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中文摘要

人類行為辨識（HAR）在增進人類安全和福祉方面發揮著至關
重要的作用，其應用範圍包含飲食管理、駕駛員監控等領域。毫米

波（mmWave）雷達由於能夠捕捉細緻的動作，且無穿戴式感測器
帶來的不便及視覺感測器可能引發的隱私問題，已成為 HAR 的一
種具有前景的技術。本論文提出將個人化主動學習應用於毫米波雷

達的行為辨識（PALM: Personalized Active Learning for mmWave）。
基於我們先前提出的動態點雲辨識器（DPR: Dynamic Point Cloud
Recognizer），PALM 利用不確定性（Uncertainty）選擇性地向使用
者詢問最具資訊量的樣本，以訓練個人化模型，解決新用戶的冷啟動

問題（Cold Start Problem）。在我們蒐集的進食行為資料集上的實驗
表明，PALM 於兩週的主動學習期間達到了 91.08% 的準確率，超越
了基線和其他方法。此外，利用我們的駕駛行為資料集進行遷移學

習（Transfer Learning），PALM的準確率比從零開始訓練的基線模型
高出 9.87%，曲線下面積（AUC）也提高了 19.48%。這些結果突顯了
PALM 訓練個人化 HAR 模型的有效性，同時將標記工作最小化，使
其適合於真實世界應用的廣泛部署。此外，我們顯示 DPR 比最先進
的體素化（Voxelization）方法更優，準確率提高了 4.10%，同時減少
了 78.29%的記憶體消耗和 69.64%的推論時間，實現了資源的有效利
用。
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Abstract

Human Activity Recognition (HAR) plays a crucial role in enhancing hu-
man safety and well-being, with applications ranging from dietary manage-
ment to driver monitoring. Millimeter-wave (mmWave) radars have emerged
as a promising technology for HAR due to their ability to capture fine-grained
activities without the inconvenience associated with wearable sensors or the
potential privacy issues posed by vision-based sensors. In this thesis, we
introduce PALM: Personalized Active Learning for mmWave. Built upon
our previously proposed Dynamic Point Cloud Recognizer (DPR), PALM
addresses the challenge of cold start for new users by utilizing uncertainty
to selectively query the user about the most informative samples while train-
ing a personalized model. Experiments on our Food Intake Activity Dataset
demonstrate that PALM attains 91.08% accuracy over a two-week active
learning period, surpassing the baseline and alternative methods. Further-
more, leveraging transfer learning from our Driver Activity Dataset, PALM
achieves a 9.87% higher accuracy and 19.48% improvement in Area Under
the Curve (AUC) compared to the baseline model trained from scratch. These
results highlight PALM’s effectiveness in personalizing HAR models while
minimizing labeling effort, making it suitable for widespread deployment in
real-world applications. In addition, we show that DPR outperforms state-
of-the-art voxelization-based methods, achieving a 4.10% increase in accu-
racy while reducing memory consumption by 78.29% and inference time by
69.64%, leading to resource efficiency.
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Chapter 1

Introduction

This chapter provides an overview of the research by outlining its scope and limitations,

highlighting the key contributions, and presenting the organization of the thesis.

1.1 Scope and Limitation

Human Activity Recognition (HAR) is crucial for enhancing human safety and well-

being. By continuously monitoring human activities and behaviors, HAR systems can

provide valuable insights and enable a wide range of applications that can significantly

improve the quality of life. They can detect and monitor various daily activities, such

as walking, food intake, falls, or other emergencies, which can be used to track people’s

health and mobility, enabling timely interventions, better care management, and poten-

tially life-saving assistance. For instance, chronic diseases have become a leading cause

of death worldwide, claiming 41 million lives each year and accounting for 74% of all

deaths [1], highlighting the crucial role of dietary management, especially for vulnera-

ble groups such as the elderly, obese, and individuals with dementia. However, traditional

methods of dietary tracking rely heavily on subjective self-reporting, leading to inaccurate

and unreliable data due to incomplete or inconsistent recording of food portions, ingre-

dients, and meal timings [2]. Another example is Driver Monitoring Systems (DMS),

which play a vital role in enhancing road safety by continuously monitoring driver behav-

ior, alertness, and attention, helping to prevent accidents caused by distraction, fatigue, or

impairment. Furthermore, driver monitoring can enable advanced driver assistance sys-

tems to adapt and respond appropriately, such as initiating automated braking or steering

corrections when necessary.

For HAR systems to be widely applicable in real life, they should ideally be: (i)

non-intrusive, requiring no attachment of additional devices like smartwatches or throat

microphones to minimize discomfort, and (ii) privacy-preserving, eliminating the need for
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RGB cameras and other vision-based sensors, which can invade user privacy due to their

ability to identify individuals and other sensitive attributes. Based on these requirements,

compared to other alternatives, we select in-situ consumer-grade 3D mmWave radars due

to several advantages: (i) non-intrusiveness — not requiring any device wear, minimizing

user burden; (ii) privacy preservation — capturing body movements as sparse dynamic

3D point clouds, containing only a few dozen points per frame; (iii) robustness — un-

affected by lighting conditions, ensuring consistent performance in different real-world

scenarios; (iv) power-efficiency — miniaturized and consuming minimal power, allow-

ing for continuous and unobtrusive monitoring. Fig. 1.1 compares different sensor data

types, showing that mmWave point clouds preserve user privacy better than RGB-D data.

Specifically, the sample data from the RGB and depth cameras provide more detailed and

potentially identifiable information, while the mmWave radar data present a sparse point

cloud that maintains functionality for activity recognition but significantly reduce privacy

risks.

(a) (b) (c)

Figure 1.1: Sample sensor data from: (a) RGB camera, (b) depth camera, and (c) mmWave radar. Compared

to RGB-D data, mmWave point clouds present a lower risk of privacy concerns.

Despite these advantages, mmWave-based HAR systems face challenges that hinder

their practical deployment and performance. One issue lies in the inefficiency of the

common preprocessing technique, voxelization [3, 4], in terms of GPU memory usage.

The voxelization process converts point cloud data into voxels, stored as a 3D array. Since

mmWave radars generate sparse point clouds, often comprising only a few dozen points

per frame, most voxels remain empty after voxelization. Furthermore, when point clouds

are preprocessed as 3D structures, it becomes more computationally demanding for neural

networks to capture spatial information effectively, presenting a challenge for deploying

such systems on devices that lack the necessary computational resources.

An arguably more serious problem arises when attempting to recognize activities per-

formed by a new and previously unseen user, as the lack of personalized training data

capturing their unique motion patterns and body characteristics can lead to reduced ac-
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curacy. In our previous work [5], although the model achieved over 90% accuracy with

a conventional 80/20 train-test split, the accuracy dropped to ∼70% when evaluated on

new subjects, highlighting the impact of what we term the cold start problem. Without

sufficient training data encompassing the variability in how different individuals perform

the same activities, these systems may struggle to accurately classify the activities of pre-

viously unseen subjects, compromising the system’s reliability in real-world scenarios.

1.2 Contributions

Our earlier works include the Food Intake Activity Dataset (FIAD) [6], the Driver Activ-

ity Dataset (DAD) [7], and the Dynamic Point Cloud Recognizer (DPR) [5], an end-to-

end HAR model that operates directly on sparse dynamic 3D point clouds obtained from

mmWave radars, reducing memory consumption and computational resources compared

to voxelization-based methods [8]. In this thesis, we extend these works and make the

following contributions:

• We introduce PALM: Personalized Active Learning for mmWave, an active learning

framework built upon DPR. PALM efficiently trains a personalized model for new users

by utilizing the quantified uncertainty of its activity label prediction to select the most

informative samples from unlabeled activities for labeling.

• We conduct comprehensive experiments to determine optimal system parameters, in-

cluding labeling budget, number of training epochs per new labeled data acquisition,

and efficacy of freezing feature extraction layers.

• We evaluate PALM against state-of-the-art active learning methods, alternative entropy-

based methods [9–15], as well as some diversity-based methods using the FIAD dataset,

providing a comparative analysis of its performance.

• We investigate PALM’s generalizability in a cross-application transfer learning scenario

by applying a global model pre-trained with the DAD dataset to a new user in the FIAD

dataset.

Through extensive experiments on the FIAD dataset, we demonstrate the effectiveness

of our contributions as follows: (i) DPR outperforms previous state-of-the-art voxelization-

based methods, achieving a 4.10% increase in classification accuracy while reducing

memory consumption by 78.29% and inference time by 69.64%; (ii) PALM outperforms

the baseline and four other active learning methods, attaining an accuracy of 91.08%

over a two-week active learning period, with an upper bound of 98.25% observed over
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an extended period; (iii) among the four entropy-based methods evaluated, Max Entropy

achieved the highest accuracy of 92.03% and an AUC improvement of 90.85%, under-

scoring its effectiveness despite requiring more computational resource; (iv) none of the

diversity-based methods outperformed the uncertainty-based ones, highlighting the effi-

cacy of our uncertainty-based approaches in improving model accuracy and efficiency;

(v) leveraging a model pre-trained with our Driver Activity Dataset [7], PALM exhibits

a 9.87% higher accuracy and a 19.48% improvement in AUC compared to the baseline

model trained from scratch, illustrating its ability to benefit from cross-application trans-

fer learning when there is insufficient data for some activities.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 explores related work in HAR

and active learning. Chapter 3 overviews the key concepts and technologies underlying

mmWave-based HAR systems. Chapter 4 states the problem, including the resource in-

efficiency in point cloud processing and the cold start problem of new users. Chapter 5

details the methodology of our proposed DPR model and PALM framework. Chapter 6

presents the experiments conducted to assess the performance of our proposed methods.

Finally, Chapter 7 provides concluding remarks and discusses future directions.
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Chapter 2

Related Work

This chapter provides an overview of existing studies and approaches in two relevant

areas: HAR and active learning.

2.1 Human Activity Recognition

We present a brief overview of HAR and refer the readers to surveys such as [16] for

more details. The existing literature on HAR can be broadly classified into two categories

based on the type of sensors employed: (i) wearable sensors, which move with the user,

and (ii) in-situ sensors, which collect data from where they are installed.

Wearable sensors, such as Electromyography (EMG) [17–19] and Electroencephalog-

raphy (EEG) [20], have been adopted for HAR, as they can be attached to subjects to de-

tect muscle movements. Inertial sensors, like accelerators and gyroscopes [21–26], have

also been adopted for HAR, as they are already installed in modern smartphones, watches,

and wristbands. Despite decent accuracy [27, 28], attaching these sensors to the human

body can be time-consuming, inconvenient, and cause discomfort to the subject, which

limits their widespread adoption for day-to-day use.

In-situ sensors, mainly vision-based RGB-D cameras, have been employed to capture

RGB-D images [29–31] and videos [32–34] for HAR. However, deploying these sensors

in smart home environments could violate individuals’ privacy. Researchers have also

proposed using Radio Frequency (RF) transceivers [35] for HAR. However, these signals

often propagate through noisy Industrial, Scientific, and Medical (ISM) bands. mmWave

radars have been adopted for HAR as a more suitable alternative. For instance, Singh

et al. [36] proposed voxelizing raw point clouds before inputting the voxels into neural

networks, while Wang et al. [37] suggested filtering out environmental noise from the

data before voxelization. A more recent work employed a Graph Neural Network (GNN)

on dynamic edges generated from sparse point clouds [38]. In light of the advantages of
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mmWave radars, we also adopt this sensing modality. However, we address the memory

inefficiency of voxelization to enable more practical deployment of mmWave radar-based

HAR systems in resource-constrained scenarios.

2.2 Active Learning

Active learning refers to a human-in-the-loop machine learning method in which the

learning algorithm can interactively query the user to determine the correct label for spe-

cific data points. This method allows the learning algorithm to improve its accuracy over

time as it learns the correct labels from the user. Existing active learning approaches can

be broadly classified into three scenarios [39]: (i) membership query synthesis, which in-

volves generating synthetic instances for labeling; (ii) pool-based active learning, which

selects samples from a pool of unlabeled data; and (iii) stream-based active learning,

which makes decisions about labeling samples as they arrive sequentially in a stream.

Membership query synthesis [40] is a seminal approach in the field of active learn-

ing. It enables the selection of any samples within the input space for labeling, including

synthetically generated ones, such as synthetic images for classification or synthetic sen-

tences for NLP. While this method provides complete freedom to query labels for any

sample, it can generate nonsensical samples that human annotators cannot adequately la-

bel [41]. In this thesis, we focus on the following two alternative scenarios, utilizing only

real mmWave point cloud data streams.

Pool-based active learning [42] involves selecting the most informative sample from

a static pool of unlabeled data. This method is well-suited for tasks such as image clas-

sification [43] and text classification [44], where large volumes of unlabeled data can

be gathered simultaneously. Several studies have attempted to apply pool-based active

learning to HAR [45–47]. However, HAR involves capturing real sensor data of human

activities, unlike image or text data, where large datasets can be collected simultaneously.

Therefore, relying solely on pool-based scenarios is insufficient; we should also consider

scenarios where data is acquired incrementally.

Stream-based (online) active learning [48, 49] involves processing data that arrives

continuously, requiring the learner to make real-time decisions on whether to query each

sample for labeling without knowledge of future instances. One of the earliest appli-

cations of this approach is spam filtering [50], where a filter is constantly updated by

selecting the most informative emails for labeling. Stream-based active learning can be

broadly divided into two classes: (i) batch-based (window-based) methods, where a buffer

accumulates a batch of samples, and best-out-of-window sampling is used to select sam-

ples for querying, and (ii) single-pass methods, where each sample requires an immediate
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decision on whether to query. Existing studies on applying stream-based active learning

to HAR [51–53] focus on datasets with wearable sensors. In contrast, we compare both

pool-based and stream-based scenarios using datasets featuring in-situ mmWave radars.

To the best of our knowledge, we are among the first to employ stream-based active learn-

ing for mmWave radar-based HAR.
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Chapter 3

Background

This chapter overviews the key concepts and technologies underlying mmWave-based

HAR systems. We examine various sensor modalities employed in HAR and then specif-

ically investigate mmWave radar technology. Subsequently, we explore deep learning,

uncertainty quantification, and active learning, all of which play crucial roles in enhanc-

ing the performance and adaptability of mmWave-based HAR systems.

3.1 Human Activity Recognition

Human Activity Recognition (HAR) has emerged as a pivotal field in ubiquitous comput-

ing, with applications spanning healthcare, smart homes, and human-computer interac-

tion. HAR’s primary objective is automatically identifying and classifying human activ-

ities based on sensor data. Over the years, researchers have explored a diverse array of

sensors to capture human activities, each with its own set of advantages and limitations.

Wearable sensors have been extensively utilized in HAR to capture personalized phys-

iological and kinematic data. These sensors, such as accelerometers, gyroscopes, elec-

tromyography (EMG), and electroencephalography (EEG), offer high precision and in-

dividual-specific data. Accelerometers and gyroscopes collectively capture motion data,

with accelerometers detecting linear acceleration and gravitational forces, while gyro-

scopes measure angular velocity and orientation. EMG sensors measure the electrical

activity of skeletal muscles, providing insights into muscle engagement during various

activities. On the other hand, EEG sensors record the brain’s electrical activity, offering

a window into cognitive states that may correlate with specific activities. Despite their

capabilities, wearable sensors present significant usability challenges. Users often find

them intrusive, uncomfortable, or burdensome to wear consistently. This can lead to non-

compliance and data gaps in long-term studies, potentially compromising the reliability

and continuity of activity recognition systems. The need to regularly charge or replace
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batteries in wearable devices further adds to the user burden, making them less than ideal

for continuous, long-term monitoring scenarios.

In response to these limitations, researchers have turned to in-situ sensors embedded

within the environment. These sensors offer an alternative approach that mitigates some

usability issues associated with wearable devices. Vision-based sensors, such as RGB-D

cameras, have been widely explored due to their ability to capture color and depth in-

formation, enabling detailed analysis of human posture and movement. However, these

sensors raise significant privacy concerns, continuously recording potentially sensitive vi-

sual data within private spaces. Cameras in personal environments like homes or health-

care facilities can be perceived as intrusive, potentially altering natural behavior patterns

and raising ethical questions about data storage and access. Wi-Fi sensing represents an-

other category of in-situ sensing technology for HAR. These systems leverage existing

Wi-Fi infrastructure to detect human activities through signal perturbations. While non-

intrusive and utilizing ubiquitous infrastructure, Wi-Fi sensing systems are susceptible to

interference from other devices operating in the crowded ISM (Industrial, Scientific, and

Medical) bands. This interference can compromise the reliability and accuracy of activity

recognition, particularly in densely populated urban environments or areas with multiple

overlapping Wi-Fi networks.

Given the limitations of wearable sensors, vision-based sensors, and Wi-Fi sensing,

mmWave radar has emerged as a desirable option for HAR applications. mmWave radar

offers a promising balance between non-intrusiveness and robust sensing capabilities.

These systems can capture detailed motion information without recording identifiable

visual data, addressing both privacy and usability concerns. The following section ex-

plores the fundamental principles and variants of mmWave radar systems, focusing on

their application in HAR.

3.2 mmWave Radar

Millimeter-wave (mmWave) radar technology, operating in the 30-300 GHz frequency

range, has gained significant traction in HAR due to its unique advantages. At its core,

radar systems operate by emitting electromagnetic waves and analyzing the reflected sig-

nals to detect and localize objects. mmWave radar, in particular, leverages high-frequency

signals to achieve fine spatial resolution and sensitivity to subtle movements, making it

ideal for HAR applications. The short wavelengths of mmWave signals allow for compact

antenna designs, facilitating the integration of radar systems into consumer devices and

smart home infrastructure.

Radar systems can be broadly categorized into pulse-based radar and continuous-wave
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radar. Pulse-based radar systems emit short, high-power pulses of electromagnetic en-

ergy and measure the time delay of the reflected signals. This approach offers excellent

range resolution, allowing for precise distance measurements to multiple targets. How-

ever, pulse-based systems may have limitations in detecting slow-moving targets due to

the pulsed nature of the transmitted signal. Continuous-wave (CW) radar, on the other

hand, continuously transmits a signal, enabling the detection of Doppler shifts to measure

target velocity. Basic CW radar excels at measuring velocity but cannot accurately de-

termine range. To overcome this limitation, advanced variants like Frequency-Modulated

Continuous-Wave (FMCW) radar have been developed, combining the benefits of contin-

uous transmission with range measurement capabilities.

FMCW radar represents a sophisticated form of continuous-wave radar that addresses

the range measurement limitations of basic CW systems. FMCW radar modulates the

transmitted signal’s frequency over time, typically using a linear chirp. By analyzing the

frequency difference between transmitted and received signals, FMCW radar can simul-

taneously measure targets’ range and radial velocity. This capability is valuable in HAR

applications, where body parts’ position and movement contribute to activity classifica-

tion. The high resolution achievable with FMCW systems, often at the millimeter level,

enables the detection of subtle human movements. This fine-grained motion capture is

crucial for distinguishing between similar activities or detecting micro-gestures, which

may be challenging with other sensing modalities. Moreover, FMCW radar’s ability to

measure velocity through Doppler shifts allows for capturing speed-related features of

human motion, enriching the feature set available for activity classification algorithms.

Figure 3.1: The Texas Instrument IWR1443BOOST module.
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Given these advantages, we employ the IWR1443BOOST mmWave radar by Texas

Instruments, which utilizes FMCW technology. Fig. 3.1 shows the IWR1443BOOST

module [54]. The rich, multidimensional data provided by FMCW radar - including

range, velocity, and angle information - serves as an excellent input for advanced machine

learning algorithms, particularly deep learning models that can automatically extract rel-

evant features from complex input spaces. The following section explores the specifics

of deep learning techniques related to HAR, exploring how these advanced algorithms

process and interpret the complex data generated by sensors such as mmWave radar.

3.3 Deep Learning

The field of Artificial Intelligence (AI) encompasses systems that can perform tasks re-

quiring human-like intelligence, ranging from problem-solving to perception and lan-

guage understanding. Within this broad domain, Machine Learning (ML) focuses on

algorithms that can learn from and make predictions or decisions based on data without

being explicitly programmed for each specific task. Deep Learning (DL), in turn, rep-

resents a specialized subset of ML that utilizes artificial neural networks with multiple

layers to learn hierarchical representations of data.

At the heart of deep learning are neural networks, computational models inspired by

the structure and function of biological neural networks. These networks are composed of

interconnected nodes, or neurons, organized in layers. The input layer receives raw data

features, such as the multidimensional data captured by mmWave radars. This input then

passes through one or more hidden layers, where each neuron applies a weighted sum

of its inputs followed by a non-linear activation function. These hidden layers progres-

sively transform and abstract the input data, learning to represent increasingly complex

features. Finally, the output layer produces the final prediction or classification, such as

the identified human activity. The power of deep learning lies in its ability to automati-

cally learn relevant features directly from raw data, reducing the need for manual feature

engineering. This is particularly advantageous in HAR applications, where the optimal

features for distinguishing between activities may not be immediately apparent or vary

across different sensor modalities and activity types.

Several deep learning architectures have shown promise in HAR applications, each

with strengths and characteristics. Convolutional Neural Networks (CNNs) have proven

particularly effective in processing grid-like data, such as spectrograms or range-Doppler

maps generated from radar signals. CNNs use convolutional layers to automatically learn

spatial hierarchies of features, making them well-suited to capturing the spatial and tem-

poral patterns inherent in human activities. Recurrent Neural Networks (RNNs) and their

11



advanced variants, such as Long Short-Term Memory (LSTM) networks, are designed to

process sequential data, making them effective for capturing temporal dependencies in

activity patterns. These architectures maintain an internal state that can remember infor-

mation over time, allowing them to model the evolving nature of human activities. This

temporal modeling is crucial in HAR, as many activities are defined not just by instanta-

neous postures or movements but by sequences of actions over time.

The application of deep learning to HAR offers several key advantages. First, learning

hierarchical representations allows these models to capture both low-level motion prim-

itives and high-level activity concepts within a single framework. This can lead to more

robust and generalizable activity recognition systems. Second, the scalability of deep

learning models means they can potentially improve as more data becomes available,

making them well-suited to the ever-growing volumes of sensor data in ubiquitous com-

puting environments. Furthermore, transfer learning techniques allow knowledge gained

from one HAR task to be applied to related tasks, enabling more efficient learning in new

domains or for new activities. This is particularly valuable in real-world deployments,

where the ability to quickly adapt to new users, environments, or activity types is crucial.

However, the power of deep learning in HAR also comes with challenges. The “black

box” nature of deep neural networks can make it difficult to interpret their decision-

making processes, which may be problematic in applications where explainability is

essential, such as healthcare monitoring. Additionally, the large number of parameters

in deep models can lead to overfitting, especially when labeled training data is limited.

This necessitates careful selection of the model size, hyperparameters, and regularization

strategies such as dropout, which we will evaluate in Section 6.2.

3.4 Active Learning

Active learning is a human-in-the-loop machine learning paradigm in which the learner

interactively queries the user to determine the correct label for specific data points. This

approach is particularly relevant to HAR systems, where obtaining labeled data can be

time-consuming, expensive, and sometimes intrusive. By strategically selecting which

data points to label, active learning aims to maximize model performance while minimiz-

ing the labeling effort, a crucial consideration in real-world HAR deployments.

Membership Query Synthesis represents one of the earliest and most theoretically

intriguing approaches to active learning. In this framework, the learning algorithm gener-

ates synthetic examples for labeling, potentially exploring the entire feature space to find

the most informative samples. While powerful in theory, applying membership query

synthesis to HAR presents significant challenges. The primary difficulty lies in ensuring
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the physical feasibility of synthesized sensor data. Unlike domains such as image classifi-

cation, where synthetic images can be readily generated and interpreted, creating realistic

sensor data that accurately represent human activities is far more complex. For instance,

synthetic radar signals or accelerometer data must adhere to actual human movements’

physical constraints and temporal coherence. Moreover, even if physically plausible data

can be generated, it may confuse human annotators accustomed to labeling real sensor

data. An expert might struggle to confidently label a synthesized radar signature that

doesn’t match the patterns they’re familiar with from real-world activities.

Pool-based active learning, which assumes a pool of unlabeled data from which the

model selects the most informative samples for labeling, aligns better with many HAR

scenarios. Collecting vast amounts of unlabeled sensor data from users’ daily activities

is often feasible in a typical HAR deployment. The challenge then becomes identifying

which subset of this data should be labeled to improve the model’s performance most ef-

fectively. The pool-based approach typically follows an iterative process. A small subset

of the data is initially labeled to train a preliminary model. This model is then used to

assess the entire pool of unlabeled data, employing various strategies to identify the most

informative samples. For example, the system might locate sequences of mmWave radar

data where the model’s predictions fluctuate rapidly between similar activities (e.g., eat-

ing and drinking). These sequences likely represent transitional movements or edge cases

that, once labeled, could significantly improve the model’s ability to distinguish between

related activities. Once the most informative samples are identified, they are presented to

human annotators for labeling. This newly labeled data is then added to the training set to

update the model. This iterative approach allows the HAR system to progressively refine

its understanding of activities, focusing human labeling effort on the most challenging or

ambiguous cases.

Stream-based (or online) active learning presents a dynamic alternative well-suited to

real-time HAR systems. In this paradigm, the model decides whether to request a label

for each incoming sample in real time. This approach is especially relevant for HAR

scenarios with continuous data streams, such as wearable devices or smart home sys-

tems constantly monitoring user activities. The critical challenge in stream-based active

learning for HAR is making rapid, effective decisions about which samples to label while

keeping pace with the incoming data stream. Various strategies have been developed to

address this challenge. One common approach uses an uncertainty threshold, where la-

bels are requested for samples exceeding a certain level of prediction uncertainty. This

could be particularly useful for detecting and learning new or uncommon activities as

they occur. Another strategy employs a budget-based approach, limiting the number of

label requests within a given time window or data volume. This helps manage the burden
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on human annotators and prevents the system from becoming overly reliant on frequent

human input. In a HAR context, this might translate to requesting labels for no more than

a certain number of activity segments per day, focusing on those the model finds most

ambiguous or informative.

The integration of active learning with HAR systems offers several significant ben-

efits. Firstly, it allows for more efficient use of human annotation resources, focusing

labeling efforts on the most informative or challenging samples. This is particularly valu-

able in HAR, where the cost and intrusiveness of obtaining labeled activity data can be

substantial. Secondly, active learning enables HAR systems to adapt more effectively to

new users or environments. Since individual users may have unique ways of performing

activities, or the system may encounter new contexts (e.g., different home layouts for a

smart home system), active learning can help identify and learn these variations with min-

imal additional labeling effort. Furthermore, active learning can assist in addressing the

challenge of concept drift in HAR, where the characteristics of activities may change over

time due to factors like changes in user behavior or sensor degradation. By continuously

identifying uncertain or misclassified samples, the system can adapt to these changes,

maintaining high performance over extended periods.

However, implementing active learning in HAR systems also presents challenges.

Balancing the desire for optimal sample selection with the need for rapid activity recogni-

tion is still an ongoing area of research. Furthermore, the real-time nature of many HAR

applications requires careful consideration of the computational overhead introduced by

active learning algorithms. Therefore, in Section 6.3, we comprehensively evaluate vari-

ous active learning methods in the context of mmWave-based HAR. We explore the im-

pact of different system parameters, such as labeling budget constraints, which directly

affect the trade-off between annotation effort and model performance. Additionally, we

investigate model update strategies to optimize the balance between computational effi-

ciency and recognition accuracy. Through these investigations, we aim to provide insights

into the most effective active learning approaches for real-world HAR applications, con-

sidering both performance and practical implementation constraints.
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Chapter 4

Problem Statement

This chapter details the two critical challenges of mmWave-based HAR systems: (i) re-

source inefficiency in point cloud processing and (ii) the cold start problem of new users.

4.1 Resource Inefficiency in Point Cloud Processing

Directly processing mmWave point clouds with neural networks poses a challenge due to

the varying number of points across temporal frames. For instance, fast-moving objects

generate numerous radar reflection points, while stationary objects produce few or none.

Voxelization offers a solution by converting the point cloud data into a structured 3D grid

format. However, this approach presents a trade-off: Smaller voxels capture finer details,

leading to higher accuracy, but also increase memory consumption. Fig. 4.1 illustrates the

result of an experiment where we implemented FIA [8], a state-of-the-art voxelization-

based food intake activity recognition method, and varied the voxel size to observe its

impact on accuracy and memory consumption. It shows that there exists a practical limit

beyond which further reduction in voxel size becomes infeasible due to GPU memory

constraints. Voxelization often requires at least thousands of voxels to represent the data

with sufficient detail, but mmWave radars collect sparse point clouds, typically yielding

only a few dozen points per frame. Consequently, after voxelization, most voxels become

zero, representing empty space. This approach is highly inefficient in terms of GPU

memory utilization.

Additionally, point clouds processed as a 3D structure necessitates using three-di-

mensional neural networks (e.g., 3D-CNNs [55]) instead of their two-dimensional coun-

terparts. This incurs a significant computational burden and demands substantial process-

ing resources, hindering the deployment of such systems on resource-constrained single-

board computers, such as the Raspberry Pi or Arduino. We address this issue by exploring

more memory-efficient representations, such as feature maps, which preserve essential
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Figure 4.1: Impact of voxel size on accuracy and memory. Voxels with side lengths below∼4.77 cm exceed

our GPU memory limit of 11 GiB (dashed line).
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features for accurate activity recognition while consuming fewer resources. Detailed ex-

planations of this approach can be found in Section 5.1.

4.2 Cold Start Problem

In the context of HAR, the cold start problem emerges when the system encounters new

users whose data were not included in the training process, resulting in a noticeable de-

cline in accuracy. In our previous work [5], we randomly split our dataset, comprising 24

subjects (each performing 12 activities), into 80% for training and 20% for testing. This

splitting method allowed samples from the same activity and subject to appear in both the

training and test sets, likely contributing to the high test accuracy exceeding 90%. The

model benefited from encountering similar samples during training, thereby performing

well during testing. However, this scenario does not accurately reflect real-world situ-

ations where new users whose data the model has never encountered are introduced to

the system. We investigate this by conducting a leave-one-out test, where the model was

trained on the data from 23 subjects and tested on the remaining one. The results revealed

a drop of almost 20% in recognition accuracy. Details of the experiment can be found in

Section 6.3.

The cold start problem is particularly pronounced with mmWave point clouds because

this data type is relatively scarce, unlike more common ones such as text and images,

which benefit from extensive public datasets and pre-trained models. This is especially

detrimental for today’s deep learning models, which thrive on large datasets. Instead of

attempting to improve generalization, which is difficult under these constraints, we focus

on training a personalized model suitable for an individual user. To achieve this, we need

to collect data from the new user for training purposes. However, requesting extensive

labeling of samples is not feasible. In this context, active learning plays a crucial role

by identifying the most informative samples for label querying, maximizing the model’s

accuracy while minimizing the number of queried labels. Detailed explanations of this

approach can be found in Section 5.2.
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Chapter 5

Methodology

This chapter introduces our proposed Dynamic Point Cloud Recognizer (DPR) model [5]

and Personalized Active Learning for mmWave (PALM) framework, which extends DPR.

Table 5.1 presents a list of symbols utilized throughout the thesis.

Table 5.1: List of Symbols

Symbol Description

Feature Map

x x coordinate of the radar point

y y coordinate of the radar point

z z coordinate of the radar point

v Velocity of the radar point

i Intensity of the radar point

r Range (distance) between the radar and the radar point

b Bearing (angle) of the radar point relative to the radar

DPR

L Input length of the LSTM layer

N Number of LSTM layers

H Number of hidden LSTM states

D Dropout rate during training

B Indicator for bidirectional LSTM employment

PALM

B Labeling budget

D Dropout rate during inference

K Number of samples queried per active learning cycle

E Number of epochs updated per active learning cycle

F Indicator for freezing feature extraction layers
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5.1 Dynamic Point Cloud Recognizer (DPR)

Preprocessing. DPR is designed to recognize activities from mmWave point clouds di-

rectly. It addresses the resource constraints outlined in Section 4.1 by converting each

point cloud frame into a feature map instead of voxels during the preprocessing stage.

This method draws inspiration from MARS [56], originally designed for rehabilitation

applications. Each point cloud frame contains a maximum of 64 points1, with each point

comprising seven features: coordinates x, y, z, velocity v, intensity i, range r, and bearing

b. Since r and b represent 2D polar coordinates, we can choose to utilize either {x, y, z} or

{r, b}. In our earlier work [5], we compared the two approaches and found that employing

{x, y, z} provides a slight advantage in accuracy, possibly due to the inclusion of the third

dimension. Consequently, we discard {r, b} and only adopt five features for each point.

We spatially arrange these 64 points into 8 × 8 feature maps (sorted based on x, y, and

then z, and zero-padded as necessary) with the five feature channels stacked. Utilizing

these feature maps instead of voxelization effectively treats each point cloud frame as a

2D image representation (albeit with five channels instead of the typical three in RGB im-

ages). The reduction in dimensionality saves memory by avoiding the creation of largely

empty voxel grids. Consequently, the computational load imposed on the neural network

is significantly reduced, allowing faster and more efficient processing.

Figure 5.1: The neural network structure of DPR.

1According to the specification of our mmWave radar model (Texas Instrument IWR1443BOOST).
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Neural network structure. Fig. 5.1 illustrates the neural network structure of DPR.

Given that mmWave point clouds encompass spatial and temporal information, it is cru-

cial to employ neural network structures that capture both of them effectively. The com-

bination of Convolutional Neural Network (CNN) [57] and Long Short-Term Memory

(LSTM) [58] offers a balanced, efficient, and robust solution. CNNs effectively extract

spatial features by leveraging convolutional operations that detect local patterns, while

LSTMs model temporal dependencies to maintain long-range temporal relationships. In

DPR, multiple preprocessed frames are first passed through CNN layers for spatial fea-

tures, then through LSTM layers for temporal features, and finally through fully con-

nected layers for classification. In the context of mmWave-based HAR, this approach is

superior to alternatives such as 3D-CNNs [55], which are computationally intensive and

less efficient at handling long-term dependencies. ConvGRUs [59] and TCNs [60], though

simpler and faster, may not capture the complexity of spatial features as effectively as

CNNs or the long-term temporal dependencies as robustly as LSTMs. Transformers [61],

despite their prowess in handling sequence data, often require vast amounts of data and

computational power, making them less practical in our application.

Choice of CNN model. Since each point cloud frame is treated as a 2D image,

widely-adopted CNN models for images, such as AlexNet [57], GoogLeNet [62], and

ResNet [63], can be employed with minimal adjustments. Experiments in our earlier

work [5] suggested that among these models (along with the original one employed by

MARS [56]), ResNet produces the best results. Specifically, ResNet-34 outperformed

both its 18- and 50-layer counterparts, suggesting that unquestioningly increasing the

number of layers does not necessarily yield better results, likely due to overfitting. There-

fore, while DPR is compatible with various CNN models, we adopt ResNet-34 as the

CNN model for evaluation.

System parameters. DPR is characterized by several key parameters, including L,

the output length of each CNN layer and the input length of the LSTM layer; N , the

number of LSTM layers; H , the number of hidden LSTM states; D, the dropout rate

for regularization; and B, a boolean indicating the use of Bidirectional LSTM. Optimal

values for these parameters are determined through experiments specified in Section 6.2.
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5.2 Personalized Active Learning for mmWave (PALM)

The objective of PALM is to mitigate the cold start problem in mmWave-based HAR sys-

tems. However, the limited availability of training data for mmWave point clouds makes

it infeasible to develop a model that accurately works for any user. We address this chal-

lenge by creating a personalized model, ensuring that the model learns and adapts to the

unique characteristics of the new user. Since we aim to classify samples into predefined

sets of human activities rather than cluster similar samples without predefined categories,

obtaining labeled data from new users is essential for training. Nonetheless, requesting

a large amount of labeled data from users is impractical due to the associated burden

and time consumption. Therefore, the system must identify and query labels for only the

most critical samples - specifically, those where the model is most uncertain. We achieve

this through active learning [39], a machine-learning strategy designed to enhance model

performance by selectively querying labels for the most informative samples, thereby re-

ducing the labeling burden on the user while maximizing the accuracy of the personalized

model.

Figure 5.2: An overview of the PALM framework. Acc. stands for accuracy, and the height of the red bar

illustrates the level of accuracy, while the height of the purple bar illustrates the level of uncertainty.
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System overview. Fig. 5.2 provides an overview of the PALM framework. Before

deployment with new users, a global model is pre-trained using labeled data in a dataset

of existing users. Upon the arrival of a new user, the model weights are transferred to the

personalized model for initialization. Subsequently, the daily active learning cycle begins

with the following steps:

1. Capture the activity data stream from the new user and store it in a buffer.

2. Input the buffered samples into the personalized model for prediction.

3. Predict probabilities for classification from the model.

4. Quantify the uncertainty associated with each prediction.

5. Select samples with high uncertainty for label querying.

6. Update the personalized model using the newly acquired labeled data.

7. Repeat steps 3–6 until the labeling cost exceeds the labeling budget.

8. Clear the buffer and conclude the cycle for the day.

Algorithm 1 gives a detailed step-by-step procedure. The following paragraphs pro-

vide an in-depth explanation of the system’s components and operation, focusing on: (i)

the labeling budget, (ii) uncertainty quantification, (iii) output variability, (iv) query strat-

egy, and (v) model update strategy.

Algorithm 1 Personalized Active Learning for mmWave (PALM)
Require: labeling budget B, number of queries K, number of epochs E

1: Pre-train a global model and transfer the weights to the personalized model

2: for each active learning cycle do
3: Store the incoming data stream to the buffer

4: c← 0 ▷ labeling cost

5: while c < B do
6: Make prediction(s) for each sample

7: Quantify uncertainty for each sample based on the prediction(s)

8: Query the labels for the samples with the top K highest uncertainties

9: c← c+K

10: Train the personalized model for E epochs with the queried samples

11: end while
12: end for
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Labeling budget. A critical factor in an active learning system is the labeling budget,

denoted as B, which, in our case, represents the number of label queries that can be made

each day. A higher B allows for rapid model improvement by providing more labeled

data in a shorter time, but it also risks overwhelming or annoying the user with frequent

labeling requests. Conversely, a lower B reduces the user’s burden but may slow the

model’s learning progress. Therefore, determining an optimal labeling budget is crucial

for maintaining user engagement while ensuring efficient model enhancement. We will

evaluate different values of B in Section 6.3.

Uncertainty quantification. Uncertainty of a machine learning model’s prediction is

a good metric for determining the chances of misclassification for that prediction [64]; in

other words, uncertainty can be used to identify doubtful label predictions. In the context

of HAR, uncertainty can be crucial in identifying which samples (those with the high-

est uncertainty) the model should prioritize for acquiring labels [53]. Although the ISO

GUM [65] defines Type A standard uncertainty as the experimental standard deviation of

the mean of multiple observations, it presents no methods for quantifying the uncertainty

of ordinal quantities or nominal properties inherent in classification tasks; however, due

to the need of knowing the doubt in a classification result, researchers and practitioners

employ various approaches to estimate uncertainty in classification [66]. These methods

include Least Confidence, Margin Sampling [9, 10], Deviation of Predictions [11, 12],

and Information Entropy [14, 15]. Least Confidence (LC) selects the sample for which

the model is least confident in its prediction, i.e., the sample with the lowest predicted

probability for the most likely class. Given a sample x,

LC(x) = 1− pbest (5.1)

where pbest is the probability of the most likely class of sample x. Margin Sampling

calculates the difference between the top two predicted class probabilities, with a smaller

margin indicating higher uncertainty:

M(x) = pbest − psecond (5.2)

where pbest and psecond are the probabilities of the most and second most likely classes,

respectively. This is also called Best-vs.-Second-Best Margin. It is worth noting that

other variations exist, such as Best-vs.-Worst Margin and Multi-class Margin. Deviation

of Predictions, which is similar to Type A uncertainty quantification and uses multiple

observations (or predictions, in the case of classification), quantifies the uncertainty as the

deviation of the predicted probabilities across multiple predictions:

D(x) =

√√√√ 1

M

M∑
m=1

(pmbest − pbest)
2 (5.3)
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where M is the number of predictions, pmbest is the probability of the most likely class in

prediction m, and pbest is the average probability of the most likely class across all M

predictions. Finally, information entropy is quantified as:

H(x) = −
C∑
i=1

pi log(pi) (5.4)

where C indicates the total number of classes, and pi indicates the average predictive

probability of class i. PALM employs Information Entropy, which has been shown to be

one of the best indicators of uncertainty for classification [64]. We will evaluate PALM’s

performance against other uncertainty quantification methods in Section 6.3.

Multiple predictions. The Deviation of Prediction method described above neces-

sitates multiple observations, i.e., multiple predictions. This can be achieved through

several approaches [67] including Monte Carlo (MC) dropout, MC batch normalization,

Deep Ensembles, and others. We employ MC dropout due to its simplicity and efficiency,

which requires minimal modifications to the existing model architecture and can be easily

integrated without significantly increasing computational overhead. MC dropout involves

randomly dropping neurons in the neural network during inference, with a dropout rate

of D. We employ the same D value used for regularization during training, the optimal

value of which will be determined through the experiment specified in Section 6.2.

We can also incorporate multiple predictions to calculate Information Entropy. One

such method is Entropy Mean, which computes the entropy of the mean prediction across

numerous runs, potentially capturing a more robust representation of the model’s uncer-

tainty. Another approach is Max Entropy, which identifies the maximum entropy among

a set of predictions, focusing on the most uncertain instances. Additionally, the Bayesian

Active Learning by Disagreement (BALD) method [13] offers a nuanced perspective by

calculating the difference between Entropy Mean (the entropy of the mean prediction)

and Mean Entropy (the mean of individual predicted entropies). A higher BALD score

indicates higher uncertainty on average, as different instances of the model disagree. We

will compare these entropy-based methods in Section 6.3.

Query strategy. After quantifying the uncertainty of each prediction, we select the

samples with the highest uncertainty for label querying. This ensures that labeling efforts

focus on the most doubtful cases, which are likely to enhance the model’s performance

the most. Rather than selecting a single sample at a time, choosing the top K samples

with the highest uncertainties is possible. However, we opt for K = 1 to minimize

user burden. Asking users to label multiple samples at once can be intrusive and time-

consuming, potentially leading to decreased user engagement and cooperation. Limiting

the queries to one sample at a time ensures that the labeling process remains manageable

and less disruptive for users, promoting long-term participation and data quality.
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Diversity. In addition to uncertainty, we can utilize diversity [68] to ensure the model

is exposed to a broad range of scenarios. Unlike uncertainty, which focuses on the ambi-

guity of the model predictions, diversity emphasizes the variability of the selected sam-

ples. By combining uncertainty and diversity using weights, we can balance the need to

resolve ambiguous predictions with the need to cover a wide range of data distributions.

Diversity can be quantified using the L1- or L2-norm, which measures the differences

between feature vectors. These feature vectors can be derived from the raw input data or

the outputs of feature extraction layers (CNN and LSTM) just before they are fed into the

classification layers (fully connected layers). Additionally, reinforcement learning [69]

can dynamically decide whether to prioritize uncertainty or diversity in each active learn-

ing cycle based on the model’s current state. This approach allows for a more adaptive

and efficient learning process, tailoring the selection strategy to the evolving needs of

the model. However, incorporating diversity does not necessarily guarantee improved

performance. For instance, prioritizing diversity might introduce samples that, although

different, do not contribute significantly to reducing uncertainty, thereby diluting the ef-

fectiveness of the active learning cycle. Therefore, we will empirically evaluate the impact

of these configurations in Section 6.3.

Model update strategy. We utilize the newly obtained labels to update the personal-

ized model. There are two main approaches for that [48]: complete re-training and incre-

mental training. Complete re-training is typically employed when a substantial amount of

labels is obtained simultaneously, making the previous model irrelevant. Instead, we use

incremental training, which fine-tunes the model to preserve existing knowledge without

starting from scratch. A critical parameter in this process is the number of epochs, E,

used for updating the model upon receiving new labeled data. This parameter directly

influences the trade-off between computational efficiency and the degree of model refine-

ment. Additionally, we introduce a binary parameter F ∈ {True,False} to control the

freezing of feature extraction layers (CNN and LSTM) during the update process. When

F = True, only the classification layers (fully connected layers) are fine-tuned, while

F = False allows for updating the entire neural network architecture. The decision to

freeze layers can conserve computational resources but may result in lower accuracy. In

Section 6.3, we will evaluate different values of E and both states of F to identify the

optimal configuration.
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Chapter 6

Evaluations

In this chapter, we evaluate our proposed DPR model and PALM framework for mmWave-

based HAR, focusing on both global and personalized model performances. Our primary

objectives are to assess the accuracy and efficiency of the global model, investigate the

necessity and benefits of personalized models, and explore the impact of various active

learning strategies and transfer learning techniques on model performance.

6.1 Experimental Setup

Given the scarcity of publicly available mmWave-based human activity datasets, we have

curated our own two datasets: (i) Food Intake Activity Dataset (FIAD) [6] and (ii) Driver

Activity Dataset (DAD) [7]. Both datasets consist of sparse point clouds captured using

the IWR1443BOOST model from Texas Instruments. The FIAD dataset comprises 24

subjects performing 12 activities, including three eating-related, three drinking-related,

and six other daily activities, each performed for two minutes. The DAD dataset includes

15 subjects performing 11 driving activities, with four classified as safe and 11 as unsafe,

each performed for one minute. Detailed descriptions of the specific activities included in

FIAD and DAD are provided in Tables 6.1 and 6.2, respectively.
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Table 6.1: Activities Included in the FIAD Dataset

Activity Description Time/Rep

a01 Drinking tea with a cup 4 sec

a02 Drinking tea with a bottle 4 sec

a03 Drinking tea with a straw 4 sec

a04 Eating a burger with hands 4 sec

a05 Eating fruit with a fork 4 sec

a06 Eating noodles with chopsticks 4 sec

a07 Sitting still Continuous

a08 Picking up a call 4 sec

a09 Wiping mouth with a tissue 4 sec

a10 Writing on a piece of paper 4 sec

a11 Reading a book 4 sec

a12 Scrolling a smartphone Continuous

Table 6.2: Activities Included in the DAD Dataset

Activity Description Time/Rep

a01 Waiting Continuous

a02 Driving safely Continuous

a03 Changing gears 4 sec

a04 Checking mirrors 4 sec

a05 Drinking water 4 sec

a06 Touching hair 4 sec

a07 Talking to passengers 4 sec

a08 Checking the phone 4 sec

a09 Picking up a call 4 sec

a10 Nodding Continuous

a11 Reaching sideways 4 sec
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We primarily evaluate DPR and PALM with the FIAD dataset, which provides a di-

verse range of activities and ample data to test our methods thoroughly. Additionally,

we conduct experiments involving transfer learning, where we pre-train the global model

using the DAD dataset and then apply it to a new user in the FIAD dataset. This approach

allows us to assess PALM’s generalization capability in cross-application scenarios, test-

ing its adaptability and robustness when transferred to a different activity recognition task.

We divide the mmWave point cloud data stream into individual samples using a four-

second window (with a one-second stride), as most activities were recorded at a tempo of

four seconds per repetition (with the exceptions noted in the tables). This division resulted

in approximately 34,560 samples for the FIAD dataset (24 subjects × 12 activities × 120

seconds for each activity) and 9,900 samples for the DAD dataset (15 subjects × 11

activities × 60 seconds for each activity).

We implement our proposed methods using PyTorch 1.10 and conduct experiments

on a Linux server with 2.1 GHz Intel Xeon CPUs and NVIDIA 1080Ti GPUs with 11

GiB of memory. For model training, we minimize the cross-entropy loss using the Adam

optimizer with a learning rate of 0.001. These configurations are consistently utilized

throughout this thesis unless otherwise specified.

6.2 Global Model

We evaluate the global model using the commonly adopted 80/20 train-test split [70]. This

setting represents the upper bound performance, where all data are labeled. The resulting

model serves as the pre-trained model for active learning, which we evaluate in the next

section.

DPR parameters. We conduct pilot tests to determine the default system parame-

ters for DPR. A suitable range of parameters was selected for each: L ∈ {39, 256, 576},
N ∈ {1, 2, 3}, H ∈ {64, 128, 256}, D ∈ {0.1, 0.3, 0.5}, and B ∈ {True,False}, with

the default parameters underlined. Given the numerous combinations, we varied param-

eters individually while keeping others fixed at their default values. Fig. 6.1 presents the

accuracy results under various parameter settings, enabling us to identify the optimal pa-

rameters: L∗ = 39, N∗ = 1, H∗ = 128, D∗ = 0.3, and B∗ = True. The dropout rate

D∗ = 0.3 will also be used during inference to generate multiple predictions with MC

dropout, as described earlier.
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Figure 6.1: Accuracy comparison of DPR’s system parameters: (a) L, (b) N , (c) H , (d) D, and (e) B.

Results. We evaluate DPR against FIA [8], a state-of-the-art voxelization-based food

intake activity recognition method. While both approaches utilize a combination of CNN

and LSTM, FIA requires a more resource-heavy 3D-CNN to process voxelized data. Us-

ing the optimal parameters, DPR achieves an accuracy of 99.66%, a modest improvement

of +4.10% over FIA’s accuracy of 95.56%. Fig. 6.2 shows the confusion matrix of DPR,

with the strong diagonal pattern indicating high classification accuracy across all activi-

ties. Fig. 6.3 illustrates the accuracy improvements of DPR over FIA for each activity,

ranging from 1.12% to 8.14%, demonstrating that DPR consistently outperforms FIA

across all activities. More significantly, DPR demonstrates substantial efficiency gains in

both memory consumption and computational resources: DPR consumes only 2131 MiB,

a 78.29% reduction compared to FIA’s 9817 MiB, while having an average inference time

of 31.75 ms per sample, a 69.64% reduction compared to FIA’s 104.58 ms. This dual ad-

vantage in memory and computational efficiency highlights the efficacy of using feature

maps over voxelization, positioning DPR as a more resource-efficient and scalable solu-

tion for deployment on constrained devices. Fig. 6.4 demonstrates the superiority of DPR

over FIA in terms of classification accuracy, memory consumption, and inference time.
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Figure 6.2: Confusion matrix the global model (80/20 train-test split). The prominent diagonal indicates

high classification accuracy across all activities.
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Figure 6.4: Comparison between FIA and DPR on: (a) classification accuracy, (b) memory consumption,

(c) inference time.
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6.3 Personalized Model

As a baseline, we apply the global model directly to a new and unseen subject, represent-

ing the lower bound performance. Fig. 6.5 presents the results of a 24-fold leave-one-out

test, where each subject is treated as the new user while the remaining 23 subjects serve as

existing users. The results demonstrate considerable inter-subject variability in accuracy,

ranging from 38.84% to 85.42%, with an average of 73.24% (indicated by the dashed

line). Notably, subject 23 exhibits particularly low accuracy. Upon further inspection, we

discover that subject 23 exhibits movement patterns that differ significantly from other

subjects, highlighting the necessity for personalized models. Fig. 6.6 shows the confu-

sion matrix of the global model when applied to subject 23 as the new user before any

personalization. This serves as a baseline for evaluating the performance of PALM, which

we employ to train a personalized model for subject 23 in the next section.
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Figure 6.5: Baseline accuracy of the global model applied directly to new users without personalization.

Each bar represents a subject serving as the new user in a leave-one-out test.
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Figure 6.6: Confusion matrix of the global model’s performance on subject 23 as the new user, representing

the worst-case scenario among all subjects. This serves as the baseline for evaluating the effectiveness of

PALM.
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PALM parameters. To determine optimal parameters, we evaluate over a 10-day

active learning period, focusing on: (a) the labeling budget B, (b) the number of training

epochs E each time we obtain new labeled data, and (c) the feature extraction layer freez-

ing parameter F . Given the context of food intake activities, where individuals typically

consume three meals per day, we initially set B = 3 and evaluated E = {1, 10, 20, 40}
with F = False (no freezing). The resulting accuracies, as illustrated in Fig. 6.7(a),

suggest that increasing the number of training epochs can be beneficial, although exces-

sive updates do not necessarily yield improvements in accuracy. Subsequently, we set

E = 20 and evaluated B = {3, 6, 9, 12}. The accuracies presented in Fig. 6.7(b) indicate

that while querying more samples generally enhances performance, excessive queries can

lead to diminishing returns, potentially imposing an undue burden on users. Finally, with

B = 9, we compare model performance for both values of F . The results, illustrated in

Fig. 6.7(c), demonstrate that F = True (freezing feature extraction layers) indeed leads to

lower accuracy compared to F = False (full model training). This finding suggests that

effective personalization necessitates updating both the feature extraction and classifica-

tion layers to better capture new users’ unique motion patterns and characteristics. Based

on these empirical findings, we establish the optimal configuration as E = 20, B = 9,

and F = False for subsequent PALM evaluations.
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Figure 6.7: Accuracy comparison of PALM’s system parameters: (a) E, (b) B, and (c) F .
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Figure 6.8: Learning curves for parameters: (a) E, and (b) B. Increasing the E from 20 to 40 does not

improve accuracy, and increasing B from 9 to 12 yields diminishing returns.
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Results. Table 6.3 presents the evaluation of PALM compared to other methods over

a two-week active learning period, using two key metrics: (a) classification accuracy,

which measures the model’s overall performance, and (b) Area Under the Curve (AUC),

which captures the cumulative performance throughout the active learning process. The

baseline model, which does not employ active learning, achieved an accuracy of 37.94%.

In contrast, all active learning methods demonstrated substantial improvements. Random

Query and Least Confidence methods achieved accuracies slightly below 90%. Margin

Sampling performed better, with an accuracy of 90.86%. Deviation of Predictions only

achieved an accuracy of 83.04%, suggesting that it may not effectively capture the true

model uncertainty in mmWave-based HAR, possibly due to overemphasis on activities

with inherently higher variability. Nevertheless, utilizing Information Entropy from a

single prediction, our proposed PALM outperformed all the other methods, achieving

the highest accuracy of 91.08%, with an upper bound of 98.25% observed over a more

extended period (2 months). Furthermore, PALM exhibited the most substantial improve-

ment in AUC compared to the baseline, with an increase of 87.66% and an upper bound

of 137.86%. This superior performance is also evident in the learning curves shown

in Fig. 6.9, where PALM’s curve consistently remains above those of other methods.

Fig. 6.10 shows the confusion matrix of PALM, where most of the activities are correctly

recognized again. These results highlight PALM’s effectiveness in training personalized

models for mmWave-based HAR.
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Table 6.3: Active Learning Evaluation

Method Acc. AUC vs. Baseline

Baseline (Without Active Learning) 37.94% –

Random Query 89.55% +66.93%

Least Confidence 87.21% +79.02%

Margin Sampling 90.86% +71.46%

Deviation of Predictions 83.04% +68.27%

PALM (Entropy) (Single Prediction) 91.08% +87.66%
PALM (Upper Bound) 98.25% +137.86%
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Figure 6.9: Learning curves comparing different methods over a two-week active learning period, where

PALM’s curve consistently remains above those of other methods.
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Figure 6.10: Confusion matrix of the personalized model’s performance on subject 23 (PALM, after a 14-

day active learning period).
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Entropy-based methods. Table 6.4 further evaluates various entropy-based methods

compared to the baseline without active learning. Interestingly, Entropy Mean, which

calculates the entropy from the mean of 50 predictions, shows a slight decrease in perfor-

mance compared to the single prediction approach. This suggests that simply averaging

multiple predictions may not necessarily lead to enhanced performance. The most effec-

tive method among those evaluated is Max Entropy, which selects the maximum entropy

value from 50 predictions. This method achieves the highest accuracy of 92.03% and

the largest AUC improvement of 90.85% relative to the baseline. The superior perfor-

mance of this approach indicates that considering the most uncertain predictions may be

more informative for active learning than averaging across multiple predictions. Lastly,

BALD yields an accuracy of 89.25% and an 80.49% improvement in AUC. While this

approach demonstrated enhancement over the baseline, it did not outperform the other

entropy-based methods in this evaluation. Notably, while Max Entropy achieves the high-

est accuracy by a small margin, all methods except Entropy (Single Prediction) require

more computational resources, as they involve making multiple predictions for each sam-

ple. This increase in computational cost should be carefully considered when selecting an

approach for practical applications.
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Table 6.4: Entropy-based Methods Evaluation

Method Acc. AUC vs. Baseline

Baseline (Without Active Learning) 37.94% –

Entropy (Single Prediction) 91.08% +87.66%

Entropy Mean (50 Predictions) 89.99% +86.83%

Max Entropy (50 Predictions) 92.03% +90.85%
BALD (50 Predictions) 89.25% +80.49%

0 2 4 6 8 10 12 14
Day

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Baseline

Entropy

Entropy Mean

Max Entropy

BALD

Figure 6.11: Learning curves comparing different entropy-based methods over a two-week active learning

period.
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Diversity-based methods. Table 6.5 and Fig. 6.12 show the results of assessing

whether combining diversity with uncertainty could enhance PALM’s performance. Ini-

tially, a weighted combination of uncertainty and diversity was employed using equal

weights (0.5, 0.5), and two diversity calculation methods are compared: L1-norm and

L2-norm. L2-norm achieves an accuracy of 80.04% compared to 79.09% for L1-norm.

Subsequently, the weighting scheme is adjusted to (0.7, 0.3), favoring uncertainty. This

modification yields improved results, with an accuracy of 88.23%, suggesting that uncer-

tainty is indeed a more potent indicator of labeling importance. An alternative approach

using the output of the feature extraction layer (LSTM) instead of raw input features for

diversity calculation is also evaluated. However, this method achieves a slightly lower

accuracy of 85.23%. Finally, a reinforcement learning approach dynamically chooses be-

tween labeling the highest uncertainty sample or the highest diversity sample based on

the day-to-day accuracy gain as the reward. This method achieves an accuracy of only

79.61%. Notably, while it eventually learns to favor uncertainty over diversity after many

days, its initial exploration phase results in suboptimal performance, making it less effec-

tive than using a fixed weighting scheme. Remarkably, none of the methods incorporating

diversity outperforms the uncertainty-only approach, which maintains the highest accu-

racy at 91.08%. Several factors may contribute to this phenomenon:

• Dataset characteristics: The dataset may possess inherent properties that make uncer-

tainty a more reliable indicator of informative samples than diversity.

• Diversity measurement limitations: The chosen diversity metrics (L1-norm and L2-

norm) may not adequately capture the true diversity of samples in the feature space

for this particular task.

• Interaction effects: There could be complex interactions between uncertainty and di-

versity that are not effectively captured by simple linear combinations or reinforce-

ment learning approaches.

• Saturation effect: As the model improves, the remaining uncertain samples might

inherently represent diverse regions of the feature space, making explicit diversity

considerations redundant.

These findings underscore the complexity of integrating diversity into active learn-

ing strategies and highlight the need for further research to develop more sophisticated

methods that can consistently leverage both uncertainty and diversity to enhance model

performance across various tasks and datasets.
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Table 6.5: Diversity-based Methods Evaluation

Method Acc. AUC

Uncertainty Only (Entropy, Single Prediction) 91.08% –
0.5 Uncertainty + 0.5 Diversity (L1-norm) (Raw Input) 79.09% -18.85%

0.5 Uncertainty + 0.5 Diversity (L2-norm) (Raw Input) 80.04% -21.32%

0.7 Uncertainty + 0.3 Diversity (L2-norm) (Raw Input) 88.23% -7.90%

0.7 Uncertainty + 0.3 Diversity (L2-norm) (LSTM Output) 85.23% -8.14%

Reinforcement Learning (Highest Uncertainty or Diversity) 79.61% -14.92%
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Figure 6.12: Learning curves comparing different ways to incorporate diversity with uncertainty over a

two-week active learning period.
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Transfer learning. Transfer learning enables the adaptation of knowledge from one

domain to another by initializing a model with pre-trained weights. We apply this tech-

nique to enhance food intake activity recognition using models pre-trained on driver ac-

tivity data. Specifically, we utilize a direct one-to-one mapping of activity labels between

datasets, e.g., a01 in DAD (Table 6.1) to a01 in FIAD (Table 6.2), rather than manu-

ally aligning similar activities, since fine-tuning the classification layers is necessary for

both approaches. Table 6.6 presents the evaluation results. The baseline model, trained

from scratch without transfer learning, achieved an accuracy of 80.99%. As expected,

the upper bound model pre-trained specifically on food intake activities demonstrated su-

perior performance with an accuracy of 98.25% and an AUC improvement of 50.75%.

Interestingly, leveraging data from other activity domains proved beneficial even with-

out pre-trained data specific to food intake activities. For instance, models pre-trained

on the DAD dataset exhibited notable improvements over the baseline. Among these,

the model pre-trained using front-facing camera data achieved the highest accuracy of

90.86%, with an AUC increase of 19.48%. The learning curves in Fig. 6.13 indicate that

the front-facing camera pre-trained model consistently performs above the baseline and

other camera angles. This aligns with our intuition, as our FIAD dataset also employs

a front-facing camera angle. These findings highlight the importance of transfer learn-

ing with pre-trained data, demonstrating that our proposed PALM can benefit even from

models pre-trained with mmWave data of other types of activities.
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Table 6.6: Transfer Learning Evaluation

Method Acc. AUC

Baseline (Train from Scratch) 80.99% –

Transfer (Driver Activities, Body Cam) 90.06% +10.29%

Transfer (Driver Activities, Face Cam) 90.86% +19.48%
Transfer (Driver Activities, Hands Cam) 86.04% +8.06%

Upper Bound (Food Intake Activities) 98.25% +50.75%
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Figure 6.13: Learning curves comparing different transfer learning scenarios for food intake activity recog-

nition, where the model pre-trained with face camera data performs the best among the driver activity

scenarios.
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6.4 Summary of Findings

Evaluating the global and personalized models for food intake activity recognition reveals

several key insights. First, the global model performs the best compared to the state-of-

the-art voxelization-based method:

• An accuracy improvement of 4.10%, achieving 99.66%.

• A memory consumption reduction of 78.29%.

• An inference time reduction of 69.64%.

Second, the personalized model trained using our PALM framework over a 14-day ac-

tive learning period achieves the best performance compared to the state-of-the-art active

learning methods:

• Accuracy of 91.08%, with an upper bound of 98.25%.

• Largest AUC improvement of 87.66%, with an upper bound of 137.86%.

Third, among four entropy-based methods, Max Entropy achieved the highest accuracy of

92.03% and AUC improvement of 90.85%. Fourth, none of the diversity-based methods

outperforms the uncertainty-based ones, showing the efficacy of our uncertainty-based

approaches. Finally, transfer learning evaluations demonstrated that pre-training on re-

lated activities, particularly using data captured with similar camera angles, substantially

benefits model performance, achieving accuracy improvements up to 90.86%.
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Chapter 7

Conclusion

In this chapter, we summarize the key findings of our thesis and highlight the advance-

ments made in addressing the challenges of mmWave-based HAR, particularly focusing

on resource efficiency and personalized model accuracy.

7.1 Concluding Remark

In this thesis, we explored the potential of mmWave radars for HAR and addressed the

challenges associated with resource inefficiency in point cloud processing and accuracy

degradation for new users. By introducing DPR and PALM, we proposed solutions to

train memory-efficient personalized models effectively. Experimental results on our Food

Intake Activity Dataset [6] demonstrate the effectiveness of our approach: (i) DPR outper-

forms previous state-of-the-art voxelization-based methods, achieving a 4.10% increase

in classification accuracy while reducing memory consumption by 78.29% and infer-

ence time by 69.64%; (ii) PALM outperforms the baseline and four other active learn-

ing methods, attaining an accuracy of 91.08% over a two-week active learning period,

with an upper bound of 98.25% observed over an extended period; (iii) among the four

entropy-based methods evaluated, Max Entropy achieved the highest accuracy of 92.03%

and an AUC improvement of 90.85%, underscoring its effectiveness despite requiring

more computational resource; (iv) none of the diversity-based methods outperformed the

uncertainty-based ones, highlighting the efficacy of our uncertainty-based approaches in

improving model accuracy and efficiency; (v) leveraging a model pre-trained with our

Driver Activity Dataset [7], PALM exhibits a 9.87% higher accuracy and a 19.48% im-

provement in AUC compared to the baseline model trained from scratch, illustrating its

ability to benefit from cross-application transfer learning when there is insufficient data

for some activities.
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7.2 Future Directions

While our current work shows significant improvements in mmWave-based HAR, there

are several promising directions for future research.

• First, we can enhance the sample selection strategy in active learning by exploring

alternative methods of quantifying uncertainty and diversity.

• Second, we can formulate the querying decision as a reinforcement learning problem,

expanding the selection beyond merely choosing between the highest uncertainty and

highest diversity samples to include a broader range of options.

• Third, we can investigate the application of PALM to other domains [71] beyond food

intake and driver activity recognition. This could help assess its generalizability and

identify any necessary domain-specific adaptations.

• Fourth, integrating PALM with other sensing modalities or data sources [72,73] could

create more comprehensive and accurate HAR systems, addressing some limitations

inherent to mmWave radar-based approaches.

• Lastly, exploring federated learning [74] for PALM could allow for privacy-preserving

personalized models by enabling decentralized learning from distributed data sources

without sharing raw data.
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