
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

支援多使用者六自由度線上瀏覽的盲串流系統

A Blind Streaming System for Multi-client Online
6-Degree-of-Freedom View Touring

唐盛銘

Sheng-Ming Tang

學號：110062572
Student ID:110062572

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 112年 6月
June, 2023

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

支
援
多
使
用
者
六
自
由
度
線
上
瀏
覽
的
盲
串
流
系
統

唐
盛
銘

111

Abstract

Online 6 degree of freedom (6-DoF) view touring has become increas-
ingly popular due to hardware advances and the recent pandemic. One way
for content creators to support many 6-DoF clients is by transmitting 3D con-
tent to them, which unfortunately leads to content leakage. Another way for
content creators is to render and stream novel views for 6-DoF clients, which
unfortunately incurs staggering computational and networking workloads. In
this thesis, we develop a blind streaming system as a better solution that lever-
ages cloud service providers between content creators and 6-DoF clients. The
proposed blind streaming system has two core design objectives: (i) to gener-
ate high-quality novel views for 6-DoF clients without retrieving 3D content
from content creators, (ii) to support many 6-DoF clients without overload-
ing the content creators. We achieve these two goals in the following steps.
First, we design a source view request/response interface between cloud ser-
vice providers and content creators for efficient communications. Second, we
present novel view optimization algorithms for cloud service providers to in-
telligently select the minimal set of source views while considering the work-
load of content creators. Third, we employ scalable client-side view synthesis
for 6-DoF clients with heterogeneous device capabilities and personalized 6-
DoF client poses and preferences. Our evaluation results demonstrate the
merits of our blind streaming system; compared to the state-of-the-art solu-
tion, our system: (i) improves synthesized novel views by 2.27 dB in PSNR
and 12 in VMAF on average, and (ii) reduces the bandwidth consumption by
94% on average. In fact, our blind streaming system approaches the perfor-
mance of an unrealistic optimal solution with unlimited source views, achiev-
ing performance gaps as small as 0.75 dB in PSNR and 3.8 in VMAF. We also
empirically demonstrate that our blind streaming system is not vulnerable to
3D content reconstruction algorithms such as Structure-from-Motion (SfM).

i

Acknowledgments

There are many people I appreciate during my master’s life.
First, I would like to thank my advisor Cheng-Hsin Hsu for supporting

my research during these years. He leads students with plans and tries to
make everything organized and pushes us to keep up with the schedules. I
never worry about my research and graduation because I know that once I
follow the schedule and do my best, Cheng-Hsin will try his best to pave the
way for me to chase our goals. Besides, Cheng-Hsin is a good consultant for
research and career and also an open-minded person. Whenever I discussed
my research plan with him, he always listened to my ideas carefully and tried
to give me constructive feedback. Also, everyone can negotiate our schedule
and research directions with Cheng-Hsin to strike a good balance between our
limited time and research completeness. Furthermore, he is always happy to
cover his students for international conferences and scholarship. He cares
about his students and tries to make the most of every chance that would
benefit or make the students better. For example, he wrote a cover letter for
me for a student grant to Lisbon and for my internship at MediaTek.

Second, I would like to thank the Pan Wen-Yuan foundation for giving me
a scholarship in 2022. I really appreciate their support for offering me daily
expenses so that I could focus more on my research. Also, I am thankful for
being able to go on a tour in IRTI in 2023, which helped me get to know
more about the contribution of Mr. Pan Wen-Yuan and the responsibility we
are going to take as engineers/researchers.

Third, I would like to thank MediaTek for offering me an internship op-
portunity in summer 2022. The faculties there are so nicely and always think
on my side. They allowed me to work from home so that I can save my trips
to go back and forth between our lab and the company. I learned a lot during
that internship and felt so proud of myself that I could make a contribution to
research. Among the faculties, I would like to give my special thanks to Alex
who treats me so nice and is willing to write a cover letter for me for applying
for the Pan Wen-Yuan scholarship. Moreover, I am also thankful for the help
from Tim. He is a good mentor that is so kind and pointed out a clear way for
me to go forward.

Last, I would like to thank my labmates. I won’t forget I met those friends
and shared those good days which enriched my master’s life. We are not
partners for research only, we are also partners for life, entertainment, and
mental support. I really appreciate those moments that I chat with you about
my worries, murmurs and everything, and you always pay full attention to
providing me with constructive feedback. Thanks to all of you for providing
me with such a comfortable environment with a good atmosphere. Among

ii

the labmates, I would like to give special credits to Jia-Wei Fang, Yuan-Chun
Sun, Ching-Ting Wang, and Kuan-You Lee for supporting me to write my
publication in IXR’22. Without your help, I would not have been able to
complete this work. Especially, I would like to offer my highest respect and
appreciation to Yuan-Chun Sun who helped me throughout these years. He is
so smart that he learns things quickly and is always be able to point out my
blind spots. Furthermore, he is a responsible partner, and I never worry about
the jobs I have assigned to him. I am really thankful for his help to make
everything on schedule.

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Contributions . 2
1.2 Limitations . 3
1.3 Organization . 3

2 Background 5
2.1 Head mounted display (HMD) and 6 degree of freedom 5
2.2 Virtual reality (VR) and view touring . 6
2.3 Common streaming media formats . 7

3 Related Work 9
3.1 Novel view synthesis . 9
3.2 Coverage optimization and view selection 9

4 High-Level Design 11

5 Novel View Optimization: Problem and Solution 13
5.1 Problem formulation . 13
5.2 System specification for S-CC and P-CC 14

6 Pose Predictor 15

7 Candidate Generator 16
7.1 Candidate generator for S-CC (S-Cdd) 17
7.2 Candidate generator for P-CC (P-Cdd) 18

7.2.1 Optimal number of partitions (M) 18
7.2.2 Source view transformation for all poses of each partition 20

8 Coverage Estimator 22
8.1 Scalar coverage estimator for S-CC . 22

8.1.1 First order cvg1(·) . 23
8.1.2 Second order cvg2(·) . 23

8.2 Pixel level coverage estimator cvgP (·) for P-CC 24
8.2.1 Mesh creation . 25
8.2.2 Disocclusion removal . 25

iv

9 Solver 30
9.1 Solver for S-CC . 30

9.1.1 Integer programming based solvers 30
9.1.2 Greedy based solvers . 31

9.2 Solver for P-CC . 32
9.2.1 Uniform (Uni) . 33
9.2.2 Branch & Bound (BB) . 33
9.2.3 Uniform & Modify (UM) . 34

10 Performance Evaluations 37
10.1 Evaluations of S-CC . 37

10.1.1 Testbed implementation . 37
10.1.2 Setup for S-CC . 38
10.1.3 Results for S-CC . 39

10.2 Evaluations of P-CC . 43
10.2.1 System implementation . 43
10.2.2 Experiment setup . 44

11 Conclusion 63
11.1 Remarks . 63
11.2 Attack using structure-from-motion (SfM) 63
11.3 Future work . 64

Bibliography 67

v

List of Figures

1.1 A blind streaming system. 2

2.1 An Oculus Quest Pro. 5

2.2 Illustrations for the progress of 3-DoF to 6-DoF. 6

2.3 Examples of a mesh, an RGB image and a D image. 7

4.1 Key components of a blind streaming system. 11

4.2 Operations of a blind streaming system. 11

8.1 Rendered HMD views with different coverage ratios, where: (a) 100.00%

leads to a PSNR of 43.17 dB and an SSIM of 0.99, (b) 75.06% leads to a

PSNR of 27.32 dB and an SSIM of 0.94, and (c) 50.42% leads to a PSNR

of 20.55 dB and an SSIM of 0.80. 27

8.2 Sample regression models for SSIM. 28

8.3 Steps of the quality estimator. 28

8.4 Mesh creation (dark gray mesh) by distorting an image plane mesh (light

gray mesh) along the projection lines (red lines). 28

8.5 The top figure shows the results of back-projecting the pixel points (col-

ored according to their coordinates) from the depth image, while the bot-

tom figure shows the RGB image seen from the same pose. The red circles

demonstrate where disocclusion occurs. 29

10.1 Testbed for performance evaluations. 38

10.2 Sample synthesized HMD view quality: (a) a sample subject in the one

bunny content, and (b) a sample subject in the four bunnies content. . . . 40

10.3 Sample synthesized HMD view quality: (a) for 1-bunny content, and (b)–

(c) for 4-bunny content. 48

vi

10.4 Effects of tuning cdd and different slvr . We choose cdda in each solver

as the baseline. (a) Quality difference in PSNR for one bunny content, (b)

Quality difference in SSIM for one bunny content, (c) Quality difference

in VMAF for one bunny content, (d) Quality difference in PSNR for four

bunny content, (e) Quality difference in SSIM for four bunny content, and

(f) Quality difference in VMAF for four bunny content. 49

10.5 Overall performance achieved by different novel view optimization algo-

rithms, in terms of: (a) coverage ratio, (b) PSNR, (c) SSIM, and (d) VMAF. 50

10.6 Network throughput caused by streaming selected source views. 51

10.7 Winner-loser matrices based on the coverage ratio achieved by different

algorithm variants: (a) one bunny and (b) four bunnies content. 51

10.8 Results for optimizing with respect to different metrics using UB. (a)

Quality of PSNR in one bunny scene, (b) Quality of SSIM in one bunny

scene, (c) Quality of VMAF in one bunny scene, (d) Quality of PSNR

in four bunny scene, (e) Quality of SSIM in four bunny scene, and (f)

Quality of VMAF in four bunny scene. 52

10.9 Effects of different number of source views. (a) PSNR results for one

bunny scene, (b) SSIM results for one bunny scene, (c) VMAF results

for one bunny scene, (d) PSNR results for four bunnies scene, (e) SSIM

results for four bunnies scene, and (f) VMAF results for four bunnies scene. 53

10.10Our blind streaming system implementation. 54

10.11Considered 3D content: (a) House, (b) Bigroom, and (c) Smallroom. . . . 55

10.12Sample synthesized novel views from House with default parameters: (a)

average quality from a random client, (b) and (c) are the synthesized novel

views with the highest and lowest PSNR values, respectively. 56

10.13Quality improvement with increasing N : (a) PSNR, (b) SSIM, and (c)

VMAF. 57

10.14Bandwidth consumption and distribution. The source/probing views with

N ∈ {8, 16, 24, 32, 40} are reported. 58

10.15Performance evaluation of S-Cdd/P-Cdd with N = 8 and UM solver: (a)

PSNR, (b) SSIM, and (c) VMAF. 59

10.16Performance evaluation of solvers for P-CC with P-Cdd with N = 24: (a)

PSNR, (b) SSIM, and (c) VMAF. 60

10.17Runtime distribution for a sample update window. We vary the choice of

N from 8 to 40 for each set of 3D content. 61

10.18Correlation between quality metrics and aggregated quality. 61

10.19Counts of different levels of coverage. 62

vii

11.1 3D reconstruction of House: (a) ground truth mesh and (b) reconstructed

point cloud with clear artifacts. 66

viii

List of Tables

10.1 Overall Coverage Ratio Achieved by UB with Different cdds Options . . 40

10.2 RMSE and Running Time of Different kmax 41

10.3 Quality Metrics of Different Choices of w 42

10.4 Correlation Between Quality Metrics - Aggregated Quality 47

ix

x

Chapter 1

Introduction

Virtual Reality (VR) refers to virtual representations of real life including content, objects,

avatars, and metaverses [7]. VR technologies have gained popularity in the recent years

and have attracted content creators, such as game designers, to create 3D content on top of

rendering engines, such as Unreal Engine [10] and Unity [12]. Furthermore, the metaverse

market is expected to grow to 293.71 billion USD by 2027 [20]. In order to allow Head

Mounted Display (HMD) clients to explore VR content freely as in real life, VR streaming

systems should support 6 Degree-of-Freedom (6-DoF), in which HMD clients can: (i)

move their position in three translational directions x, y, z, and (ii) rotate their orientation

along three axes roll, pitch, and yaw. We collectively refer to a pair of position and

orientation as a user pose at a moment and a time series of poses as pose trajectories. In

the rest of this thesis, we refer to clients and users interchangably.

We study 6-DoF view touring systems, which enable various new applications. For

example, online art galleries relax their geographical constraints and crowd limitations

imposed by physical constraints. By moving art pieces online, HMD clients get to enjoy

galleries anywhere in the world and can avoid unnecessary physical contact with people.

Online house touring is another application, in which potential buyers could see houses

anywhere and anytime. This saves sellers, agents, and buyers a lot of commute time,

reducing the overhead on the real-estate industry. Naive 6-DoF view touring systems

stream 3D content directly to HMD clients, which could lead to Intellectual Property (IP)

leakage. That is, malicious clients could redistribute 3D content without permission from

content creators.

To solve the IP leakage issue, we introduce blind streaming, which supports multi-

ple 6-DoF HMD clients without sending 3D content to them. Building a scalable blind

streaming system is no easy task, because its bandwidth consumption grows linearly as

the number of HMD clients increases. Therefore, we employ client-side view synthesis,

which uses multiple RGB-D source views, shot by either physical cameras or virtual ones

1

Content CreatorCloud Service Provider

Pose
Trajectories

Source Views
(RGB-D)

Views

View
Requests

6-DoF Clients

...

...

(pose)

Figure 1.1: A blind streaming system.

if in the virtual world, with different poses to synthesize a novel view for each HMD client

at any moment. The source views must be carefully selected to synthesize high-quality

novel views. For instance, a region of novel view that is occluded in all source views

would become a black hole, leading to inferior visual quality and driving HMD clients

away from the view touring system. Hence, the selection of source views to maximize the

quality of synthesized novel views is the crux for commercially-viable blind streaming

systems.

Fig. 1.1 presents three entities of a blind streaming system: (i) 6-DoF clients transmit

their pose trajectories and synthesize their novel views using the source views from cloud

service providers, (ii) cloud service providers process the pose trajectories and requests

for several source views from content creators on behalf of 6-DoF clients, and (iii) con-

tent creators keep the 3D content with them, possibly in 3D mesh or point clouds, as long

as the format can be rendered, and generate source views satisfying requests from cloud

service providers. To the best of our knowledge, the design of blind streaming systems

has not been explored. Our prior study [38] on blind streaming has several limitations in

our prototype: (i) insufficient information for cloud service providers to select the opti-

mal source views, (ii) heavy workload on content creators for computing coverage ratio

between two pose trajectories, and (iii) lower novel view quality due to the insufficient

computation capability of cloud service providers. To eliminate these limitations, we

propose to: (i) transmit pixel-level auxiliary data from content creators to cloud service

providers, (ii) offload some workload from content creators to cloud service providers,

and (iii) synthesize novel views for individual 6-DoF clients.

1.1 Contributions

This thesis makes the following contributions:

1. (Ch. 4) We propose a content-creator-friendly blind streaming system that requires

few resources from content creators and scales to many 6-DoF clients by properly

2

redistributing networking and computational workloads.

2. (Ch. 8) We develop a mechanism to estimate the coverage map, which tells whether

individual pixels are covered or not, instead of a scalar coverage ratio between two

RGB-D source views without accessing the original 3D content. To the best of our

knowledge, our mechanism is the first of its kind in the literature.

3. (Ch. 5) We propose a suite of heterogeneous algorithms to select optimal source

views. These algorithms exercise a trade-off between computational complex-

ity and selection optimality. The best-performing algorithm improves the average

novel view quality by 2.27 dB in Peak Signal-to-Noise Ratio (PSNR) [14] and 12

in Video Multi-Method Assessment Fusion (VMAF) [26], compared to our prior

work [38].

1.2 Limitations

In the following discussion, we assume that novel view synthesis runs in real-time on

HMD clients for achieving seamless experience in the VR world. State-of-the-art solu-

tions are ready to be employed and demonstrated by a proof-of-concept project, Freeport

Player [39] from Intel. However, Freeport player itself is not open-source; thus we of-

fload novel view synthesis to a workstation to achieve the same effect. Furthermore, we

also assume that lower network layers have implemented transport level features of zero

packet loss, packet retransmission, or data recovery on packet loss. Second, we also as-

sume that our system runs in a static network topology with sufficient bandwidth. Or,

equivalently, proper congestion control algorithms have been employed to achieve the

same effect. For content specifications, we design and evaluate our systems for static

content as a starting point of blind streaming systems. Static content is less complex to

analyze and implement, though our systems can be generalized to dynamic content by

considering the dynamic ones as quasi-static content. That is, we consider the content

static at the moment we are updating the source views.

1.3 Organization

We introduce inspiration from the IP leakage problem and applications for blind stream-

ing systems, and summarize the contributions along with the challenges and limitations in

Ch. 1. In Ch. 2, we give a high level overview of the concepts of head mounted displays

and virtual reality, 6-DoF view touring, and common streaming media format including

RGB-D images and meshes. We survey the literature and summarize prior work related

3

to either some components in a blind streaming system or some concepts that inspire our

design in Ch. 3. Then, we introduce Ch. 4 which contains high-level design of the blind

streaming system framework in terms of the three entities, 6-DoF client, cloud service

providers, content creators, and their interactions. We also illustrate the time sequence

and key components of how a blind streaming system works. Then, we formulate the

blind streaming problem into a novel view optimization problem in Ch. 5. In the fol-

lowing chapters, we introduce each component in detail. We introduce the components

including pose predictor, candidate generator, coverage estimator and solver in Ch. 6,

Ch. 7, Ch. 8 and Ch. 9, respectively. Next, we introduce how we implement the blind

streaming system prototype and evaluate system performance in terms of view quality,

run time, and bandwidth consumption in Ch. 10. Last, we summarize the whole thesis

and present that our work survives under the attack of Structure-from-Motion (SfM) in

Ch. 11.

4

Chapter 2

Background

For better understanding of readers from different fields, we give background knowledge

on the concepts of head mounted displays, 6-DoF, virtual reality, view touring applica-

tions, and common streaming media formats used in the thesis.

2.1 Head mounted display (HMD) and 6 degree of free-

dom

Figure 2.1: An Oculus Quest Pro.

Head mounted displays (HMD) are the devices for people to directly wear on their

faces, which is why they are called head mounted. HMDs offer immersive experiences

because our vision is basically filled with the built-in displays to block stimulus from the

5

outside world. Several manufacturers have produced HMDs, and an example is shown in

Fig. 2.1. The demo sample is newly released by Meta [18]. Basic components include:

1. An accelerometer for measuring its acceleration in the 3D world.

2. A gyroscope for measuring its speed of rotation.

3. A Camera for detecting the distance from a user to an obstacle and for the user to

see through to the outside world to ensure safety.

4. An embedded monitor to display the user interface or applications.

5. Network interfaces for wireless communication and experience.

Most of these devices are in the form of all-in-one, which means the HMD itself contains

the Android operating system and is a complete entity capable of running Android appli-

cations. On the other hand, some of them are coupled with a high-end personal computer,

which acts as an external device. Researchers prefer the former ones because they are rel-

atively easy and free to develop applications. Modern HMDs operate in 6 degree of free-

dom (6-DoF) instead 3-DoF. Earlier products only operate in the rotational axes of roll,

pitch, and yaw anchored at the x, y, and z axes respectively in the right-hand-convention.

That means users can only rotate their heads, and their translational movement will be

ignored and thus they are prone to motion sickness. Instead, 6-DoF supports another 3

translational axes of x, y, and z, which enables a more completely immersive experience.

The main difference is illustrated in Fig 2.2, where 3-DoF+ means the combination of 3

rotational axes plus one translational axis.

3-DoF 3-DoF+ 6-DoF

0
○

0
○

0
○

Figure 2.2: Illustrations for the progress of 3-DoF to 6-DoF.

2.2 Virtual reality (VR) and view touring

With advances in HMD technology, virtual reality (VR) has become popular in recent

years. Virtual reality is a computer-generated virtual world taht aims to provide immersive

6

experience for HMD users. Many of the applications have arisen in the market including

VR gaming, VR viewing and some engineering fields like remote control. In this thesis,

we will focus on the VR view touring applications in which users are free to move around

and explore the VR world. We chose them because they are common and fundamen-

tal for VR streaming applications. Research on VR view touring will also benefit other

streaming-based applications because the skills and algorithms can be easily extended to

other fields.

2.3 Common streaming media formats

Figure 2.3: Examples of a mesh, an RGB image and a D image.

In this section, we are going to introduce two common streaming media formats,

namely meshes and images. Some examples are shown in Fig. 2.3.

Meshes are 3D models consist of sets of vertices and faces describing connections

between vertices. Each vertex can be described by their position in x, y, and z, their col-

ors in R, G, and B, and optionally their normal vectors for calculating different lighting

conditions. Then, a flat surface described by a face will be interpolated by the 3 vertices

belonging to the flat surface. Furthermore, meshes are so popular because affine transfor-

mation of meshes can be described by single matrix multiplication, which is efficient and

can be easily parallelized by graphics processing units (GPUs). Though meshes are effi-

cient to manipulate, obtaining meshes implies obtaining the whole 3D geometry, which is

not preferred in blind streaming.

On the other hand, images are even simpler to manipulate. Images contain a set of pix-

els normally arranged horizontally and vertically, and each of the pixels contains value(s)

describing their attributes. There are two common types of images, red-green-blue(RGB)

and depth(D) images. RGB images describe color information by filling the values de-

scribing the strength of the three colors. On the other hand, D ioamges describe the depth

values, or equivalently, the distance starting from the origin of the camera through the

pixel to the physical entity. Note that RGB images do not necessarily describe the geom-

etry seen from the camera, though there are works on inferring depth images from RGB

images. However, D images actually leak the partial geometry seen from the camera.

7

Combining both, RGB-D images are pairs of the RGB and D iamges describing the full

information of a physical entity from some aspects, and some novel view synthesizers

could use this information to infer the view they have never seen. Images are natural for

HMDs because applications have to eventually display images to the users. Moreover,

image compression is mature so that transmission is both bandwidth and computationally

efficient. Image manipulation can also be parallelized by affine transformation on GPUs.

8

Chapter 3

Related Work

Although blind streaming is a totally new concept, the following prior studies inspired

our design.

3.1 Novel view synthesis

View synthesis has been done with different source view formats. Hladky et al. [13]

invented a new 3D source view format to efficiently generate all novel views within a pre-

defined box. However, their method requires 3D content and leads to IP leakage. Choi

et al. [8] generalized single-value depth prediction from multiple cameras to a distribu-

tion for better novel view synthesis. Park et al. [28] presented a transformation-grounded

image generation neural network for novel view synthesis from a single image. Attal et

al. [2] transformed stereo 360◦ videos into multi-sphere images to enable 6-DoF synthesis

in the vicinity of the sphere centers. MPEG developed an Immersive Video codec, called

MIV [5], for novel view synthesis. It packs source views into atlases by removing du-

plicated content, and then employs a view synthesizer, such as RVS [19] to render novel

views from multiple RGB-D source views. Our blind streaming system also employs RVS

for novel view synthesis, although other synthesizers can be readily adopted.

3.2 Coverage optimization and view selection

Optimal source view selection is largely driven by coverage optimization among possible

poses. In the literature, Wang et al. [43] designed an algorithm for arranging a fleet of

drones to stream sports events by solving a matching problem between drones and possi-

ble poses. Suresh et al. [36] divided the terrain into 2D grids and used greedy algorithms

to perform voting between grids and camera poses. Munishwar and Abu-Ghazaleh [24]

maximized the number of covered targets given a fixed number of cameras. Zhang et

9

al. [46] proposed an algorithm to compute the pose trajectories of multiple cameras to

ensure full coverage of a set of 2D points. Peng and Isler [30] designed an algorithm

for computing optimal flying paths for aerial 3D reconstruction. Although the above

studies [24, 30, 36, 43, 46] addressed the coverage optimization problem with different

assumptions, their target is 3D content (re)construction. Hence, they are overkills for

synthesizing novel views for 6-DoF clients in blind streaming systems.

There are also light-weight solutions for view selections, e.g., Hänel et al. [16] for-

mulated the 6-DoF camera placement problem into a differentiable objective function

interpolated from sampled objective function values, which could be efficiently solved

using block-coordinate ascent. However, samples of the objective function are not di-

rectly available in blind streaming systems. Bonatto et al. [4] developed a system that

enables 6-DoF navigation in real-time and searches for the optimal number of possible

poses to meet the real-time requirement. As they assumed that the possible poses were

given, their solution is not applicable to blind streaming systems. Tang et al. [38] is prob-

ably the closest work to this thesis. They proposed view selection algorithms for novel

view synthesis given mutual coverage ratio in scalar between poses. They used vector and

matrix operations to approximate set operations such as unions and intersections. Though

they attempted to analytically bound their coverage ratio, their solution did not scale well

when the problem size is large. This limitation results in inferior visual quality, as we will

report in Ch. 10.

10

Chapter 4

High-Level Design

Pose
Trajectories

Novel View Optimization Algorithm

6-DoF Clients

Novel
Views

HMD

View
Synthesizer

Probing
View

Requests

Probing
Views

Source
View

Requests
(poses)

Source
Views

Source
Views

Cloud Service Provider

SolverCandidate
Generator

Candidates
Coverage

Estimation
Predicted

Trajectories Coverage
Estimator

Pose
Predictor

Content Creator

3D
Content

Renderer

Figure 4.1: Key components of a blind streaming system.

6-DoF
Clients

Cloud

Service

Provider

Probing
View

Requests

Pose
Trajectories

Source
View

Requests

Probing

ViewsUpdate
Window

Content
Creator

Pose
Trajectories

Source Views

Pose
Predictor

Candidate
Generator

Solver

Coverage
Estimator

Figure 4.2: Operations of a blind streaming system.

In this chapter, we present the key components and operations of our blind streaming

system. Fig. 4.1 gives the key components of the three entities. 6-DoF clients consist of

a view synthesizer, which synthesizes received RGB-D source views into novel views for

11

the current poses. Having a local view synthesizer allows 6-DoF clients to render at di-

verse frame rates depending on their hardware specifications, and mitigates the response

delay due to network latency. Cloud service providers receive pose trajectories from 6-

DoF clients and are responsible for selecting RGB-D source views. Without prior knowl-

edge of 3D content, cloud service providers submit requests for probing views asking for

low-resolution depth images at “carefully chosen” poses. Different from high-resolution

RGB-D source views, probing views allow cloud service providers to “probe” the geome-

try of the 3D content, so as to quantify the overlapping “degree” between any two possible

camera poses.

The objective of view selections is to maximize the overall quality of novel views

across all 6-DoF clients. We refer to this problem as the novel view optimization problem,

which is solved by four components: (i) a pose predictor predicts future pose trajectory

within a short update window (usually a few seconds) using historical pose trajectories,

(ii) a candidate generator concatenates all client pose trajectories into a long one, divides

it into several partitions of poses, and transforms each partition into a representative pose

as a source view candidate; by doing so, the candidate generator reduces the problem size,

(iii) a coverage estimator retrieves probing views from content creators and computes

mutual coverage maps of every pair of source view candidates, and (iv) a solver solves

a mathematical optimization problem to select source views for 6-DoF clients. Note that

content creators never transmit 3D content to cloud service providers to avoid IP leakage.

Instead, content creators generate probing and source views using a renderer to satisfy

the requests from cloud service providers. The renderer is implemented by combining

a rendering engine [10, 12] with standardized video codecs, like MPEG H.264 [31] and

MIV [22].

Fig. 4.2 gives the operations of our blind streaming system. We set the update win-

dow to be 50 frames, about 1–2 seconds, for fast adaptations, if not otherwise specified. In

each update window, the following events occur: (i) the 6-DoF clients transmit their pose

trajectories to the cloud service provider, (ii) the cloud service provider invokes the pose

predictor and candidate generator, and coverage estimator, (iii) it also requests probing

views from the content creator, (iv) upon getting source view candidates and receiving

probing views, the cloud service provider invokes the coverage estimator to compute cov-

erage maps, then the solver solves an optimization problem for source views, (v) the

content creator sends the rendered source views through the cloud service provider to the

6-DoF clients, and (vi) the 6-DoF clients synthesize their novel views. After the current

update window, the 6-DoF clients move into the next update window.

12

Chapter 5

Novel View Optimization: Problem and
Solution

In this chapter, we formulate and solve the novel view optimization problem.

5.1 Problem formulation

Our goal is to optimize the summation of synthesized view quality for all 6-DoF clients.

There are several aspects to be considered. First, to avoid overloading the cloud service

provider and content creator, we set the budgets of: (i) source view requests to be N

and (ii) probing view requests to be M . Second, we adapt the source views in recurring

update windows. More specifically, we let T be the time slots of the upcoming update

window, ST be the source views for T , PT be the probing views for T , U be the set

of 6-DoF clients, and vu,t be the pose for a client u ∈ U at time slot t ∈ T . Last, to

estimate synthesized view quality, we use ql(·) to denote the quality model predicting the

synthesized view quality seen at vu,t by considering the source views ST and the probing

views PT . We write the novel view optimization problem as a high-level formulation:

maximize
ST

∑
u∈U

∑
t∈T

ql(vu,t,ST ,PT)

subject to : |ST | ≤ N ;

|PT | ≤M,

(5.1)

However, not all content creators are willing to serve requests of probing views. We

categorize the content creators into 2 groups. The first group consists of the content cre-

ators that are willing to serve only scalar coverage ratio among poses, called S-CC, while

the other group consists of those who are willing to serve probing views, called P-CC.

Scalar coverage ratio means the scalar representing the ratio of covered area relative to

the whole image frame. In the following chapters, we will describe each component in

13

Fig. 4.1 for S-CC and P-CC respectively since we will leverage probing views and formu-

late the problem into a more exact form compared to the scenario that we only have scalar

coverage ratio. We name the components for S-CC with prefix S- while those for P-CC

with prefix P- to distinguish both more clearly if dedicated components must be specified

for different kinds of content creators. We will add more details to the formulation and

solve it in the following chapters.

5.2 System specification for S-CC and P-CC

Since there are two groups of content creators, we specify the components for both groups

and give an overview for avoiding ambiguity in this section.

1. Pose predictors are shared components for both groups because it only considers

client pose trajectories.

2. Candidate generators are dedicated. We have S-Cdd for S-CC, which only gener-

ates candidates when a new pose cannot cover as much as expected. On the other

hand, we have P-Cdd for P-CC, which generates candidates by considering the

workload for content creators and cloud service providers.

3. Coverage estimators are dedicated. We have cvg1(·) and cvg2(·) for S-CC, which

use vectors and matrices as numerical approximation. On the contrary, we have

cvgP (·) for P-CC, which computes pixel level coverage estimation with the help of

probing views.

4. Solvers are dedicated. We have C1G, C2G, C2I solvers for S-CC because it for-

mulates coverage estimation with approximation in integer programming format.

On the other hand, we have Uni, BB, UM solvers for P-CC which solve problems

iteratively by leveraging the monotonic increasing property in the formulation.

14

Chapter 6

Pose Predictor

The pose predictor aims to predict client pose trajectories for the next update window.

Though we adapt a pose predictor in the system design, it is actually optional in both

groups of content creators. The main difference is that once the pose trajectories could

be predicted, the source view update calculated by the cloud service provider can be done

beforehand to compensate for the extra latency. That is, the extra latency from the time

that pose trajectories are issued from the 6-DoF clients to the time that their displays

are refreshed could be compensated for, and this kind of latency is called motion-to-

photon latency. Higher latency often induces cybersickness among HMD clients and thus

should be prevented if possible. However, the pose predictor plays an important role in the

system because it basically determines the quality of inputs to the following components.

Inaccurate pose trajectories could lead to suboptimal source view updates and thus have

a negative impact on the system performance. The pose predictor can be built on prior

arts, such as the Kalman filter based solution from Serhan et al. [11] and the long short-

term memory (LSTM) solution from Hou et al. [15]. Since this is a well-studied problem,

we assume a perfect pose predictor is adopted to exclude any unnecessary quality drop

induced by the pose predictor.

15

Chapter 7

Candidate Generator

The design intuition of the candidate generator is that we want to formulate the novel view

optimization problem as stated in Eq. 5.1 into a selection problem instead of a generation

problem. A selection problem is usually easier to analyze compared to a generation prob-

lem because it only needs to focus on the limited solution space. That is, the selection

of any number of source views is from the pool of source view candidates. However, the

size of the solution space is crucial because a smaller space leads to suboptimal results,

which is equivalent to undersampling of the pose trajectory, while a bigger one may make

it hard to find the optimal solution within such a large space because we need to spend

much more effort identifying the optimal solution from a huge number of solutions. There

are additional reasons for having a candidate generator. First, in this stage, the candidate

generator aims to provide an appropriate solution space for the rest of the components.

Second, to cope with the vast 6-DoF search space of source view candidates, we decided

to select or generate some poses from pose trajectories. The reason why we select or

generate candidates from the pose trajectories themselves is that optimal source views are

more likely to be shot near the poses. This implication is intuitive because the source view

shot at a pose at least covers itself and those deviating little from the pose. The candidate

generator works according to the following steps: We let M be the number of partitions.

1. The candidate generator concatenates all client pose trajectories into a single one

with P poses in total.

2. It then divides the concatenated pose trajectory into M partitions evenly, and trans-

forms each partition into a source view candidate (leading to M source view candi-

dates, thus M probing views in the context of P-CC detailed in later chapters).

In the rest of this chapter, we propose two versions of candidate generator, selection-based

S-Cdd and generation-based P-Cdd for S-CC and P-CC respectively.

16

We transform candidates from the partitions instead of enumerating some from the

free 6-DoF space because optimal source views are usually closer to the client trajecto-

ries. In other words, randomly selecting the source view candidates is computationally

inefficient.

7.1 Candidate generator for S-CC (S-Cdd)

To consider pose trajectories from multiple HMD clients, we concatenate all the pose tra-

jectories into a long pose trajectory. Next, we introduce a temporal downsampling factor

ds on the concatenated pose trajectory. A properly selected ds allows us to speed up can-

didate generation without scarifying the candidate quality too much. To select a pose as

a source view candidate from the pose trajectories, we have to determine whether select-

ing a pose e as a source view candidate leads to enough contributions to the synthesized

novel view under the situation that a set of poses E = {e0, e1, . . . } has been chosen as

candidates. We use function overlap(E , e) to denote the coverage ratio of e on E , which

is defined as the fraction of meshes visible at any pose in E that can also be viewed from

the pose e. With overlap(E , e), we cut the concatenated pose trajectory into multiple

partitions, where each partition consists of a set of consecutive poses with high mutual

coverage ratios. More specifically, we set the first pose in the concatenated pose trajec-

tory as the reference pose e and scan through the following poses. For each pose e′ in

the scan, we compute overlap(E , e′) and create a new partition if overlap(E , e′) < thres ,

where thres is an empirically chosen threshold. The procedure continues until we reach

the end of the pose trajectory. The last pose in a partition is used as the reference pose for

identifying the end of the next partition.

The next design decision is how to select a representative pose from each partition to

be a source view candidate. Let Ae1,e2 be a partition that starts from pose e1 to e2. We

consider three design alternatives:

cdds(Ae1,e2) ∈ {cddsl(Ae1,e2), cddsm(Ae1,e2), cddsa(Ae1,e2)},

where: (i) cddsl(Ae1,e2) selects the last pose of Ae1,e2 , (ii) cddsm(Ae1,e2) selects the mid-

dle pose withinAe1,e2 , and (iii) cddsa(Ae1,e2) selects the pose with a coverage ratio that is

closest to the average coverage ratio of all the poses inAe1,e2 . Among these three options:

cddsl opts for the most significant view change, cddsm picks the moderate one, and cddsa
goes for minimal mean squared error for coverage error estimation. Algorithm 1 gives the

pseudocode of our candidate generator. The algorithm has a polynomial time complexity

of O(P). We define len[e] as the number of frames in the partition associated with source

view candidate e.

17

Algorithm 1 Candidate Generator

F ← concat() ▷ concatenate all pose trajectories

F ← downsample(F , ds) ▷ down-sample concatenated pose trajectory F
e← first pose in F
E = {e} ▷ current set of candidates, initially contains the first view

for e′ ∈ F do
if overlap(E , e′) ≤ thres then
E ← E ∪ cdds(Ae,e′)

e← e′

end if
end for
return E

7.2 Candidate generator for P-CC (P-Cdd)

We first concatenate all client pose trajectories into a single one with P poses in total. The

P-Cdd candidate generator aims to control the workload on the cloud service provider.

The workload can be split into: (i) candidate generation workload, which is a function

of the number of partitions (= no. probing views) M and the number of poses P , and

(ii) coverage estimation and solver workload, which is adjustable by a control knob r of

the cloud service provider. Here, r is a ratio of computational complexity normalized to a

baseline, or say unit workload, denoted by m = N/P . That is, the cloud service provider

can trade-off the running time and optimality of the coverage estimator and solver by

adjusting r. Higher r values lead to better synthesized view quality at the expense of

higher computational complexity on the cloud service provider. The total workload h can

be written as:

h =
M

P
+ r · N

P
=

M

P
+ rm, (7.1)

where the two terms represent the workloads from the candidate generator and coverage

estimator/solver, respectively. Last, we let h with a default value of 0.15 be the computa-

tional complexity budget of the cloud service provider. The problem we have in-hand is:

Given N , h, and r, find the optimal M value and transform each partition into the most

representative source view candidate. We detail these two steps in the following.

7.2.1 Optimal number of partitions (M)

The objective of this step is to maximize the probability of successfully selecting the

optimal N source views. We refer to this as success probability, and model it conserva-

tively using a random arbitrary-selection policy since we have no access to 3D content

18

and client statistics. This policy consists of two stages: (i) M source view candidates

are selected from P poses, where the optimal N source views are among them, and (ii)

the optimal N source views are selected out of the M source view candidates. To write

down the success probability, we introduce a few additional symbols. We let l = rm be

the coverage estimator/solver workload, if not otherwise specified and k = M/N be the

redundant factor between the number of candidates (equivalent to the number of probing

views) and the number of source views. Some manipulations reveal that 1 ≤ k ≤ h/m as

long as l ≥ 0.

We detail the first stage of random arbitrary-selection policy in this paragraph. In this

analysis, we assume that the optimal N source views are always among the P ones. The

”random” means that, in the first stage, we select M source view candidates from the pool

of P poses at random. That is, each pose has equal probability of being chosen as the M

source view candidates. To include N optimal views in the M candidates, we focus on the

choice made by the N optimal views. Without loss of generality, we assume that the P

poses are selecting their seats out of P seats and the final M candidates will be those who

sit in the first M seats. Then, the event of M candidates including the optimal N source

views occurs if all N optimal source views select one of the first M seats, regardless of

the order of choosing.

Now, we can write the probability of the first stage as:

M(M − 1) · · · (M − (N − 1))

P (P − 1) · · · (P − (N − 1))
≥ (M − (N − 1))N

PN
= (

mP (k − 1) + 1

P
)mP . (7.2)

For the second stage, we are going to make a selection of an arbitrary number of source

views out of the M candidates under the assumption that the N optimal views are included

in the M candidates. Instead of analyzing the probability of optimally selecting exactly

the N optimal views out of M candidates, we analyze the arbitrary number of selections

of choosing 0, 1, . . .M source views out of M candidates. Imagine that the selection is

done by allowing each candidate to express its willingness to be the final source view or

not. If a candidate is willing to be the final source view, it would express a “yes”. The

selection will include only those who are willing to express “yes”. The reason why we

use an arbitrary number of selections is because we want to exclude the “answers” from

the (M −N) candidates that are not optimal. The “answers” from the (M −N) ones are

not important because we only focus on whether all the N optimal ones say “yes”. We

enumerate two examples for better understanding this probability. If the (M−N) ones all

express “yes”, they only shift the probability of selections containing less that (M − N)

source views to 0. At the other extreme, if the (M −N) ones all express “no”, they shift

the probability of selections containing more than N source views to 0.

Another assumption is that as l increases, the probability of those N optimal source

19

views which say “yes” will increase linearly while the (M − N) suboptimal ones are

left unaffected. This effect is designed to be consistent with the condition that higher

workload leads to a higher probability of success. Then, for the second stage, the chance

that an optimal source view is selected grows linearly as the workload l grows. We know

that the chance is: (i) 1/k for l = 0, i.e., the cloud service provider spends no effort to

make a selection, and (ii) 1 for l = mk, i.e., the cloud service provider has examined all

source view candidates, and thus it always makes an optimal selection. For mathematical

tractability, we consider the chance to be 1 when l = m(k − 1) in the following analysis.

First, we approximate the chance in l ∈ [0,m(k − 1)] using a linear function:

1/k + (1− 1/k)(h−mk)/m(k − 1). (7.3)

So far we have analyzed the probability of saying “yes” by an optimal source view.

Next, we extend our analysis to the condition that all N optimal source views express

“yes” by further assuming that the probability of saying “yes” is independent of each

other. Then, the probability of all N optimal source views expressing “yes” is:

(
1

k
+

(1− 1
k
)(h−mk)

m(k − 1)
)mP . (7.4)

Considering that the two stages are independent, the success probability can be written

as the multiplication of Eq. (7.2) and Eq. (7.4), i.e.:

(m(k − 1) +
1

P
)mP (

1

k
+

(1− 1
k
)(h−mk)

m(k − 1)
)mP . (7.5)

To maximize the success probability, we solve the following formulation:

maximize
k

(m(k − 1) +
1

P
)mP (

1

k
+

(1− 1
k
)(h−mk)

m(k − 1)
)mP

subject to : 1 ≤ k ≤ h

m
.

(7.6)

After solving its derivatives, there exists a unique local maximum with respect to k under

the constraints.

k =

√
(m+ h)(mP − 1)

m2P
≈

√
m+ h

m
as P →∞. (7.7)

7.2.2 Source view transformation for all poses of each partition

Upon determining the optimal M = kN , we round it to a multiple of |U| for fairness to

all 6-DoF clients. We equally split the concatenated pose trajectory into M partitions, and

transform each partition into a representative source view candidate, cdd, as follows. We

write each pose as a pair of position p = (x, y, z)T ∈ R3 and orientation in quaternion

20

q = (qx, qy, qz, qw)
T ∈ S3, where S3 denotes the unit 3-sphere. Note that we opt for

quaternion to avoid mathematical singularity and rotation order ambiguity compared to

Euler angles. Next, cdd of a partition of L poses is transformed by: (i) computing the

vector average among p in a partition, and (ii) solving a maximum eigenvalue problem of

q. In particular, we solve the following problem for a unit quaternion [21]

cdd = (p, q) = (
1

L

L∑
i=1

pi, argmax
q∈S3

{qT (
L∑
i=1

qiq
T
i)q}), (7.8)

where (pi, qi) denotes the ith pose in this partition.

Note that we also tried motion-based candidate generation. Our prior test revealed

that the motion-based implementation cut the client pose trajectories into more than 3

times the optimal number of partitions (or equivalently the number of candidates). Fur-

thermore, the runtime is at least 10 times longer than our proposed implementation. Such

implementation is not efficient enough at this stage. In the following discussion, we omit

the case of motion-based candidate generator.

21

Chapter 8

Coverage Estimator

Recall that the candidate generator produces M source view candidates. Let s be an M -

dim Boolean index vector denoting a selection of M candidates, where the ith element is

1 iff the ith candidate is chosen.

8.1 Scalar coverage estimator for S-CC

We build a quality estimator to predict the synthesized quality of HMD view at an ar-

bitrary pose e using s without carrying out computationally-demanding view synthesis.

The quality estimator consists of two steps. First, we build a coverage function cvg(s, e)

that estimates the coverage ratio of using s to synthesize e. We use coverage ratio as

an initial approximation of synthesized HMD view quality, as a lower coverage ratio in-

dicates more information loss during warping. Second, we develop a quality function

qls(g) to map coverage ratio g to a quality metric, such as PSNR (Peak Signal-to-Noise

Ratio) [14], SSIM (Structure Similarity Index) [14], VMAF (Video Multimethod Assess-

ment Fusion) [26], etc.

A naive way to construct the coverage function cvg(s, v) is to synthesize each view e

with all 2M−1 possible s, inQ, for a lookup table. Such an exhaustive approach is clearly

not feasible. Thus, we opt to estimate the coverage ratios with regression analysis based

on a limited number of modeling samples with all s having up to kmax 1s, where kmax

represents the maximal number of virtual cameras in these modeling samples. That is, for

each 3D content, we synthesize each HMD view e using all s ∈ Qkmax = {s | 1Ts ≤
kmax} ⊆ Q. Q denotes the set of s having up to M 1s, while Qkmax denotes the set of s

having up to kmax 1s. The 1 is a column vector with all 1s, and its dimension depends on

its context. We fit these modeling samples to a coverage estimator for content-dependent

model parameters. One tricky question is to determine the HMD view quality of any s

with more than kmax 1s: the intersections/unions among source view candidates were not

22

considered, which may lead to estimation errors. We next present two alternative coverage

estimators to control the errors. These two alternatives, first-order coverage estimator and

second-order coverage estimator, aim to achieve different degrees of error control with a

diverse number of model parameters.

8.1.1 First order cvg1(·)

For the first-order coverage estimator cvg1(s, e), we compute the best column vector be
of dimension M such that bTe s = unione(s), where unione(s) is a function that returns

coverage ratio from s to a source view candidate e. Due to the limited number of param-

eters, we can only minimize the squared error of all considered s. Particularly, to choose

an optimal be, we solve a Quadratic Programming (QP) problem:

b∗e = argmin
be

∑
s∈Qkmax

[bTe s− unione(s)]
2

subject to: 0 ≤ be ≤ 1,

(8.1)

for the best b∗e.

8.1.2 Second order cvg2(·)

For the second-order coverage estimator cvg2(s, e), we introduce more parameters in

an M by M matrix Be, with the aim of reducing the estimation error of intersection

and union operations on up to two sets. We hope that the matrix will have the property

sTBes = unione(s). However, the number of parameters in Be is not enough to fit all

considered s. Hence, we solve the following nonlinear optimization problem:

B∗
e = argmin

Be

∑
s∈Qkmax

[sTBes− unione(s)]
2, (8.2)

for the best B∗
e .

Next, we empirically map the coverage ratio to quality metrics by regression with

modeling samples along with rendered HMD views using 3D content with four bunnies

(more detail on the content in Sec. 10.1.1). We first run the candidate generator on the

aggregated pose trajectory. We randomly select five 2-sec update windows. For each up-

date window, we synthesize the HMD views of all candidates with multiple random s,

where 1Ts ∈ {1, 2, . . . 7}. Particularly, for each number of selected candidates 1Ts, we

randomly select 1,000 s following the recommendation [6]. We also render the corre-

sponding ground truth HMD views at all candidate poses for each s. Last, we calculate

the coverage ratios and quality values of all poses of individual s. The results are used as

modeling samples in the following regression analysis for a quality function qls(g).

23

We adopt PSNR and SSIM as quality metrics in our analysis, while the same pro-

cedure can be applied to other metrics. We plotted the mappings between the coverage

ratio and considered quality metrics, and observed a positive and nonlinear relationship

between them. To build a regression model, we try a wide range of function families,

including the tangent hyperbolic, exponential function, polynomial, and arc tangent func-

tions. We write the best-fit function between the coverage ratio and quality metric as

fqls(g), where g is the coverage ratio.

Initially, we planned to directly use fqls(g) for the quality function qls(g). However,

we soon realized that doing so would lead to large errors when the coverage ratio ap-

proaches 0, which is counter-intuitive. To avoid such behavior, we developed the follow-

ing approach for a fit with the constraint: qls(0) ≈ 0. In particular, we introduce a step

function:

s(g) = 1/(1 + e−2xg),

with large enough scalar x. Next, we bind fqls(g) by multiplying it with a factor related

to the step function and adding an offset to bring the quality estimate to 0 at g ≈ 0.

In addition to being more consistent with our intuition, adding these two constraints is

equivalent to compensating for the estimation error at g /∈ [0, 1]. That is, we relax g to

take values outside [0, 1], which may expand our selections of solvers, as discussed later.

With the above constraints, we have the final quality function:

qls(g) = (1− s(g − 1)− s(−g))fqls(g) + s(g − 1)fqls(1).

We name the regression model from the coverage ratio to PSNR and SSIM as fpsnr(g) and

fssim(g), respectively; and the corresponding quality models as qlspsnr(g) and qlsssim(g).

Last, for the sake of presentation, we also write fcvg(g) and qlscvg(g) if the coverage ratio

is used to approximate the quality metric. Fig. 8.2 illustrates the nonlinear correlation

between the coverage ratio and quality metrics. We show sample fitting curves to SSIM

in Fig. 8.2, in which the dashed curve demonstrates the effects of constraints approaching

0 and 1. We note that, for clarity, the dots in the figure represent the average quality

values among all samples in 1% bins, as there were in total 60,225 modeling samples.

The precise regression models are:

fpsnr(g) = 11.2 + 37.9g − 77.7g2 + 64.3g3,

and

fssim(g) = 48.8tan−1(26.4g + 43.7)− 75.0.

The corresponding quality functions qlspsnr(g) and qlsssim(g) can be readily derived.

24

8.2 Pixel level coverage estimator cvgP (·) for P-CC

Modern view synthesizers [2,5,8,13,19,28] do not offer a closed-form quality estimation

for novel views. Therefore, we develop the coverage estimator to compute a Boolean

coverage map C1,2 representing which grids of the novel view seen from cdd2 are covered

by cdd1, where cdd1 and cdd2 are two source view candidates. The coverage maps have a

resolution WxH, that is 1/16 of novel views if not otherwise specified. In coverage maps,

1s represent covered, while 0s represent not covered. Particularly, the coverage maps of

all pairs of source view candidates are computed by the depth images of probing views

of these candidates, which have a resolution WxH. More precisely, each coverage map is

computed in the following steps as summarized in Fig. 8.3:

1. Sending probing requests for probing views d1 and d2 of cdd1 and cdd2.

2. Creating 3D meshes m1 from d1.

3. Rendering a depth image d1,2 of m1 seen from cdd2.

4. Removing disocclusion of d1,2.

5. Outputting C1,2.

Most of the steps are self-explanatory, except mesh creation and disocclusion removal.

We detail them below.

8.2.1 Mesh creation

This mesh creation module is used for creating a 3D content mesh to represent the partially

revealed 3D content by a source view candidate and its corresponding probing view. The

illustration of mesh creation is in Fig. 8.4. We use meshes because of the following

benefits: (i) it is efficient to process in common 3D rendering engines like Open3D [47]

and OpenGL [44], (ii) linear interpolation of geometry between vertices is automatically

implemented, and (iii) coordinate transformation is efficient because it requires only one

matrix multiplication. With d1, we create 3D meshes m1, by distorting an image plane

mesh with WxH vertices as our geometry proxy of the revealed 3D content. The image

plane meshes are first placed 1 unit away from the viewing direction of cdd1. Then,

we distort the meshes by moving the vertices along the projection lines according to

their distances inferred from the probing view d1 without breaking the edges. Here, the

projection lines are the lines connecting cdd1 and the mesh vertices.

25

8.2.2 Disocclusion removal

We need to identify and remove the disocclusion grids in d1,2. We build the C1,2 by initial-

izing a matrix of dimension WxH with all 1s, and set those grids with disocculsion to 0.

This is done by first computing the absolute difference map dabs = |d1,2 − d2|. There are

three sources of non-zero values, called inconsistency, in dabs: (i) d1,2 has infinite depth

values because those grids are not covered by cdd1 at all, (ii) rendered d1,2 suffers from

depth re-projection error because d1 has a reduced resolution, and (iii) disocclusion. The

disocclusion grids are those with finite depth values in d1,2 and larger than a depth rejec-

tion threshold z = 10−2 unit. As shown in Fig. 8.5, the left figure highlights disocclusion

in red rectangles. We omit discussion of the first case of inconsistency because it is trivial

by checking whether the values are infinite. For the second and the third case, we identify

disocclusion by checking whether those values are greater than z units.

By repeatedly computing coverage maps of all pairs of the source view candidates,

we will have mutual coverage among all of them by sending M probing view requests.

26

(a)

(b)

(c)

Figure 8.1: Rendered HMD views with different coverage ratios, where: (a) 100.00%

leads to a PSNR of 43.17 dB and an SSIM of 0.99, (b) 75.06% leads to a PSNR of 27.32

dB and an SSIM of 0.94, and (c) 50.42% leads to a PSNR of 20.55 dB and an SSIM of

0.80.
27

g

g

g

Figure 8.2: Sample regression models for SSIM.

Disocclusion
Removal

Probing
Request

Depth
Rendering

Mesh
Creation

Coverage
Map

cdd1

cdd2

d1 m1 d1,2

d2

C1,2

Probing
Request

Figure 8.3: Steps of the quality estimator.

Figure 8.4: Mesh creation (dark gray mesh) by distorting an image plane mesh (light gray

mesh) along the projection lines (red lines).

28

Figure 8.5: The top figure shows the results of back-projecting the pixel points (colored

according to their coordinates) from the depth image, while the bottom figure shows the

RGB image seen from the same pose. The red circles demonstrate where disocclusion

occurs.

29

Chapter 9

Solver

In this chapter, we design solvers for S-CC and P-CC respectively because of the unique

properties of their problem formulation.

9.1 Solver for S-CC

Thus far, we know how to estimate the synthesized HMD view quality at any pose e.

Next, we aim to compute the best s∗ that leads to the best quality of synthesized HMD

views at all N candidates produced by the candidate generator. These candidates essen-

tially represent all possible poses in the considered pose traces. We solve this problem

with mathematical optimization, where the objective function is a weighted sum of the

synthesized HMD view quality. More precisely, we let w be the weighting vector of all

source view candidates. We consider two alternatives for w[e] of a source view candidate

e: (i) we[e] = 1/N and (ii) wc[e] = len(e)/(1Tw).

9.1.1 Integer programming based solvers

We formulate our optimization problem into integer programming problems as we are

making 0/1 decisions in the index vector s∗. In the following context, we use si0,i1,... to

represent the index vector with ones in the ith
0 , ith

1 , . . . positions. In particular, we write

the following formulations for cvg1(s, e) and cvg2(s, e), respectively:

maximize
s

∑
e∈candidates

w[e]qls(b∗e
Ts)

subject to : s ∈ Q;
(9.1)

maximize
s

∑
e∈candidates

w[e]qls(sTB∗
es)

subject to : s ∈ Q.
(9.2)

30

These two formulations can be numerically solved with commercial or open-source inte-

ger programming solvers, such as CPLEX [17] and SCIP [3], which is denoted as ip in

our discussion.

Algorithm 2 First-Order Greedy Solver
q ← zeros(M,)

ball ←
∑M

i=0 bi

for i ∈ {0...M − 1} do
q[i] = w[i]q(b∗all

Tsi)

end for
q, c← sorted(q)

▷ gives sorted values and indices into the input array in descending order

return c[0 : N]

9.1.2 Greedy based solvers

However, IP solvers generally leverage the branch-and-bound approach for searching for

the best feasible solution, which may result in a prohibitively long runtime. Therefore,

we develop greedy algorithms referred to as gdy . Our greedy algorithms iteratively add

one (for cvg1(s, e)) or two (for cvg2(s, e)) source view candidates that lead to the largest

increase in the coverage ratio across all candidates. Algorithms 2 and 3 give the pseu-

docodes of these two gdy algorithms, where si,j denotes the vector with ones in the ith

and the j th indices. The two greedy algorithms run in O(M lgM) and O(M2), respec-

tively.

Among the design alternatives of our novel view optimization algorithm for S-CC,

the coverage models (cvg1(·) versus cvg2(·)) and solvers (ip versus gdy) are the most

critical decisions for trading off estimation error control, solution optimality, and runtime.

Therefore, we define the following variants:

• C1G adopts the first-order coverage model cvg1(s, e) and the greedy solver gdy , as

summarized in Algorithm 2. This algorithm is provably optimal.

• C2G adopts the second-order coverage model cvg2(s, e) and the greedy solver gdy ,

as summarized in Algorithm 3.

• C2I adopts the second-order coverage model cvg2(s, e) and the integer program-

ming solver ip for optimal solutions.

We note that we do not list C1I as a variant, because C1G already delivers optimal solu-

tions at (much) shorter runtime than generic IP solvers.

Along with these variants, we also consider the following options:

• Candidate generation strategy: cddsl(·), cddsm(·), or cddsa(·).
• Modeling sample size: kmax.

31

• Quality function: qlscvg(g), qlspsnr(g), or qlsssim(g).

• Objective function weights: we or wc.

In the next chapter, we empirically determine the best options for each algorithm variant.

9.2 Solver for P-CC

The solver selects N optimal source views out of M source view candidates based on

coverage maps. We first model how a pixel in a novel view contributes to the synthesized

novel view quality by (i) coverage count c which represents the number of source views

covering the pixel, and (ii) quality modeling function, f(c), which maps c onto a scalar in

an interval [0, 1), where

f(c) = 1− eac for a < 0, c ≥ 0, (9.3)

where a is a constant for a curve approaching 1 when c reaches 1. We let a = log10−5

to give uncovered pixels higher priority to be covered, where -5 comes from the com-

mon resolution of 960x540 of our source views. Note that f(c) satifies the following

properties:

1. f(c) = 0 for c = 0 (zero coverage);

2. f(c)→ 1 as c→∞ (bounded quality);

3. f(c1) ≥ f(c2) for c1 ≥ c2 (monotonic increase);

4. f ′(c1) ≤ f ′(c2) for c1 ≥ c2 (quality saturation);

and f(c) degenerates to a Boolean function b(c) if a→∞:

b(c) = 0 for c ≤ 0,

b(c) = 1 for c > 0.
(9.4)

However, we will use f(c) instead of b(c) because we seek improvement from multiple

view coverage and b(c) cannot distinguish this condition.

Note that we use f(c) as quality representation for the following two major points

according to Sun et al. [35]: (i) the quality improves the most when c = 0 → 1, and

(ii) the quality continues to improve when c = 1 → ∞ but it saturates. We do not

claim that one-coverage per pixel is enough, but seek for improvement from multiple

view coverage.

Next, we generalize our analysis to complete novel view and among multiple 6-DoF

clients. The source view selections are represented by a sequence of Boolean decision

32

variables {sj} ∈ {0, 1}M , where sj denotes whether the j th source view is selected. For

convenience, we define a null sequence {sj} = {0} with all 0s. We also define: (i) Cj,i

is the coverage map of how cddj covers cddi, (ii)
⊙

is a composite operation that first

multiplies the two matrices elementwisely and sums over the elements inside the resulting

matrix, (iii)W is an averaging mask with the same dimension as the probing views, and

thus W
⊙

A averages the elements in a matrix A. Last, we define aggregated quality

qlp(·) to be the expected overall quality under a source view selection {sj}. With these

symbols, we expand Eq. (5.1) using Eq. (9.3) into:

maximize
{sj}

qlp({sj}) =W
⊙ M∑

i

1− ea(
∑M

j sjCj,i)

subject to : sj = {0, 1} for 1 ≤ j ≤M

M∑
j

sj = N.

(9.5)

In this formulation, the aggregated quality is monotonically increasing and is nonnega-

tive with respect to more 1s in {sj} since f(c) itself is also monotonically increasing.

Mathematically speaking, increasing {sj} is defined to be:

{sj}1 ≥ {sj}2 if (sj)1 ≥ (sj)2 for all j, (9.6)

where (sj)k denotes the j th element in sequence {sj}k. Such property can be leveraged by

solver algorithms for effectively refining source view selections. We propose three solver

algorithms for P-CC below.

9.2.1 Uniform (Uni)

We pick the source view candidates every fixed skips to ensure uniform source view

distribution along the temporal domain and among all 6-DoF clients. Note that Uni does

not require output from the the coverage estimator. The pseudocode is shown in Alg. 4.

9.2.2 Branch & Bound (BB)

We initilize {sj} = {0} and mark all elements of {sj} as undetermined. We perform

branch or bound operations on {sj} until the number of branching exceeds a pre-defined

threshold maxNodes. At that time, the best known {sj} is returned. We empirically set

maxNodes to 96 if not otherwise specified. Here, we define ub({sj}) as the aggregated

quality of the sequence that sets all of undetermined 0s in {sj} to 1, which results in the

maximum aggregated quality given that some of the elements have been determined, and

the terminal sequence is a sequence with exactly N 1s. More precisely, if {sj} is not a

33

terminal sequence, we branch the current sequence {sj} into two sequences. The first one

is created by setting one of its 0s to 1 such that the aggregated quality increases the most,

and we mark the element sj as determined, while the other one is created by setting sj to 0

and we also mark it as determined. Moreover, we remove the current sequence {sj} from

our searching list if either ub({sj}) is lower than our currently best aggregated quality

or if it is a terminal sequence. Whenever we encounter a terminal sequence, we update

the current best sequence if its aggregated quality is greater than before. The algorithm is

presented as pseudocode in Alg. 5.

9.2.3 Uniform & Modify (UM)

We start from the {sj} returned from Uni, and we always iterate {sj} among all terminal

sequences. More specifically, each iteration consists of two operations: (i) clear, which

clears one of the 1s in {sj} such that the updated aggregated quality is maximal, and (ii)

set, which sets one of the 0s in {sj} to 1 after clear such that the resultant aggregated

quality is maximal. Duplicated {sj} are skipped during iterations. The algorithms stop

after M/(N +M) ·maxNodes, so that it has comparable time complexity as BB, and the

best known {sj} is returned.

34

Algorithm 3 Second-Order Greedy Solver

Q← zeros(M,M)

B ←
∑

e∈candidates Be

for i ∈ {0...M − 1} do
for j ∈ {0...M − 1} do

Q[i, j]← w[i]qls(sTi,jBsi,j)

end for
end for
Q, c← sorted2(Q) ▷ gives sorted values and 2D indices into the input array; c can be

viewed as a 3D array, and c[i] gives a 2D index(i, j)

x, acc← N, 0

Y ← []

while x > 1 do
i, j ← c[acc]

if i ̸= j then
append i, j to Y

x← x− 2

acc← acc + 2

end if
if i = j then

append i to Y

x← x− 1

acc← acc + 1

end if
delete all indices that have either i or j after the accth element of c

end while
if x > 0 then

delete all indices with its first element ̸= its second element

i, i← c[acc]

append i to Y

end if
return Y

35

Algorithm 4 Uniform

{sj} ← {0}
for j ∈ round([0,M/N, 2(M/N), ...,M − 1]) do

sj ← 1

end for
return {sj}

Algorithm 5 Branch & Bound (BB)

q, lb, sol, count← [{0}], 0, {0}, 0 ▷ q is a max priority queue

while count < maxNodes, and q is not empty do
{sj} ← q.pop()

if {sj} is not a terminal state, and ub({sj}) ≥ lb then
count← count + 1

for each {sj}b by branching {sj} do
if qlp({sj}b) > qlp(sol) then

sol, lb← {sj}b, qlp({sj}b)
end if
push {sj}b to q with priority qlp({sj}b)

end for
end if

end while
return sol

Algorithm 6 Uniform & Modify (UM)

count, lb, sol← 0, 0, Uni()

while (count < M
N+M

×maxNodes) do
count← count + 1

{sj} ← set(clear(sol))

if qlp({sj}) ≥ qlp(sol) then
sol← {sj}

end if
end while
return sol

36

Chapter 10

Performance Evaluations

We implement and evaluate our proposed algorithms for both S-CC and P-CC in this chap-

ter. In this chapter, we evaluate the performance of our proposed novel view optimization

algorithm using real testbeds.

The VMAF we are using is version 2.3.1 and was pretrained by the VMAF authors.

The dataset consists of 7 real-life videos and 2 animations, which is quite different from

our photo-realistic content. As a result, we cannot make a fair comparison with VMAF.

Nevertheless, we still report VMAF for the reader’s reference.

10.1 Evaluations of S-CC

In this section, we are going to evaluate system performance for S-CC only. Evaluation

of P-CC systems is in the next section.

10.1.1 Testbed implementation

To render the ground truth HMD views, we control virtual cameras in a photorealistic

simulator, called AirSim [34], which is built upon Unreal Engine [10] and can be ex-

tended to evaluate networked systems [37]. For HMD view synthesis, we employ MPEG

TMIV [23] from the MPEG Immersive Video (MIV) standard [22]. More specifically, we

built a testbed as illustrated in Fig. 10.1, for our performance evaluations. This testbed

consists of five key components: (i) HTC Vive Pro Eye that collects the 6-DoF pose tra-

jectories, (ii) AirSim that renders source view and HMD views for given pose trajectories

of 3D content, (iii) our novel view optimization algorithm that selects some source can-

didates for HMD view synthesis, (iv) a TMIV renderer that synthesizes HMD views, and

(v) a metric evaluator that quantifies the objective performance by comparing the HMD

and ground truth views. In addition to AirSim and TMIV, we develop scripts using the

37

Unreal Engine blueprint [41] to log pose trajectories of HTC HMD users, which consist

of timestamps, location (x, y, z), and orientation (roll, pitch, yaw) at 30 fps (frames-per-

second). We implement the metric evaluator in Python script to compute the objective

metric values. The HTC Vive HMD is tethered to a workstation with an Intel i5-9600K

CPU and an NVIDIA GeForce RTX 2080 Ti GPU. Based on user feedback, we configure

AirSim/Unreal Engine to render at 90 fps to avoid cybersickness.

AirSim

Metric

Evaluator

Camera

Placement

Algorithm

Selected

Candidates

TMIV

Renderer

Evaluation

Parameters

Source

View

Candidates

Pose

Traces

HMD Views

Ground

Truth

Views

HTC

Vive

Figure 10.1: Testbed for performance evaluations.

10.1.2 Setup for S-CC

To fairly compare the performance of different solver algorithms, we first use our testbed

to collect pose trajectories from 16 subjects (7 of them are female). These subjects are

between 21-29 years old, with 20/25 (corrected) vision, and do not personally own HMDs.

We build 3D content with a dimension of 30 m × 30 m × 10 m, which is large enough

for each subject to navigate without bumping into the walls/ceiling/floor. We create two

sample set of 3D content with one and four bunnies, where the height of each bunny is 5

m. We collect pose trajectories from each subject as follows.

1. First, we calibrate the HMD and align the physical origin with the content’s origin.

2. We next place the bunnies at the eye-level of each subject.

3. We randomly place the subject in the 3D content, and make him/her face the bun-

nies.

4. We ask the subject to freely navigate in the 3D content.

5. We configure AirSim/Unreal Engine to prevent the subject from bumping into ob-

jects, like walls or bunnies.

38

After collecting all pose trajectories, statistics show that the shortest pose trajectories

among the subjects is 62 seconds, so we cut the pose trajectories of all the other subjects

into the same duration. Therefore, for each set of 3D content, we collect sixteen 62-

second pose trajectories, where each pose trace contains 1860 poses. Note that we spent

around 5 hours to rendering the views of each pose trace for our performance evaluations.

We use the collected dataset (3D content and pose trajectories) to run the experiments

on our testbed to quantify the performance of our novel view optimization algorithm

variants: C1G, C2G and C2I for S-CC. We are not aware of any prior work that solves the

considered novel view optimization problem without content access. Hence, we compare

against two algorithms: Set Cover (SC) and Upper Bound (UB). SC works as follows, it:

(i) identifies a set of 3D primitives observed by pose trajectories, (ii) creates a table from

each source view candidate to covered primitives, and (iii) greedily selects the candidate

that covers the most primitives. As a heuristic algorithm, SC has been shown to perform

reasonably well in practical set cover problems [42, Chapter 2]. In addition, we emphasize

that SC gets access to 3D primitives, and thus has an edge over our proposed C1G, C2G

and C2I. We still consider SC as a baseline algorithm to be conservative. UB, on the other

hand, chooses all source view candidates to serve as an impractical performance bound.

We use UB for benchmarking purposes.

We set update window = 60, thres = 0.7, and ds = 5 throughout the evaluations. We

vary the following parameters to study their implications for performance:

1. cdds ∈ {l,m, a},

2. kmax ∈ {2, 3, 4},

3. w ∈ {we,wc}, and

4. qls(g) ∈ {qcvg(g), qpsnr(g), qssim(g)},

where underlines indicate default values. We also vary the number of source views

N ∈ {16, 17, . . .M} to adjust the resource scarcity. For the performance metrics, we

use PSNR, SSIM, and VMAF to measure the HMD view quality. We also measure per-

component and overall runtime on our i5 workstation. We report average results in figures

and tables with standard deviations whenever possible.

10.1.3 Results for S-CC

Sample per-subject results. We compute the performance of individual subjects (pose

trajectories) and give results1 from sample subjects in Fig. 10.3. Fig. 10.2(a) shows
1Due to the space limit, we omit significance analysis and only discuss selected quality metrics here,

and in the rest of this section for S-CC.

39

0 500 1000 1500
Frame

0.6

0.7

0.8

0.9

Q
ua

lit
y

in
SS

IM

SC
C1G
C2G
C2I
UB

(a)

0 500 1000 1500
Frame

0.7

0.8

0.9

Q
ua
lit
y
in
 S
SI
M

SC
C1G
C2G
C2I
UB

(b)

Figure 10.2: Sample synthesized HMD view quality: (a) a sample subject in the one

bunny content, and (b) a sample subject in the four bunnies content.

the SSIM dynamics from a random subject, in which a point represents average qual-

ity among 60 consecutive frames. Fig. 10.3(c) presents the SSIM results from sample

subjects ranked by their UB performance in descending order. We observe that our C1G,

C2G, and C2I algorithms generally outperform the baseline SC and approach the bench-

mark UB. For a more complete view, we report overall results from all subjects in the

following.

Best cdds option for the candidate generator. As shown in Fig. 10.4 with im-

Table 10.1: Overall Coverage Ratio Achieved by UB with Different cdds Options

content cddsl cddsm cddsa
1 Bunny 96.30%± 3.57% 95.81%± 5.55% 96.19%± 3.99%

4 Bunnies 96.01%± 3.91% 95.55%± 5.88% 95.81%± 5.21%

provement shown with respect to cdds = cddsl, we conclude that different choice cdds

leads to performance improvement for different algorithms. The candidate generator is

a crucial component in the overall system since it determines the quality of inputs to all

the following modules. Quality of inputs limits the performance upper bound given the

best quality estimator and solver we can achieve. We perform experiments to study how

different algorithms react to the different choice of cdds. Focusing on the UB algorithm,

we find that cddsa improves quality. Thus, we recommend cddsa as the default option.

We also found out that C1G and C2G perform best with cddsl due to the fact that greedy

algorithms prefer a set of candidates with maximal difference among them. Meanwhile,

we conclude that C2I prefers cddsm and cddsa. The reason for cddsm is that it takes the

user velocity into consideration implicitly. For example, if a user moves faster at the be-

ginning and slower at the end of a content change (coverage ratio has fallen behind the

thres with respect to the reference), cddsm will choose the pose which is closer to the

end, which will result in a greater number of frames to have high coverage ratio. On the

other hand, cddsa provides higher accuracy of coverage ratio estimation inside a parti-

40

tion. The integer programming solver prefers this option because it is more sensitive to

the numerical perturbation. As a result, higher coverage ratio estimation implies a more

precise solution. We recommend to use cddsl for greedy algorithms, and cddsa or cddsm
for integer programming based algorithms. Our candidate generator supports three cdd

options. To understand the quality of the resulting candidates, we report the overall cover-

age ratio resulting from UB in Table 10.1. This table reveals that cdd l leads to the highest

coverage ratio and the lowest standard deviation. Adding to that, cdd l also has the lowest

computational complexity. Hence, we present results from cdd l in the rest of this thesis.

Best kmax option for individual coverage models. We analyze the implications of

Table 10.2: RMSE and Running Time of Different kmax

kmax 2 3 4
Coverage Model cvg1 cvg2 cvg1 cvg2 cvg1 cvg2

RMSE 0.44 0.18 0.43 0.08 0.49 0.08

Init. Time (s) 32.78 36.82 59.53

Est. Time (s) 0.0078 0.0050 0.058 51.64 0.393 511.27

kmax in terms of computational times and Root Mean Square Error (RMSE) with each

coverage model. The computational time is composed of: (i) the initialization time that

generates the candidates and model data structure, and (ii) the estimation time that eval-

uates the coverage function. Note that these two metrics are measured with the coverage

models: cvg1 and cvg2. Table 10.2 gives the overall results. We observe that cvg2 has

an RMSE reduction of at least 60% over cvg1 with all kmax. We also observe that the

estimation time increases exponentially as kmax increases since the estimator needs to

evaluate a least-squared-error problem with O(2kmax) terms. With cvg2, the estimation

time of kmax = 4 has grown by 10 times compared to that of kmax = 3; however, the

RMSE remains the same. Hence, we recommend kmax = 3 for a good tradeoff between

the computational time and degree of error. We give results from kmax = 3 below if not

otherwise specified.

Our algorithm delivers high-quality synthesized HMD views. We report the over-

all performance of different algorithms in Fig. 10.5. Fig. 10.5(a) reveals that our algorithm

achieves a comparable coverage ratio with SC. However, Figs. 10.5(b)–10.5(d) clearly

demonstrate that our C1G, C2G, and C2I perform much better than SC in terms of PSNR,

SSIM, and VMAF: boosts of 2.37 dB, 0.05, and 10.84 are observed in the one bunny

scene, while boosts of 1.90 dB, 0,05, and 9.39 are observed in the four bunnies scene. We

also observe that the four bunnies scene leads to worse results, which may be attributed to

its increased complexity compared to the one bunny scene. Since our algorithm performs

much better than SC, we no longer consider SC in the following. Another observation we

41

can make in Fig. 10.5 is that our C1G, C2G, and C2I approach the quality achieved by

UB: gaps as small as 1.00 dB, 0.01, and 2.30 in PSNR, SSIM, and VMAF are reported.

Note that UB selects all source view candidates, and could lead to higher throughput.

We depict the throughput of the selected source views in Fig. 10.6, which shows that

at least 28.43% higher throughput is incurred by UB, compared to our C1G, C2G, and

C2I. In summary, our algorithm delivers quality fairly close to UB at a reduced network

throughput.

Performance comparison among our algorithm variants. We compare the perfor-

mance of different algorithm variants using sample winner-loser figures in Fig. 10.7. The

percentages in this figure are calculated by comparing the coverage ratio between two

algorithms per pose from all subjects. Notice that two algorithms may achieve the same

coverage ratio with some poses, and these poses will not be counted in Fig. 10.7. This fig-

ure shows that C2I performs better than C1G and C2G in both scenes. C2I outperforms

C2G probably because the solver ip gives better solutions than gdy , since they employ

the same coverage model cvg2(s, e). Moreover, C1G performs worse than C2G due to its

simpler first-order coverage model. In summary, Fig. 10.7 confirms the effectiveness of

more comprehensive: (i) (second-order) coverage model and (ii) (optimal) solver.

Objective function weights do not affect the algorithm performance with our
dataset.

Table 10.3: Quality Metrics of Different Choices of w

slvr PSNR SSIM VMAF
we wc we wc we wc

SC 22.31 22.31 0.87 0.87 48.49 48.49

C1G 23.99 23.99 0.90 0.90 54.93 54.93

C2G 24.04 24.76 0.90 0.91 55.26 57.91

C2I 24.74 24.57 0.92 0.91 59.95 59.31

UB 25.85 25.85 0.93 0.93 63.10 63.10

As shown in Table 10.3, we observe that all the algorithms perform almost the same

on both weighting vectors. The effect of weighting is not significant for all quality metrics

except for a gain of 2 in VMAF for C2G. We analyze the distribution of wc generated in

our experiments, and the element-wise standard deviation from we is 0.012. One conclu-

sion is that, for either slvr , the weighting effect is not strong enough to change a bit in s.

With our analysis, there is a distribution of such weighting vectors which will lead to the

same solution by a solver. We also analyze and plot the choice of fqls(.) in Fig. 10.8 and

find out that there is little effect among each choice. We conclude that either choice of w

and fqls(.) makes no difference, and we leave it as the default values.

Our algorithm works well with the coverage ratio as an approximated quality

42

function. So far, we have been using the coverage ratio to approximate the HMD view

quality. We vary the quality function qls(·) and find little, if any, impact on the resulting

HMD view quality in Fig. 10.8. For example, with C1G in the one bunny scene, apply-

ing qlspsnr(·) only improves 0.0 dB of PSNR, resulting in no improvement, compared to

applying qlscvg(·). Similarly, with C2I in the four bunnies scene applying qlsssim(·), the

improvement of SSIM is merely 0.38. These results back up our earlier intuition: the

coverage ratio can approximate the synthesized HMD view quality without the overhead

of building the quality models. More specifically, instead of building such quality estima-

tor of SSIM or PSNR as shown in Fig 8.2, we can just use the coverage ratio for quality

function.

The performance of our algorithm better approaches that of UB with more source
views. Last, we vary the number of source views N ∈ {16, 17, . . . ,M} to see how much

quality we could improve with more cameras2. Fig. 10.9 shows the gap between our al-

gorithm and UB. We observe in Fig. 10.9(a) that in both scenes, the gap reduces to 0

for C1G, C2G, and C2I when N approaches M . A similar observation can be drawn

for SSIM in Fig. 10.9(e). That is, our algorithm approaches optimum performance with

enough number of source views.

Key findings. We found that: (i) our algorithm outperforms the baseline algorithm

SC by at least 2.37 dB in PSNR, 0.05 in SSIM, and 10.84 in VMAF (see Fig. 10.5); (ii)

the optimality gap of our algorithm is as small as 1.00 dB in PSNR, 0.01 in SSIM, and

2.30 in VMAF (see Fig. 10.5); and (iii) our algorithm further approaches the performance

of impractical UB when the number of source views increases (see Fig. 10.9). Taking

runtime into consideration, we recommend using C2I if the computational resources are

abundant. Otherwise, we recommend using C2G for a good tradeoff between runtime and

optimality.

10.2 Evaluations of P-CC

Note that when we are evaluating the candidate generator, we omit comparison of the pro-

posed approach and some naive candidate generations such as random and downsampling

since the best sampling methods are determined in Ch. 10.1.

10.2.1 System implementation

We implement the cloud service provider in Python 3.9 with the help of Pytorch [29]

with Cuda [27] to facilitate GPU computation and FFmpeg [40] to encode/decode RGB-

2We empirically decided to start from 16 source views based on our pilot test results.

43

D views. Each key component of the novel view optimization algorithm (see Fig. 4.1) is

implemented as a Python module for better maintainability. We implement the content

creator with Open3D [47] to generate the source and probing views. Last, 6-DoF clients

run on Oculus Quest 2 as their HMD. For client-side view synthesis, we opt for RVS

synthesizer [19] on top of OpenGL [44] based on performance comparison [35]. Overall

system implementation is summarized in Fig. 10.10. Unfortunately, common HMDs are

not powerful enough to host the view synthesizer, and thus we offload it to a workstation.

To fairly compare the performance of various novel view optimization algorithms,

we implement a pose trajectory collection system in Unity [12] and Air-Light-VR [1].

We consider three sets of content with different levels of texture details and geometry

complexity: (i) House (17x13x5 meter3, 156 objects) has 3 rooms with comprehensive

texture and furniture, (ii) Bigroom (45x12x4 meter3, 260 objects) has a room with robotic

arms and simple texture, and (iii) Smallroom (7x12x4 meter3, 360 objects) has a small

server room with simple texture. Fig. 10.11 shows the three sets of content. We recruited

16 subjects between 21 and 29 years old, and collected 16 pose trajectories for each set

of content, where each pose trajectory lasted for 30 seconds at 50 frames per second. We

replayed them in Unity to render novel views at resolution 960x540 as the ground truth for

comparison. After collecting the pose trajectories, we observed that users preferred close-

up views in Bigroom and Smallroom since objects are smaller than those in House. To

evaluate novel view optimization algorithms, we compared the synthesized novel views

and the ground truth novel views for several quality metrics.

10.2.2 Experiment setup

For performance comparison, we employ C2G and C2I solver algorithms and the S-Cdd

candidate generator algorithms. We also consider an unrealistic upper-bound Opt (= UB),

and we will use them interchangably. We will study how the choice of candidate generator

affects the system performance in later discussion.

Parameter options. Our parameterized algorithms come with the following parame-

ters, where underlines indicate default options.

1. N ∈ {8, 16, 24, 32, 40}.

i.e., m = {0.01, 0.02, 0.03, 0.04, 0.05},

and M ∈ {32, 32, 48, 64, 80} according to Eq. (7.7).

2. solver ∈ {C2G, C2I, Uni, BB, UM, Opt}.

3. candidate generator ∈ {S-Cdd, P-Cdd}.

44

The underlining shows the default options, and other parameters are left to their de-

fault values if not otherwise specified. We measure runtime and bandwidth consump-

tion for each round of experiments, and we assess quality in Peak Signal-to-Noise Ratio

(PSNR) [14], Structural Similarity (SSIM) [14], and Video Multi-Method Assessment

Fusion (VMAF) [26]. We run the algorithms on a workstation with an AMD Ryzen 7

5700X 8-core CPU and NVIDIA Geforce RTX 3090 Ti GPU. We report all statistics after

averaging the results along the temporal axis and among all 6-DoF clients. All error bars

are presented with 95% confidence intervals.

We will discuss how a specific parameter/component impacts the system performance

while leaving others to default. In the rest of this thesis, all statistics are reported after

averaging the results along the temporal axis and among all 6-DoF clients. All error bars

are presented with 95% confidence intervals.

Visual inspection of sample results. We present sample synthesized results from the

House content under default parameters in Fig. 10.12(a) which shows that our synthesized

novel views are mostly of good visual quality. We also show two novel views with the

highest and lowest quality as examples. Observing Fig. 10.12(c), we see some distortion

and blur regions under the table and at the edges of the novel view. We conduct more

extensive experiments in the following.

Quality improvement as N increases. We conduct experiments by varying the

choice of N and leave other parameters to default. As shown in Fig. 10.13, quality in-

creases rapidly when N<24 but grows slowly when N ≥ 24 in terms of all quality met-

rics. This observation is consistent with the design of f(c) in Ch. 9. Among these three

quality metrics, our system is less stable for optimizing VMAF because the optimization

objective in Eq. (9.5) optimizes aggregated quality without explicitly taking temporal con-

tinuity into account. Moreover, Bigroom and Smallroom result in lower quality because

subjects prefer to take close-up views there. Hence, the same number of source views

cover a smaller portion of Bigroom and Smallroom.

Bandwidth reduction by novel view synthesis. We demonstrate that our blind stream-

ing system saves bandwidth by comparing it with traditional novel view streaming that

sends customized novel views to individual clients. We use x264 [31] to encode source

and novel views with qp = 0. We report source view bandwidth consumption in RGB

and D separately in Fig. 10.14 with diverse choices of N ∈ {8, 16, 24, 32, 40}. The figure

reveals that, with merely 16 clients, the noreal view synthesis cuts the bandwidth con-

sumption by 94% at N = 24 for the content creator. The improvement will become even

larger when the number of clients is increased. Based on the trade-off between quality

Fig. 10.13 and bandwidth Fig. 10.14, we recommend using N = 1.5|U|.

Proposed algorithms outperform state-of-the-art ones. We first compare S-Cdd

45

and P-Cdd. Because the S-Cdd generator generates candidates based on coverage drop, it

results in less than 24 source view candidates under our default setup. Therefore, we have

to set N = 8 for this comparison. Briefly, we feed the source view candidates to default

UM. The results are shown in Fig. 10.15. We find that the P-Cdd outperforms S-Cdd in

all quality metrics across all content. As a result, we suggest using P-Cdd, which would

not: (i) produce non-uniform source view candidates or (ii) overload the content creator.

Next, we pass the source view candidates to different solver algorithms in {C2G,

C2I, Uni, BB, UM, Opt} and summarize the results with N = 24 in Fig. 10.16. Our

proposed solvers algorithms for P-CC consistently outperform the state-of-the-art ones

by at least 2.27 dB in PSNR, 0.04 in SSIM, and 12 in VMAF, and leave performance

gaps as small as 0.75 dB in PSNR, 0.009 in SSIM, and 3.8 in VMAF for all 3D content.

Uni solver performs relatively well in terms of VMAF since it guarantees uniform source

view distribution along the temporal axis, which is only considered by VMAF. Based

on Fig. 10.16, we recommend using UM solver for higher quality. Cross-referencing

Fig. 10.15, we note that even with suboptimal source view candidates from S-Cdd, our

UM solver algorithm still leads to fairly good quality.

Comparison of different content could also be inferred from Fig. 10.16. We observe

that for high quality texture content such as House, clients prefer to watch the same spots.

On the other hand, the other 2 sets of content consist of relatively low quality textures and

lack some focus points. As a result, we conclude that our algorithms improve the quality

further if the content itself has some focus points.

Runtime of our algorithms. We divide the total runtime into: candidate generator,

coverage estimator, and solver. We report the runtime distribution with the default param-

eters in Fig. 10.17. Runtime for candidate generator is negligible since it only requires

one scan through the pose trajectories. The coverage estimator consumes relatively longer

runtime because of the coverage map computation (see Ch. 8) using Open3D [47], which

is a CPU implementation. In fact the total runtime is dominated by the solver, which

grows quadratically with N because it evaluates aggregated quality frequently for each

update window. Note that we execute the solver algorithms on a single-threaded GPU.

Neither do we parallelize the aggregated quality evaluations although several operations

such as branch, clear, set in BB and UM are ready for multi-threaded executions. We

opt not to enable multi-threading in solver algorithms, because the coverage estimator is

single-threaded. Combining the results from Figs. 10.16 and 10.17, we suggest using the

Uni solver, which runs faster than 100ms and is suitable for real-time operations. When

runtime is not a concern, UM is recommended for the best quality.

Correlation between quality metrics and aggregated quality.

For justifying the representativeness of the aggregated quality, we report the corre-

46

Table 10.4: Correlation Between Quality Metrics - Aggregated Quality

Metrics PSNR SSIM VMAF

Pearson 0.41 0.66 0.51

Spearman 0.27 0.40 0.48

lation coefficients in Pearson [9] and Spearman [25] in Table 10.4 and Fig. 10.18. The

correlation coefficients are calculated every source view update, and quality metrics are

averaged across all novel views corresponding to that update. Statistics show that there

exist positive relationships between the aggregated quality and the quality metrics.

Coverage counts distribution. We report counts of a random candidate for different

levels of coverage and solvers with the House content in Fig. 10.19 by conducting a small

experiment. We observe that the proposed UB solver performs as expected. It covers most

of the pixels one time, and there are only a few pixels that get covered more than 2 times.

On the other hand, the C2I, and C2G solvers perform relatively worse by the fact that they

do not cover a huge portion of pixels.

47

0 2 3 7 8 12
Subject

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Q
ua
lit
y
in
 S
SI
M

SC
C1G
C2G
C2I
UB

(a)

0 2 3 7 8 12
Subject

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Q
ua

lit
y

in
SS

IM

SC
C1G
C2G
C2I
UB

(b)

1 6 11 16
Subject Ranked by UB

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

in
SS

IM

SC
C1G
C2G
C2I
UB

(c)

Figure 10.3: Sample synthesized HMD view quality: (a) for 1-bunny content, and (b)–(c)

for 4-bunny content.
48

SC C1G C2G C2I UB

−0.2

0.0

0.2

0.4

0.6

Q
ua
lit
y
D
iff
. i
n
PS

N
R
 (d

B
)

cddm
cdda

(a)

SC C1G C2G C2I UB
−0.015

−0.010

−0.005

0.000

Q
ua
lit
y
D
iff
. i
n
SS

IM

cddm
cdda

(b)

SC C1G C2G C2I UB

−2

−1

0

1

2

Q
ua
lit
y
D
iff
. i
n
V
M
A
F

cddm
cdda

(c)

SC C1G C2G C2I UB

0.0

0.2

0.4

0.6

Q
ua
lit
y
D
iff
. i
n
PS

N
R
 (d

B
)

cddm
cdda

(d)

SC C1G C2G C2I UB
−0.005

0.000

0.005

0.010

Q
ua
lit
y
D
iff
. i
n
SS

IM

cddm
cdda

(e)

SC C1G C2G C2I UB

0.0

0.5

1.0

1.5

Q
ua
lit
y
D
iff
. i
n
V
M
A
F

cddm
cdda

(f)

Figure 10.4: Effects of tuning cdd and different slvr . We choose cdda in each solver as

the baseline. (a) Quality difference in PSNR for one bunny content, (b) Quality difference

in SSIM for one bunny content, (c) Quality difference in VMAF for one bunny content,

(d) Quality difference in PSNR for four bunny content, (e) Quality difference in SSIM for

four bunny content, and (f) Quality difference in VMAF for four bunny content.

49

SC C1G C2G C2I UB
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

in
C

ov
er

ag
e

1B
4B

(a)

SC C1G C2G C2I UB
0

5

10

15

20

25

Q
ua

lit
y

in
PS

N
R

(d
B

)

1B
4B

(b)

SC C1G C2G C2I UB
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

in
SS

IM

1B
4B

(c)

SC C1G C2G C2I UB
0

20

40

60

Q
ua

lit
y

in
V

M
A

F

1B
4B

(d)

Figure 10.5: Overall performance achieved by different novel view optimization algo-

rithms, in terms of: (a) coverage ratio, (b) PSNR, (c) SSIM, and (d) VMAF.

50

SC C1G C2G C2I UB
0

25

50

75

100

125

T
hr

ou
gh

pu
t(

M
bp

s)

1B
4B

Figure 10.6: Network throughput caused by streaming selected

source views.

C1G C2G C2I
Loser

C
1G

C
2G

C
2I

W
in

ne
r

0.0% 14.11% 31.03%

33.92% 0.0% 32.5%

61.99% 58.13% 0.0%

(a)

C1G C2G C2I
Loser

C
1G

C
2G

C
2I

W
in

ne
r

0.0% 25.6% 35.07%

34.06% 0.0% 39.73%

62.75% 57.1% 0.0%

(b)

Figure 10.7: Winner-loser matrices based on the coverage ratio achieved by different

algorithm variants: (a) one bunny and (b) four bunnies content.

51

SC C1G C2I UB
0

5

10

15

20

25

Q
ua

lit
y
in
 P

SN
R
 (d

B
)

optMetric
qual
qualpsnr
qualssim
withoutOpt

(a)

SC C1G C2I UB
0.0

0.2

0.4

0.6

0.8

Q
ua
lit
y
in
 S
SI
M

optMetric
qual
qualpsnr
qualssim
withoutOpt

(b)

SC C1G C2I UB
0

20

40

60

80

100

Q
ua

lit
y

in
 V

M
A

F

optMetric
qual
qualpsnr
qualssim
withoutOpt

(c)

SC C1G C2I UB
0

5

10

15

20

25

Q
ua

lit
y
in
 P

SN
R
 (d

B
)

optMetric
qual
qualpsnr
qualssim
withoutOpt

(d)

SC C1G C2I UB
0.0

0.2

0.4

0.6

0.8

Q
ua
lit
y
in
 S
SI
M

optMetric
qual
qualpsnr
qualssim
withoutOpt

(e)

SC C1G C2I UB
0

20

40

60

80

100

Q
ua

lit
y

in
 V

M
A

F

optMetric
qual
qualpsnr
qualssim
withoutOpt

(f)

Figure 10.8: Results for optimizing with respect to different metrics using UB. (a) Quality

of PSNR in one bunny scene, (b) Quality of SSIM in one bunny scene, (c) Quality of

VMAF in one bunny scene, (d) Quality of PSNR in four bunny scene, (e) Quality of

SSIM in four bunny scene, and (f) Quality of VMAF in four bunny scene.

52

16 17 18 19 20 21 22
Number of Sources Cameras

0.0

0.5

1.0

1.5

O
pt

.G
ap

in
PS

N
R

(d
B

) C1G
C2G
C2I

(a)

16 17 18 19 20 21 22
Number of Sources Cameras

0.00

0.01

0.02

0.03

O
pt
. G

ap
 in

 S
SI
M

C1G
C2G
C2I

(b)

16 17 18 19 20 21 22
Number of Sources Cameras

0

2

4

6

8

O
pt

. G
ap

 in
 V

M
A

F

C1G
C2G
C2I

(c)

16 17 18 19 20 21 22
Number of Sources Cameras

0.00

0.25

0.50

0.75

1.00

1.25

O
pt

. G
ap

 in
 P

SN
R

 (d
B

) C1G
C2G
C2I

(d)

16 17 18 19 20 21 22
Number of Sources Cameras

0.00

0.01

0.02

0.03

O
pt

.G
ap

in
SS

IM

C1G
C2G
C2I

(e)

16 17 18 19 20 21 22
Number of Sources Cameras

0

2

4

6

O
pt

. G
ap

 in
 V

M
A

F

C1G
C2G
C2I

(f)

Figure 10.9: Effects of different number of source views. (a) PSNR results for one bunny

scene, (b) SSIM results for one bunny scene, (c) VMAF results for one bunny scene, (d)

PSNR results for four bunnies scene, (e) SSIM results for four bunnies scene, and (f)

VMAF results for four bunnies scene.

53

Novel
View

Optimization

Oculus
Quest 2

RVS
Synthesizer

Quality
Evaluator

Pose
Trajectory Source/Probing

Views
Source
Views

Source/Probing
View Requests

Open3D
Proxy

Unity Engine

Synthesized
Novel Views

Ground Truth
Novel Views

Quality Assessment

Figure 10.10: Our blind streaming system implementation.

54

(a)

(b)

(c)

Figure 10.11: Considered 3D content: (a) House, (b) Bigroom, and (c) Smallroom.

55

30

35

PS
N

R
(d

B
)

0.96

0.98

SS
IM

0 200 400 600 800 1000 1200 1400
Frame

60

80

V
M

A
F

(a)

(b)

(c)

Figure 10.12: Sample synthesized novel views from House with default parameters: (a)

average quality from a random client, (b) and (c) are the synthesized novel views with the

highest and lowest PSNR values, respectively.

56

House Bigroom Smallroom
0

10

20

30

PS
N

R
(d

B
)

8
16
24
32
40

(a)

House Bigroom Smallroom
0.00

0.25

0.50

0.75

1.00

SS
IM 8

16
24
32
40

(b)

House Bigroom Smallroom
0

20

40

60

80

V
M

A
F

8
16
24
32
40

(c)

Figure 10.13: Quality improvement with increasing N : (a) PSNR, (b) SSIM, and (c)

VMAF.

57

40000

60000

House Bigroom Smallroom
0

1000

2000

3000

4000

Novel View
Source View (RGB)

Source View (D)
Probing View

To
ta

lB
an

dw
id

th
(M

b)

Figure 10.14: Bandwidth consumption and distribution. The source/probing views with

N ∈ {8, 16, 24, 32, 40} are reported.

58

House Bigroom Smallroom
0

10

20

30

PS
N

R
(d

B
)

S-Cdd Proposed

(a)

House Bigroom Smallroom
0.0

0.2

0.4

0.6

0.8

SS
IM

S-Cdd Proposed

(b)

House Bigroom Smallroom
0

20

40

V
M

A
F

S-Cdd Proposed

(c)

Figure 10.15: Performance evaluation of S-Cdd/P-Cdd with N = 8 and UM solver: (a)

PSNR, (b) SSIM, and (c) VMAF.

59

House Bigroom Smallroom
0
5

10
15
20
25
30
35

PS
N

R
(d

B
)

C2I
C2G

Uni
BB

UM
Opt

(a)

House Bigroom Smallroom
0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

C2I
C2G

Uni
BB

UM
Opt

(b)

House Bigroom Smallroom
0

20

40

60

80

V
M

A
F

C2I
C2G

Uni
BB

UM
Opt

(c)

Figure 10.16: Performance evaluation of solvers for P-CC with P-Cdd with N = 24: (a)

PSNR, (b) SSIM, and (c) VMAF.

60

House Bigroom Smallroom

50

100

150

200

250

R
un

tim
e

fo
rS

in
gl

e
U

pd
at

e
(s

ec
)

Candidate Generator Coverage Estimator Solver

Figure 10.17: Runtime distribution for a sample update window. We vary the choice of

N from 8 to 40 for each set of 3D content.

0.7 0.8 0.9 1.0
g value

0.2

0.4

0.6

0.8

1.0

SS
IM

/V
M

A
F

SSIM
VMAF
PSNR

22.5

25.0

27.5

30.0

32.5

35.0

37.5
PS

N
R

Quality Metrics - g Value

Figure 10.18: Correlation between quality metrics and aggregated quality.

61

0 1 2 3 4
Times Covered

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
un

ts

1e7

Solver
UM
C2I
C2G

Figure 10.19: Counts of different levels of coverage.

62

Chapter 11

Conclusion

In this chapter, we are going to summarize what we have done in the past few years and

explore possible directions to make our system even better.

11.1 Remarks

In this thesis, we designed, implemented, and evaluated a content-creator-friendly blind

streaming system that serves many 6-DoF clients by synthesizing their novel views from

carefully selected RGB-D source views. Our blind streaming system prevents IP leakage

by only revealing partial 3D content with a few RGB-D source views and low-resolution

depth probing views. We proposed a suite of novel view optimization algorithms to max-

imize the overall synthesized novel view quality across all 6-DoF clients using the cover-

age maps created from two depth images. We mathematically derived an optimal number

of source view candidates to avoid overwhelming the content creator and cloud service

provider. We also presented multiple iterative algorithms to select optimal source views

from the candidates. We compare the proposed algorithms against the state-of-the-art

ones, or say, the suite of algorithms for S-CC, which improve the visual quality by 2.27

dB in PSNR, 0.04 in SSIM, and 12 in VMAF on average, and leave small performance

gaps with respect to an upper bound. Moreover, our experiments revealed that our algo-

rithms are not sensitive to the choice of candidate generator and reduces content creator

bandwidth consumption by 94%. We suggest using N = 1.5|U| with the Uni solver for

real-time systems and UM solver for the best quality under abundant resources.

11.2 Attack using structure-from-motion (SfM)

We check if Structure-from-Motion (Sfm) algorithms can be used to attack our blind

streaming system by reconstructing the 3D content from source views. We adopt a state-

63

of-the-art SfM algorithm, Colmap [33], and reconstruct a point cloud using 720 RGB

source views at 960x540 resolution in House. Colmap ran for more than 10 hours on an

Nvidia RTX 2080 Ti GPU, but still resulted in unacceptable 3D content. Fig. 11.1 gives

sample ground truth and reconstructed 3D point cloud. We observed frequent artifacts,

including: (i) incorrect object positions and (ii) large holes on the floor and other flat

surfaces. Hence, we conclude that our blind streaming system can still protect IP leakage,

even under attacks from a modern SfM algorithm.

11.3 Future work

This work can be extended in several directions, such as: (i) parallelism when solving the

novel view optimization problem, (ii) employment of real-time view synthesis on HMDs,

and (iii) formulation that takes SfM attacks and continuity into account.

The above directions improve the system performance in different ways. Some of

them are for better computational efficiency, while some of them are for better user expe-

rience.

Computational parallelism. In Ch. 9, we have designed several algorithms that could

possibly run in parallel. For instance, the branch operation in BB solver could be paral-

lelized by computing all of them together. This example could also be applied to the clear

and set operation of the UM solver. The computational dependency only exists between

iterations, also called solution update. The branching-like operations are independent of

each other inside an iteration. Therefore, correctly building graph representation of com-

putational dependencies and identifying all independent operations are crucial for best

usage of computational power.

Real-time view synthesis. In our system, we assume that HMDs are powerful enough

to run in real-time. Actually, for our implementation, we offload rendering to a power PC.

In fact, there are different synthesizers which even leverage GPUs more than ever before.

We could incorporate such off-the-shelf synthesizers to improve our user experience.

Optimization for defense against SfM and continuity. In Ch. 10, we found that

VMAF are relatively low compared to the other two metrics for P-CC systems. We con-

cluded that the problem mainly arose from the reason that our optimization objective

does not take temporal continuity into account. Addition is a commutative operation, and

it cannot tell the order and distribution. The second consideration is defense against SfM

attackers. Our formulation only represents coverage, but it does not consider the informa-

tion the attackers are monitoring. A complete formulation will be that we also play the

role of attackers and formulate the reconstruction quality into some numerical forms. The

modeled reconstruction quality will be added to the formulation constraints such that we

64

could also expect how much information is going to be harvested by the attackers.

Network simulation. In Ch. 10, we adapt our blind streaming system to diverse

network status by adapting N . We assume that a proper bandwidth-to-N mapping exists

for our systems. A complete evaluation could further include co-simulation with some

well-known network simulator such as NS-3 [32].

Objective metrics for reconstructed mesh. In this thesis, we only use visual com-

parison and enumerate some artifacts. We also tried some point cloud alignment methods

such as ICP [45]. However, due to the fact that only a few points are reconstructed,

the computed transformation is meaningless and performs worse. We need to switch to

evaluate reconstruction quality using assessing video quality metrics by rendering a huge

amount of video data from the reconstructed 3D content, which could further strengthen

the argument if correct coordinate transformation between the origin and reconstructed

content can be identified.

Implementation for dynamic content. In this thesis, we evaluated how our systems

perform in static content. We could extend the systems to dynamic content by imple-

menting the following features: (i) source views need to be rendered frame by frame to

synthesize continuous clients’ novel views, and (ii) probing views may also be rendered

frame by frame to better observe the dynamics of the 3D content.

65

(a)

Fragmentation

Distorted
Objects

(b)

Figure 11.1: 3D reconstruction of House: (a) ground truth mesh and (b) reconstructed

point cloud with clear artifacts.

66

Bibliography

[1] alvr-org. ALVR - Air Light VR, 2023. https://github.com/alvr-org/ALVR.

[2] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. MatryODShka: Real-

time 6-DoF video view synthesis using Multi-Sphere images. In Proc. of Euro-

pean Conference on Computer Vision (ECCV’20), pages 441–459, Glasgow, United

Kingdom, August 2020.

[3] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van

Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, et al. The SCIP opti-

mization suite 8.0. Technical report, Optimization Online, 2021.

[4] D. Bonatto, S. Fachada, S. Rogge, A. Munteanu, and G. Lafruit. Real-time depth

video-based rendering for 6-DoF HMD navigation and light field displays. IEEE

Access, 9:146868–146887, 2021.

[5] J. Boyce, R. Doré, A. Dziembowski, J. Fleureau, J. Jung, B. Kroon, B. Salahieh,

V. K. M. Vadakital, and L. Yu. MPEG immersive video coding standard. Proc. of

the IEEE, 109(9):1521–1536, September 2021.

[6] P. B. Bullen. How to choose a sample size (for the statistically challenged), 2022.

https://tools4dev.org/resources/how-to-choose-a-sample-size/.

[7] S.-C. Chen. Multimedia research toward the metaverse. IEEE MultiMedia,

29(1):125–127, 2022.

[8] I. Choi, O. Gallo, A. Troccoli, M. Kim, and J. Kautz. Extreme view synthesis. In

Proc. of IEEE/CVF International Conference on Computer Vision (ICCV’19), Seoul,

Korea, October 2019.

[9] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, and I. Cohen.

Pearson correlation coefficient. Noise Reduction in Speech Processing, pages 1–4,

2009.

[10] Epic Games. Unreal engine, 2019. https://www.unrealengine.com.

67

[11] S. Gül, S. Bosse, D. Podborski, T. Schierl, and C. Hellge. Kalman filter-based head

motion prediction for cloud-based mixed reality. In Proc. of ACM International Con-

ference on Multimedia (MM’20), pages 3632–3641, Seattle, United States, October

2020.

[12] J. Haas. A history of the Unity game engine. Diss. Worcester Polytechnic Institute,

483(2014):484, March 2014.

[13] J. Hladky, M. Stengel, N. Vining, B. Kerbl, H.-P. Seidel, and M. Steinberger. Quad-

Stream: A quad-based scene streaming architecture for novel viewpoint reconstruc-

tion. ACM Transactions on Graphics, 41(6):1–13, November 2022.

[14] A. Horé and D. Ziou. Image quality metrics: PSNR vs. SSIM. In Proc. of IEEE

International Conference on Pattern Recognition (ICPR’20), pages 2366–2369, Is-

tanbul, Turkey, August 2010.

[15] X. Hou and S. Dey. Motion prediction and pre-rendering at the edge to enable ultra-

low latency mobile 6DoF experiences. IEEE Open Journal of the Communications

Society, 1:1674–1690, 2020.

[16] M. L. Hänel and C.-B. Schönlieb. Efficient global optimization of non-differentiable,

symmetric objectives for multi camera placement. IEEE Sensors Journal,

22(6):5278–5287, March 2022.

[17] IBM ILOG Cplex. V12. 1: User’s manual for CPLEX. International Business

Machines Corporation, 46(53):157, 2009.

[18] Kris Holt. Meta quest pro will soon support WiFi 6E, 2023. https://reurl.cc/3xxmvL.

[19] B. Kroon and G. Lafruit. Reference View Synthesizer (RVS) 2.0 manual, 2018.

[20] MarketWatch. Metaverse market global analysis 2023-2030, 2023.

https://reurl.cc/944QrY.

[21] L. Markley, Y. Cheng, J. Crassidis, and Y. Oshman. Averaging quaternions. Journal

of Guidance, Control, and Dynamics, 30(4):1193–1197, May 2007.

[22] MIV. MPEG IMMERSIVE VIDEO (MIV), 2022. https://mpeg-miv.org/.

[23] MPEG. The GitLab of mpeg test model for immersive video, 2019.

https://gitlab.com/mpeg-i-visual/tmiv/-/tree/v10.0.1.

68

[24] V. Munishwar and N. Abu-Ghazaleh. Scalable target coverage in smart camera

networks. In Proc. of ACM/IEEE International Conference on Distributed Smart

Cameras (ICDSC’10), pages 206–213, Atlanta, United States, August 2010.

[25] L. Myers and M. J. Sirois. Spearman correlation coefficients. Encyclopedia of

Statistical Sciences, 12, 2004.

[26] Netflix. VMAF - Video Multi-Method Assessment Fusion, 2021.

[27] NVIDIA, P. Vingelmann, and F. H. Fitzek. CUDA, release: 10.2.89, 2020.

https://developer.nvidia.com/cuda-toolkit.

[28] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. Berg. Transformation-grounded

image generation network for novel 3D view synthesis. In Proc. of IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (CVPR’17), Hon-

olulu, United States, July 2017.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neu-

ral Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,

2019.

[30] C. Peng and V. Isler. Adaptive view planning for aerial 3D reconstruction. In Proc.

of IEEE International Conference on Robotics and Automation (ICRA’19), pages

2981–2987, Montreal, Canada, May 2019.

[31] I. E. Richardson. The H.264 Advanced Video Compression Standard. Wiley Pub-

lishing, 2nd edition, 2010.

[32] G. F. Riley and T. R. Henderson. The NS-3 network simulator. In Modeling and

Tools for Network Simulation, pages 15–34. Springer, 2010.

[33] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Proc. of

IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), Las Ve-

gas, United States, June 2016.

[34] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical

simulation for autonomous vehicles. In Field and Service Robotics, pages 621–635.

Springer, November 2018.

69

[35] Y.-C. Sun, S.-M. Tang, C.-T. Wang, and C.-H. Hsu. On objective and subjective

quality of 6DoF synthesized live immersive videos. In Proc. of ACM Interna-

tional Workshop on Quality of Experience in Visual Multimedia Applications (Qo-

EVMA’22), pages 49–56, Lisboa, Portugal, October 2022.

[36] S. Suresh, A. Narayanan, and V. Menon. Maximizing camera coverage in multicam-

era surveillance networks. IEEE Sensors Journal, 20(17):10170–10178, September

2020.

[37] S.-M. Tang, C.-H. Hsu, Z. Tian, and X. Su. An aerodynamic, computer vision,

and network simulator for networked drone applications. In Proc. of ACM Annual

International Conference on Mobile Computing and Networking (MobiCom ’21),

pages 831–833, New Orleans, United States, 2021.

[38] S.-M. Tang, Y.-C. Sun, J.-W. Fang, K.-Y. Lee, C.-T. Wang, and C.-H. Hsu. Opti-

mal camera placement for 6 Degree-of-Freedom immersive video streaming without

accessing 3D scenes. In Proc. of ACM International Workshop on Interactive EX-

tended Reality (IXR’22), pages 31–39, Lisboa, Portugal, October 2022.

[39] The Freeport Player Authors. Freeport player demo (intel), 2022.

[40] S. Tomar. Converting video formats with ffmpeg. Linux Journal, 2006(146):10,

2006.

[41] Unreal Engine. Blueprints visual scripting in unreal engine, 2022.

https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-

engine/.

[42] V. V. Vazirani. Approximation Algorithms. United States, 2003.

[43] X. Wang, A. Chowdhery, and M. Chiang. Networked drone cameras for sports

streaming. In Proc. of IEEE International Conference on Distributed Computing

Systems (ICDCS’17), pages 308–318, Atlanta, United States, June 2017.

[44] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL programming guide: the of-

ficial guide to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing

Co., Inc., 1999.

[45] J. Zhang, Y. Yao, and B. Deng. Fast and robust iterative closest point. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 44(7):3450–3466, 2021.

[46] Q. Zhang, S. He, and J. Chen. Toward optimal orientation scheduling for full-view

coverage in camera sensor networks. In Proc. of IEEE International Conference

70

on Global Communications Conference (GLOBECOM’16), pages 1–6, Washington,

United States, December 2016.

[47] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data process-

ing, 2018. http://www.open3d.org/.

71

	Abstract
	Acknowledgments
	Introduction
	Contributions
	Limitations
	Organization

	Background
	Head mounted display (HMD) and 6 degree of freedom
	Virtual reality (VR) and view touring
	Common streaming media formats

	Related Work
	Novel view synthesis
	Coverage optimization and view selection

	High-Level Design
	Novel View Optimization: Problem and Solution
	Problem formulation
	System specification for S-CC and P-CC

	Pose Predictor
	Candidate Generator
	Candidate generator for S-CC (S-Cdd)
	Candidate generator for P-CC (P-Cdd)
	Optimal number of partitions (M)
	Source view transformation for all poses of each partition

	Coverage Estimator
	Scalar coverage estimator for S-CC
	First order cvg1()
	Second order cvg2()

	Pixel level coverage estimator cvgP() for P-CC
	Mesh creation
	Disocclusion removal

	Solver
	Solver for S-CC
	Integer programming based solvers
	Greedy based solvers

	Solver for P-CC
	Uniform (Uni)
	Branch & Bound (BB)
	Uniform & Modify (UM)

	Performance Evaluations
	Evaluations of S-CC
	Testbed implementation
	Setup for S-CC
	Results for S-CC

	Evaluations of P-CC
	System implementation
	Experiment setup

	Conclusion
	Remarks
	Attack using structure-from-motion (SfM)
	Future work

	Bibliography

