
MPEG-DASH Standard with
SVC Video Streaming on
Android Mobile Devices
CHIEN CHANG CHEN

1

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

2

Mobile Data Traffic
Cisco expected that[1] the mobile data traffic in 2019 will be 10 times the traffic in 2014

3

[1] http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html

Traffic Data for Mobile Video Streaming
Over 70% of mobile data traffic is video streaming

4

It is getting more and more important to provide better mobile video streaming service

SVC is More Suitable for Heterogeneous
Mobile Streaming
Non-scalable video codecs are not suitable for mobile devices

◦ Devices are heterogeneous
◦ Different power computation and screen size

◦ Wireless network conditions are dynamic
◦ Can’t receive entire media data when bandwidth is insufficient

Scalable Video Codec (SVC)
◦ Divided videos into dependent layers

◦ Request proper layers

There is no existing SVC chip
◦ We implemented the pioneering SVC decoder on Android devices

5

SVC

Video
Based

Enh. 1

Enh. 2

Efficient Approach for Transferring Video
Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

◦ Video is divided into segments with the same length

◦ Reuse existing technologies:
→ proxies, caches, codecs, container

◦ Switch events are decided by client side:
→ more accurate decisions

◦ Use common apache web server
→ easy to extend

◦ Without NAT traversal problem

We port MPEG-DASH client from PC to android and integrate it with SVC decoder
◦ High frame-rate and high throughput

◦ Better user experience

6

Contributions
We implement the pioneering SVC decoder on android phones
◦ Leverage multi-threading to enhance decoding performance

We integrate MPEG-DASH client into our SVC decoder
◦ Our DASH client achieves high throughput

Publicize our source codes on Github

7

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

8

Scalable Video Codec - SVC
SVC is extended by H.264/AVC

Supported Scalability
◦ Temporal (Frame-rate)

◦ Spatial (Resolution)

◦ Quality (QP)

Features
◦ Videos are encoded into dependent layers

◦ Based layer is necessary

◦ More enhancement layers → better video quality

9

Based

Enh. 1

Enh. 2

Non-Scalable Video Content
One copy for each combination of video encoding parameters

Duplicate data among multiple copies

10

Source

Video

Encoding

Low

Quality

Medium

Quality

High

Quality

Same Data

SVC Video Content
Without duplicate data among multiple layers

11

Source

Video

Encoding

Based

Enh. 1

Enh. 2

Low

Quality

Medium

Quality

High

Quality

SVC is more suitable for heterogeneous devices

Outline
Introduction

Background
◦ SVC

◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

12

MPEG-DASH
Dynamic Adaptive Streaming over HTTP

Features
◦ Videos are divided into segment with the same length

◦ Requesting unit is segment

◦ MPD (Media Presentation Description) is manifest file

Use existing technologies
◦ Container

◦ Codec

◦ Proxy

◦ Etc.

Enable seamless switching to multiple bit-rate streams

13

• Start = 100s

• …
• Bitrate = 1 Mbit/s

• width = 640

• height = 480

Initialization Segment

http://test.dash/init.mp4
Media Segment 1

http://test.dash/seg1.m4s
Media Segment 2

http://test.dash/seg2.m4s

• Start = 0s

• …

• Start = 100s

• …

• Start = 200s

• …

• Bitrate = 1

Mbit/s

• Bitrate = 3

Mbit/s

MPEG-DASH with SVC Streaming

14

MPEG-DASH with SVC streaming provides more flexible video streaming service

Measured available

bandwidth

Web Server

Video with multiple

layers on Web Server

Android Smart Phone

Time

Enh. 3

Based

Layer

Enh. 1

Enh. 2

Bandwidth

Time

Layer

Time

Enh. 3

Based

Enh. 1

Enh. 2

Received segments on

Client

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

15

System Architecture
The components in our system

1. MPD Generator

2. DASH Content

3. MPD Parser

4. Segment Requester

5. Extractor

6. SVC Decoder

7. Renderer

8. Switch Event Handler

9. Data Recorder

16

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

MPD Generator
1. SVC Videos Encoding

1) Encode videos into raw format

2) Encode raw video into SVC video

2. For MPEG-DASH Streaming
1) Chop SVC videos into segments and generate

corresponding MPD

17

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

DASH Content
1. Place MPDs and segments

2. Requested by accessible URL over HTTP

18

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

MPD Parser
1. Parse MPD file

◦ URL of segments

◦ Codec

◦ Resolution

◦ Dependency id

◦ Bit-rate

2. Information used for Segment
Requester

19

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

Segment Requester
1. Request segment according to

1) Information in MPD

2) Selected layer number

2. The ISO base media file format
(ISOBMFF)

1) A number of different boxes

2) Decoder does not know this format

20

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

Extractor
1. In charge of ISOBMFF

1) Parse ISOBMFF

2) Remove the boxes

3) Obtain the media data

2. Reconstruct frame data
1) Interleave frame data from multiple layers

2) Make frame data compatible with SVC Decoder

21

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

Switch Event Handler
1. Triggered by

◦ User preference

◦ Algorithms

2. Send Notification to
◦ Segment Requester to change the number of layers

for requesting

◦ Extractor to cancel the segments if layer number
exceeds the selected layer number

◦ Decoder to change the decoding parameters

22

1. MPD Generator

MPD File

4. Segment

Requester

8.

Switch

Event

Handler

7. Renderer

9.

Data

Recorder

3. MPD Parser

Video Segments

HTTP Server

5. Extractor

6. SVC Decoder

Android Smart Phone

HTTP 1.0

HTTP 1.1

MPD

Data Recorder
1. Measure the information

◦ Throughput

◦ Frame-rate

◦ Delay

2. Used for
◦ Switching algorithms

◦ Performance analysis

23

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

24

Port SVC Decoder to Android Devices
Single-thread SVC decoders are not real-time for mobile devices

◦ Ex: JSVM[1], OpenSVC[2]

We implemented multi-thread SVC decoder on Android devices
◦ Use OpenSVC as our SVC decoder library

OpenSVC does not support multi-thread
◦ We focus on avoiding race condition problem when invoking the decoder function

25

Decoder doc jeux soap sport talk

JSVM 17.75 (FPS) 20.36 19.44 17.44 19.11

OpenSVC 18.79 27.03 20.79 18.71 24.26

Compare JSVM with OpenSVC (running on OS X with Intel i5 2.3 GHz CPU)

[1] http://www.hhi.fraunhofer.de/en/fields-of-competence/image-processing/research-groups/image-video-coding/svc-extension-of-h264avc/jsvm-reference-

software.html

[2] http://www.opensvc.com/

Decoded

Frame

Buffer

Coded

Frame

Buffer

Decoded

Frame

Buffer

Decoder

Decoder

………

H Threads

Video Files

Streams

Java

Framework

Java Native Interface Android API

1. Decode

2. Retrieve
3. Display

①

②

Multi-Core SVC Decoder
Two main components of multi-core SVC decoder [YCT+13]

 Java Front-End

 Native Decoder

① Java Front-End
◦ Use JNI as interface between Java and Native Decoder

◦ Interact with Android framework by Android SDK

② Native Decoder
◦ Coded Frame Buffer (CFB)

→ stores packets from source

◦ Multiple decoder threads

◦ Decoded Frame Buffer (DFB)
→ stores decoded frames

26

[YCT+13] Y. Li, C. Chen, T. Lin, C. Hsu, Y. Wang, and X. Liu. An end-to-end testbed for scalable video streaming to mobile devices over http (ICME’13)

Replace Renderer with SDL Library
SDL[1] is a popular C/C++ library

◦ An open-source library

◦ Support hardware rendering

◦ Easier to handle events such as screen touch

and video display than Android API

Integrate SDL into our SVC decoder
◦ Directly display frame data in native side

◦ To solve new race condition problem

◦ To avoid deadlock

27

Coded

Frame

Buffer

Decoded

Frame

Buffer

Decoder

Decoder

………

H Threads

Video Files

Streams

Java Native Interface

Call Native Function

1. Start Native

Library

2. Display

Display

Buffer

Renderer

[1] https://www.libsdl.org/

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

28

MPEG-DASH Client
Our DASH Client is based on libdash[1]

◦ An open-source library

◦ Port libdash from PC to Android platform

◦ QT Application
◦ Switch from QT to Android GUI

◦ Design user interface for android

◦ MPD parser doesn't support SVC format

◦ Request segments from one of the multiple streams

◦ Extractor
◦ ISOBMFF parser

◦ Integrate with decoder

29

MPD Parser

(libxml)

Requester

(libcur)

DASH

Framework

Decoder

(libav)

QT Renderer

QT UI

[1] https://github.com/bitmovin/libdash

Switch from QT to Android UI
libdash is highly dependent on QT library

QT User Interface
◦ Switch QT UI to Android UI

◦ Design interface between UI and DASH Client

QT Renderer
◦ Replace QT Renderer with SDL Renderer

◦ Design interface between Decoder and Renderer

30

MPD Parser

(libxml)

Requester

(libcur)

DASH

Framework

Decoder

(libav)

SDL Renderer

Android UI

Make libdash Supportable to SVC
libdash doesn’t support MPD structure for SVC

◦ This format is defined by MPEG

◦ Modify MPD parser to support this format

Multi-layer requester
◦ libdash only requests segments from one of the streams

◦ Support simultaneously requesting segments from multiple layers

31

MPD Parser

(libxml)

Requester

(libcur)

DASH

Framework

Decoder

(libav)

SDL Renderer

Android UI

Extractor Implementation
Segment is ISOMBFF

◦ Segment can’t be directly decoded

Parse ISOBMFF
◦ Trace GPAC source code

◦ Implement simple Extractor according to GPAC

◦ Remove boxes’ header and obtain media data

Reconstruction
◦ The dependency layers segments need to be reconstructed

◦ Decoder is able to decode reconstructed media data

32

MPD Parser

(libxml)

Requester

(libcur)

DASH

Framework

Decoder

(OpenSVC)

SDL Renderer

Android UI

Extractor

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

33

Experiment Setup for Multi-Core SVC Decoder
Video configuration

◦ Five HD videos: doc, jeux, soap, sport, and talk

◦ GOP: 16 frames

◦ Three spatial layers: 960x544, 480x272, and 240x144

◦ Repeat 5 times

Experiment Devices
1) Dual-core tablet with 1.4GHz CPU, 1 GB memory, and 1280x800 screen

2) Quad-core smart phone with 1.5 GHz CPU, 1 GB memory, and 1280x720 screen

34

Video Description

35

Video Description

doc a documentary video talking about a woman who lost her house

jeux a live show video about the guessing games

soap an action style soap video

sport a sports news video including volleyball, basketball, swimming, etc.

talk a talk show video

Performance of Multi-core SVC Decoder
Using 960x544 spatial layer

36

◦ Best FPS with 3 decoder threads ◦ Best FPS with 2 decoder threads

Using 480x272 spatial layer

Power Consumption
Use Agilent 66321D mobile communications DC

We measure the power consumption of our
decoder, mplayer, and hardware decoder on the
smart phone

Our SVC decoder only incurs small power
overhead, as low as 7%, compared to mplayer

37

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder

◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

38

MPED-DASH with SVC Streaming Setup
Video Configuration

◦ Five HD videos: doc, jeux, soap, sport, and talk

◦ GOP size: 16 frames

◦ Each segment has 8 GOPs

◦ Three spatial layers: 320x180, 640x360, and 1280x720

◦ Repeat 5 times

Experiment Device
◦ Quad-core smart phone with 1.5 GHz CPU, 1 GB memory, and 1280x720 screen

Performance Metrics
◦ Frame Per Second (FPS)

◦ Throughput

39

Architecture of Experiment Setup

40

Throughput of MPEG-DASH Client
MPEG-DASH Client provides high bandwidth requirement streaming

41

FPS Performance of SDL Renderer
Decoder achieves 50+, 30+, and 15+ FPS for 320x180, 640x360 and 1280x720, respectively

42

Instantaneous sample points of sport

Outline
Introduction

Background
◦ SVC
◦ MPEG-DASH

System Architecture

Implementations
◦ Multi-Core SVC Decoder on Android
◦ MPEG-DASH with SVC Decoder on Android

Experiments
◦ Multi-Core SVC Decoder
◦ MPEG-DASH with SVC Streaming

Conclusion and Future Work

43

Conclusion
We implemented the pioneering software-based H.264/SVC decoder for Android mobile device

◦ As low as 7% power consumption overhead compared to mplayer

◦ Leverage multi-threading to enhance decoding performance

We also integrate MPEG-DASH standard and SDL library into our client

The experimental results demonstrate the benefits in real testbeds
◦ DASH client achieves high throughput and supports high bandwidth requirement streaming

◦ SVC decoder achieves 50+ FPS and 30+ FPS for 320x180 and 640x360 streaming, respectively

44

Future Work
Our testbed can be used for large-scale user study to provide flexible Quality of Experience (QoE)
model

◦ To Dynamically select video quality according to
◦ Current bandwidth, delay jitter, packet loss rate, buffer state, etc.

◦ To choose the best quality for user
◦ PNSR, Mean Opinion Score (MOS)

Enhance our SVC decoder
◦ Use NEON instructions to speed up decoding

◦ Design more efficient multi-threading decoding structure

Leverage more efficient scalable video coding standards such as H.265/SHVC

45

Our SVC Decoder is Public on Github
Available on: https://github.com/nmsl/svc_android_project

46

End

47

