNN partitions.

• Control overhead. The bandwidth consumption of control messages.

We repeat each experiment five times.

8.2 Planning Phase Results
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Figure 8.1: CDF from a sample run with default settings: (a) latency, (b) normalized

accuracy, and (c) satisfied ratio.

Sample results under default setting. We report results from a sample run with

40X arrival rate1. For each run, we record the average performance once every 10 s. We

plot latency, normalized accuracy, and satisfied ratio results into Cumulative Distribution

Function (CDF) in Fig. 8.1. Fig. 8.1(a) shows that algorithms with early exits, i.e., Edgent

and T2CMHE, achieve much lower latency than other algorithms. Fig. 8.1(b) reveals that

our T2C algorithms always achieve≥ 100% normalized accuracy w.r.t. the requirements.

Fig. 8.1(c) shows that over 90% satisfied ratio is≥ 90%. We plot throughput and queuing

1We could not use 1X because it only incurs four user requests throughout each experiment run.
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Figure 8.2: Results from a sample run with default settings: (a) throughput and (b) queu-

ing time.

time results in Fig. 8.2. Fig. 8.2(a) shows that with multi-task, the number of served

requests can have bursts among the time since we can serve many requests at one time.

Fig. 8.2(b) reveals that at the start of the system, T2C needs to wait a bit longer, i.e.,

the aggregation period. However, as the resources are limited, NEU and Edgent use up

resources easily and thus the queuing time of their requests grows rapidly. We can also

see that hitchhiking obtains more requests with low queuing time. To gain a high-level

view of the performance of our T2C algorithms, we report the average results across five

runs with 95% confidence intervals in the rest of this section.

Multi-task and hitchhiking improve throughput without sacrificing satisfied ratio
and latency. Fig. 8.3 gives the overall results from the default settings. When comparing

their performance, we separate these algorithms into two groups: with and without the

early exit feature. This is because early exits significantly reduce the latency as shown

in Fig. 8.1(a). Fig. 8.3(a) reveals that T2CM and T2CMH achieve 2.34 and 2.44 times of

throughput compared to NEU. Similarly, T2CMHE delivers 2.74 times of throughput com-

pared to Edgent. This figure demonstrates that multi-task largely increases and hitchhik-

ing further boosts the number of served requests. Fig. 8.3(b) shows that our algorithms

satisfy ≥ 97% of user requests, even when the throughput is high. Such high satisfied

ratios can be attributed to the minimum (≤ 20 ms) latency increase, compared to single-

task NEU and Edgent, which is reported in Fig. 8.3(c). Last, Fig. 8.3(d) shows that all

algorithms achieve at least 2 times of the accuracy requirement.

Early exit achieves lower latency while satisfying accuracy requirements. Fig. 8.3(c)

shows that both Edgent and T2CMHE achieve 3.85% lower latency compared to NEU and

7.68% lower latency compared to T2CM. Fig. 8.3(d) depicts that such latency reductions

do not negatively affect the normalized accuracy w.r.t. to requirement. This indicates that
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Figure 8.3: Overall results from the default settings: (a) throughput, (b) satisfied ratio, (c)

latency, and (d) normalized accuracy.
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Figure 8.4: Overall overhead from the default settings: (a) control overhead, (b) data plane

throughput, (c) CPU utilization, (d) number of deployed models, and (e) deployment time.
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early exits can reduce the latency, and thus serve more user requests without violating

their accuracy requirements.

Our system incurs acceptable overhead. Fig. 8.4 reports the overall overhead of

different algorithms under the default settings. Fig. 8.4(a) shows that our T2C algorithms

cause comparable control overhead compared to the baseline algorithms. In fact, all algo-

rithms introduce around 1 Mbps control overhead at the controller, which is manageable

for modern LAN/WAN technologies. Fig. 8.4(b) reports that our T2C algorithms have

similar data plane throughput compared to NEU and Edgent. In fact, multi-task with-

out early exit incurs a bit higher throughput, but the difference is smaller than 0.3 Mbps.

Fig. 8.4(c) reports the controller CPU utilization due to the deployment planning algo-

rithm. We observe that T2CMHE consumes merely 37.86% and 42.86% of CPU utilization

compared to NEU and Edgent. This can be attributed to the request aggregation of our

T2C system, which reduces the number of deployment decisions needed to make. In

addition, the aggregation also reduces the number of deployed models, as illustrated in

Fig. 8.4(d) 2. Fewer models further lead to an overhead reduction, including the aver-

age deployment time reported in Fig. 8.4(e) which shows that our algorithms reduce the

container deployment time by ∼40%, compared to baselines.

Our system scales well under heavy workload. Figs. 8.5 and 8.6 reports the per-

formance and overhead of algorithms under diverse workload. In these two figures, we

normalized the performance results to NEU at the same workload for fair comparison.

Fig 8.5(a) reveals that our T2C algorithms gain larger improvement when the workload is

increased: T2CMH and T2CMHE achieve at most 5.4X and 6.8X of throughput compared

to the baseline NEU. Fig. 8.5(b) reveals that the satisfied ratio has a higher difference

at a higher workload. Our T2CMHE obtains the comparable satisfied ratio at the highest

workload compared to the baseline NEU. Fig. 8.5(c) reports that T2CMHE has the lowest

latency at different workloads. The latency of T2CMHE is as low as 14.54% of that of NEU

at the heaviest workload. Fig. 8.5(d) demonstrates that the queuing time of our T2C al-

gorithms is as low as 12.21% of that of NEU. This can be attributed to several factors: (i)

using a model to serve more user requests cuts the waiting time for computing resources,

(ii) applying hitchhiking allows some requests to be served right away, and (iii) both

aggregation and hitchhiking help avoid duplicated deployment of the same model. We

next report the computing, networking, and deployment overhead in Figs 8.6(a), 8.6(b),

and 8.6(c), which show that T2C algorithms do not incur significantly more overhead,

especially when the workload is heavier. More specifically, Fig. 8.6(c) reveals that the

performance of deploy time improves as the workload gains higher, which achieves at

most 59.8% lower than that of NEU at the heaviest workload.

2Average number of deployed models is measured once every 10 s.
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Figure 8.5: Overall results under different workloads normalized to NEU: (a) throughput,

(b) satisfied ratio, (c) latency, and (d) queuing time.
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Figure 8.6: Overall overhead under different workloads normalized to NEU: (a) CPU

utilization, (b) control overhead, and (c) deploy time.
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Summary. In the planning phase, we observe that (i) multi-task and hitchhiking im-

prove throughput by at most 5.4X, (ii) early exits reduce latency without violating accu-

racy requirements, and (iii) our T2C system leads to a higher performance boost under a

higher workload, e.g., 6.8X throughput and 12.21% queuing time. To sum up, T2CMHE

significantly outperforms NEU, Edgent, and other algorithms. Hence, in the evaluation of

the operation phase, we no longer consider T2CM and T2CMH.

8.3 Operation Phase Results

Note that the dynamic reconfiguration kicks in only when the QoS levels drop. Under

resource-scarce conditions, our goal is to retain the satisfied ratio as much as possible.

T2CMHER obtains the highest throughput and satisfied ratio. As dynamic recon-

figuration algorithms are triggered more often when the workload is higher, we adopt a

heavier workload here, with 80X as the default workload. Moreover, we throttle the net-

work bandwidth by half at 20 s into each run to emulate network congestion. We plot the

overall results with (T2CMHER) and without (T2CMHE) dynamic reconfiguration in Fig. 8.7.

Figs. 8.7(a) and 8.7(b) show that T2CMHER achieves higher throughput and satisfied ra-

tio. The higher satisfied ratio can be attributed to the network congestion that results in

unexpected higher latency. With dynamic reconfiguration, T2CMHER decides to change

the partition points to reduce the transmission latency: the network throughput in the data

plane is reduced by 10.28% as shown in Fig. 8.7(d). Because of this, T2CMHER obtains

7.67% lower latency as shown in Fig. 8.7(c). Indeed, Fig. 8.7(b) shows that T2CMHER

results in a 5.59% higher satisfied ratio, compared to T2CMHE. With the benefits in terms

of latency and satisfied ratio, the queuing time of T2CMHER is slightly increased by 2 sec-

onds due to the overhead of reconfiguration, which is considered acceptable since we still

achieve higher throughput.

T2CMHER incurs acceptable overhead even under heavier workload. Fig. 8.7(d)

shows that T2CMHER incurs lower data plane throughput. We plot other overhead in

Fig. 8.8. Fig. 8.8(a) reports the CPU utilization, which shows that T2CMHER has a CPU

utilization of ≤ 5%, which is only a few ms for each invocation. Fig. 8.8(b) gives the

control overhead, where In addition, T2CMHER consumes extra bandwidth due to message

exchanges between the reconfiguration manager and agents. Nonetheless, the resulting

control overhead is < 1.5 Mbps, which is manageable in modern networks. Fig. 8.8(c)

shows that the Deployment time is slightly increased since the reconfiguration restarts the

containers, but the average difference is < 20 ms. In summary, T2CMHER incurs accept-

able overhead under the default workload. Next, we plot the normalized performance of

T2CMHER w.r.t. T2CMHE in Figs. 8.9 and 8.10. Fig. 8.9(a) shows that T2CMHER always
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Figure 8.7: Overall results from T2C with and without dynamic reconfiguration: (a)

throughput, (b) satisfied ratio, (c) latency, (d) data plane throughput, and (e) queuing

time.
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Figure 8.8: Overall overhead from T2C with and without dynamic reconfiguration: (a)

CPU utilization, (b) control overhead, and (c) deploy time.
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Figure 8.9: Overall results under different workloads normalized to T2CMHE: (a) satisfied

ratio, (b) throughput, (c) latency, and (d) queuing time.
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Figure 8.10: Overall overhead under different workloads normalized to T2CMHE: (a) CPU

utilization, (b) control overhead, and (c) deploy time.
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achieves better satisfied ratio under different workloads. Figs. 8.9(b) and 8.9(c) show that

T2CMHER obtains comparable throughput and latency to T2CMHE. Because the purpose

of reconfiguration is to increase the QoS at runtime, latency and throughput may not al-

ways benefit from it. Fig. 8.9(d) reveals that the queuing time of T2CMHER does not get

worse as the workload increase. Fig. 8.10 presents the normalized CPU utilization time,

control overhead, and deployment time. While up to 4.31X of CPU utilization and 2.05X

of control overhead, a closer look indicates that the absolute CPU utilization and control

overhead of T2CMHER are merely < 6% and < 1.5 Mbps, respectively. The deployment

time of T2CMHER is only 1.07X, which has a < 17 ms difference compared to T2CMHE.

This shows that T2CMHER scales well to a heavier workload.
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Figure 8.11: Satisfied ratio with and w/o reconfiguration of a sample model under: (a)

light and (b) heavy workload.

Reconfiguration increases the satisfied ratio. To better observe the impact of dy-

namic reconfiguration, we zoom into the performance of a single model. Fig. 8.11 gives

the satisfied ratio under different workloads. The vertical dashed lines annotate the time

instance of a reconfiguration event. Fig. 8.11(a) is from a light workload with only 4

deployed models. We observe that the satisfied ratio is increased by 10% after the re-

configuration. Without reconfiguration, the satisfied ratio drops quickly, as high as a 54%

performance gap between T2CMHE and T2CMHER is observed. Fig. 8.11(b) is from a heavy

workload with 13 deployed models. We see the curves are not stable because the network

environments are highly dynamic due to the behavior of other deployed models. Never-

theless, the satisfied ratio is increased by at most 35% after the reconfiguration. T2CMHER

satisfies at most 50% more user requests compared to T2CMHE.

Summary. We conclude that in the operation phase, our reconfiguration manager

successfully detects the drop in QoS levels. By triggering the dynamic reconfiguration al-

gorithm, we can increase the satisfied ratio under such brutal conditions. That is, T2CMHER
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achieves a higher satisfied ratio compared to T2CMHE without incurring excessive over-

head even under the heavier workload.

8.4 Implications of System Parameters
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Figure 8.12: Impact of scaling factors under dynamic environment at 80X arrival rate: (a)

prediction error, (b) satisfied ratio, and (c) latency.

Impact of scaling factors. We run a set of experiments in a dynamic network envi-

ronment without scaling factors for comparison. We report the normalized latency of the

runtime and expected prediction error in Fig. 8.12(a). The results show that the predic-

tion error is reduced by 12.55%. The reduction of prediction error can further impact the

performance of the system. We report the CDF of satisfied ratio and latency. Fig. 8.12(b)

shows that with the scaling factor, latency is 1.56X lower than the without one, and hence

the satisfied ratio is 26.27% higher, as reported in Fig. 8.12(c). Because scaling factors

capture the runtime situations, i.e., the congestion on network, thus it determines which

latency requirements can be satisfied more accurately, preventing the drop of satisfied

ratio.
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Figure 8.13: Queuing time with different aggregation period under: (a) light and (b) heavy

workload.

Impact of aggregation period. We run a set of experiments with different aggrega-

tion periods and report the CDF of queuing time under different workloads in Fig. 8.13.

Obviously, the aggregation period directly impacts the queuing time since requests should

wait in the queue before the next aggregation. In Fig. 8.13(a), the queuing time of 60 s

aggregation period is 1.8X of the 1 s one. However, when the workload increase, the

queuing time of 1 s becomes 2.3X of the 60 s one as reported in Fig. 8.13(b), due to the

resource limitation. A higher aggregation period considers more requests when making

the deployment plan and hence leverages the multi-task structure of our DNN. The num-

ber of duplicated models is thus reduced, saving more computing power for queuing or

future requests.

8.5 Discussion and Recommendations

We observed that T2CMHE works well in the static environment with high throughput, high

satisfied ratio, low latency, and low queuing time under different workloads. When the

environment is dynamic, T2CMHER can reduce the latency and increase the satisfied ratio

by reconfiguring the deployment at runtime. However, this comes with higher queuing

time and overhead, such as CPU utilization and control overhead. Hence, we suggest

using T2CMHE in a static or slightly dynamic environment and using T2CMHER when the

environment, especially the network condition, is highly dynamic. Perhaps, an adaptation

mechanism can be developed to automatically enable the reconfiguration feature based on

historical data, which remains one of our future tasks.
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Chapter 9

Conclusion

In this thesis, we proposed a multi-tenant system T2C for deploying DNNs in thing-to-

cloud continuum. We proposed to leverage (i) multi-task, (ii) hitchhiking, (iii) early exit,

and (iv) reconfiguration to serve as many user requests as possible with the awareness of

runtime QoS levels. We proposed checking the deployed models to see if any of them

can serve the coming requests. We then aggregated the queuing requests to their corre-

sponding multi-task DNN models. We monitored the status of the deployed models and

reconfigured the models with an QoS drop at runtime. We divided the DNN deployment

decision-making problem into two phases: planning and operation. In the planning phase,

we decided the deployment plan based on the current resource status, while in operation

phase, we checked the status of deployed models and decided whether to conduct re-

configuration. We proposed several deployment planning and dynamic reconfiguration

algorithms to generate deployment and reconfiguration plans for multi-task DNNs across

IoT devices, edge servers, and cloud servers. We implemented our proposed T2C system

in a prototype testbed with a controller, IoT device, edge server, and cloud server. We

then extensively evaluated our proposed system and algorithms. The results show that:

• Multi-task and hitchhiking highly improve throughput.

• Early exits reduce the latency without violating accuracy requirements.

• Reconfiguration improves satisfied ratio at runtime.

• Our system scales well under heavy workload.

More specifically, T2CMHE serves 6.8X more requests at low latency and T2CMHER im-

proves up to 35% satisfied ratio. Since T2CMHER comes with higher overhead, we suggest

using T2CMHE in the static environments and use T2CMHER if the environment is highly

dynamic. Note that the prototype testbed is used for demonstration. Our system is not

limited to Kubernetes-based environment. It can fit larger-scale systems as long as it

provides the ability to send arguments to configure the deployment plan of DNNs.

Nowadays, IoT sensors are deployed everywhere for human intelligent life. Analyz-
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ing the generated sensor raw data with low latency is essential for many applications,

such as accident detection. However, powerful computing devices are shared by multiple

users, meaning a system to consume these requests and deploy IoT analytics is needed.

Our system can serve DNN-based IoT analytics requests with high QoS and provide high

throughput under resource constraints. Even in the resource-limited countryside, our sys-

tem can work well, providing the users with lower queuing time and the best-effort QoS.

Moreover, in crowded intersections in the cities, surveillance cameras are used for acci-

dent detection, traffic jam detection, traffic flow analysis, and traffic violation detection,

to name a few. These requests are executed all day, or at least for those crowded hours,

for the safety of road users and traffic control. With our system considering long-duration

deployments, it is able to hold all these analysis requests and reconfigure the deployment

under the dynamic environment. Hence, the QoS of these IoT analytics is improved with

low response time. We believe our system can increase the life quality of humans.

9.1 Future Work

Last, we provide some possible extensions of our T2C system.

• Consider the cost of reconfiguration. Although reconfiguration improves the per-

formance at runtime, restarting docker images results in service downtime. One

way to avoid the service downtime is to terminate the old deployment after the new

deployment is up [36]. However, this takes twice the resources during the switch-

ing, which may be impossible for a resource-limited environment. Hence, con-

sidering the cost of reconfiguration, i.e., the trade-off between service downtime

and performance improvement can be included in the decision-making process of

dynamic reconfiguration.

• Include multiple computing devices in each infrastructure layer. We only con-

sider one computing device in one infrastructure layer in the thing-to-cloud contin-

uum. However, it is possible to put various computing devices in a layer. While

Kubernetes can label multiple computing devices with the same tag, we can keep

track of the total amount of resources of each layer and let the Kubernetes scheduler

to select the computing devices to use.

• Predict workload and adaptively adjust aggregation period. In this thesis, we

use a certain aggregation period throughout the experiments. When waiting for

the aggregation, requests are waiting in the request queue and may result in higher

queuing time under a low workload. However, when the workload increases, aggre-

gation helps to reduce the duplicated models and hence reduces the queuing time.

We report the queuing time of different aggregation periods with light and heavy
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workloads in Fig. 8.13, showing that a smaller aggregation period works better un-

der a light workload and vice versa. Therefore, it is possible to predict the future

workload and adjust the aggregation period with the consideration of the current

resource status.

• Assign priority to requests. Each request may have different degrees of emer-

gency levels. Assigning higher priorities to more urgent requests allows the system

to deploy corresponding models sooner. Moreover, it is possible to temporarily in-

crease the priority of those requests that have been waiting in the queue. By doing

so, we may avoid request starvation.
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