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中文摘要

與單一模態資料相比，多模態感測資料能提升複雜任務的模型

表現。聯邦學習（Federated Learning）進一步增強了這一點，既保
護數據隱私又確保模型訓練效果。然而，現有的FL算法往往忽視了
部分用戶分享特定資料模態的意願，並且因缺乏大規模公開資料集

而難以獲取足夠的標記資料。我們提出了模態感知聯邦半監督學習

（MAFS）架構，允許各個客戶端選擇他們認為不敏感且願意與FL伺
服器分享的資料模態。MAFS從這些未標記的不敏感資料中提取有
用訊息，以減輕標記資料匱乏的問題。我們在情感識別（Emotion
Recognition）和人類活動識別（Human Activity Recognition）兩個任務
上評估了MAFS，並將其與多種最先進的FL算法進行比較。實驗結果
顯示，在情感識別任務中，當標記資料比例僅為30%時，MAFS將準確
率提高了至少6.94%，F1-Score提高了至少9.49%，僅比完全標記資料
的結果低0.63%和0.46%。在人類活動識別任務中，MAFS也有良好表
現，例如，準確率提高了至少3.37%，且F1-Score沒有顯著下降。
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Abstract

Compared to unimodal data, multimodal sensor data improves model per-
formance for complex tasks. Federated Learning (FL) further enhances this
by preserving data privacy while ensuring well-trained models. However, ex-
isting FL algorithms often overlook some users’ willingness to share certain
data modalities and struggle to acquire sufficient labeled data due to a scarcity
of large-scale public datasets. We propose Modality-Aware Federated Semi-
Supervised Learning (MAFS) paradigm, allowing individual clients to select
which data modalities they consider insensitive and are willing to share with
the FL server. MAFS then extracts useful information from those unlabeled
insensitive data to mitigate labeled data scarcity. We evaluate MAFS on two
tasks: Emotion Recognition (ER) and Human Activity Recognition (HAR),
and compare it with several state-of-the-art FL algorithms. The experimental
results show that, in the ER task, when the labeled data rate is only 30%,
MAFS improves the accuracy by at least 6.94% and F1-score by at least
9.49%, which are merely 0.63% and 0.46% away from those from a fully
labeled dataset. MAFS also performs well in the HAR task, e.g., it improves
the accuracy by at least 3.37% with no significant drop in F1-score.

ii



Contents

中文摘要 i

Abstract ii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Data Sharing in FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Heterogeneous Privacy Federated Learning (HPFL) 9
3.1 Design Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Distillation in FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Federated Transfer Learning (FTL) . . . . . . . . . . . . . . . . . . . . . 10
3.4 Multimodal Representation Learning . . . . . . . . . . . . . . . . . . . . 11
3.5 Convergence Analysis on HPFL. . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Convergence Analysis on Client Models . . . . . . . . . . . . . . 13
3.5.2 Convergence Analysis of the Distillation Model . . . . . . . . . . 14
3.5.3 Convergence Analysis of the Global Model . . . . . . . . . . . . 15

4 Related Work 21
4.1 Multimodal Federated Learning . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Federated Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . 23
4.3 Modality-Aware Selective Data Sharing . . . . . . . . . . . . . . . . . . 24

5 Problem Statement 25

6 Proposed Solutions 27
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Client Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Server Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



7 Multimodal Applications 32
7.1 Emotion Recognition Dataset . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 IEMOCAP Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Human Activity Recognition Dataset . . . . . . . . . . . . . . . . . . . . 33
7.4 KU-HAR Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Evaluations 35
8.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 System Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.4.1 Impact of Pseudo-Labeling Threshold τ . . . . . . . . . . . . . . . 36
8.4.2 Impact of Labeled Data Proportion . . . . . . . . . . . . . . . . . 36
8.4.3 Impact of Merger Weight α . . . . . . . . . . . . . . . . . . . . 38
8.4.4 Impact of the Dirichlet Parameter . . . . . . . . . . . . . . . . . 38
8.4.5 Sharing One Modality vs. Two Modalities . . . . . . . . . . . . . 39
8.4.6 Impact of Selective Modality Sharing . . . . . . . . . . . . . . . 40

9 Conclusions & Future Works 45

Acknowledgments 47

Bibliography 48

iv



List of Figures

1.1 Sample data from: (a) an RGB camera, (b) a microphone, and (c) a

mmWave radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of multimodal sensor data sharing in MAFS. . . . . . . . . . 3

2.1 Illustration of Federated Learning Workflow. . . . . . . . . . . . . . . . . 6

3.1 Illustration of Multimodal Representation and Fusion. . . . . . . . . . . . 12

3.2 Semantic segmentation loss curves with different momentum: (a) 0, (b)

0.5, and (c) 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Emotion recognition loss curves with different learning rate decay: (a)

0.91, (b) 0.93, and (c) 0.95. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Emotion recognition loss curves with different momentum: (a) 0, (b) 0.5,

and (c) 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Emotion recognition loss curves with different learning rate decay: (a)

0.9, (b) 0.92, and (c) 0.94. . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Training workflow of the Modality-Aware Federated Semi-Supervised

Learning (MAFS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Training workflows of: (a) client model and (b) server trainer. . . . . . . . 29

7.1 Neural network for LMF. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Neural network for LMF. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.1 MAFS results for ER under different τ values. . . . . . . . . . . . . . . . 37

8.2 MAFS results for HAR under different τ values. . . . . . . . . . . . . . . 38

8.3 MAFS results for ER under different α values. . . . . . . . . . . . . . . . 41

8.4 MAFS results for HAR under different α values. . . . . . . . . . . . . . 42

8.5 Model performance comparisons across different Dirichlet distribution

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.6 Model performance comparisons across different sharing modality types. 44

v



List of Tables

8.1 ER model performance comparisons across different labeled data propo-

tion under threshold = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.2 HAR model performance comparisons across different labeled data propo-

tion under threshold = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3 Global Model Performance with Different Numbers of Clients Sharing

Audio and Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.4 Global Model Performance with Different Numbers of Clients Sharing

Audio and Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.5 Global Model Performance with Different Numbers of Clients Sharing

Video and Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Chapter 1

Introduction

In today’s digitally driven world, multimodal machine learning [4, 62] has become an

integral part of our daily lives, significantly enhancing the way we interact with technolo-

gies and each other. Sensors collect a vast amount of data in various modalities, including

visual, auditory, and tactile inputs [5, 48, 3]. While such technologies provide unprece-

dented convenience and insights, they raise critical data privacy and security concerns.

Federated Learning (FL) [45] emerges as a powerful solution in this context, en-

abling the collaborative training of machine learning models on decentralized devices.

FL ensures that sensitive data collected by multimodal sensors never leaves the user’s

device, thereby protecting individual privacy while still benefiting from collective in-

sights. Realizing FL, however, incurs multiple challenges, such as aggregation optimiza-

tion [45, 47, 71, 60, 35] and heterogeneity [11, 17, 14, 29, 61, 69, 21, 52]. While several

algorithms and research efforts have been put forward to address these challenges, a key

problem in leveraging FL effectively is the scarcity of labeled data in the realm of multi-

modal sensor inputs. Most advanced machine learning models require large amounts of

annotated data to learn accurately and quickly, but obtaining such labeled datasets is often

expensive and time-consuming [2, 51].

Current solutions to this challenge include semi-supervised learning (SSL) and unsu-

pervised learning (UL) techniques [72, 23, 9, 55] that attempt to learn from the labeled

and unlabeled data owned by each client. The problem is that if the degree of non-i.i.d. of

the client data is greater, the bias between the client models generated will also be greater.

Although we can use FL algorithms (such as FedAvg) to aggregate these client models

into a global model containing the knowledge of different clients and then use this global

model to perform SSL or UL on unlabeled data to reduce model bias, the model perfor-

mance and robustness of this method are worse than directly learning the global model

from raw data, and the convergence speed is slower. This is because the process of aggre-

gating client models can only obtain indirect information such as gradients or parameters.
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Therefore, we want to improve the above problems by directly obtaining the raw data,

which will involve privacy issues.

When users share raw data with the server, there is a risk of malicious attacks that

could lead to privacy leakage issues. To address this, researchers have proposed algo-

rithms like differential privacy, k-anonymity, l-diversity, and t-closeness [58, 41, 46] to

encrypt the raw data. While these algorithms can quantify the degree of protection against

malicious access to the raw data, they cannot quantify the extent of privacy leakage if the

data has been maliciously obtained. In fact, quantifying the latter is difficult, as indi-

viduals have subjective judgments on data leakage. For example, when registering on a

website, the gender field is often selectively filled since some people may not mind oth-

ers knowing their gender, while others may not want anyone to know. In other words,

different people have varying privacy concerns even for the same data modality. Using a

user-centric metric to quantify this type of privacy is challenging. Therefore, our research

has shifted towards exploring users’ willingness to share different data modalities rather

than establishing a privacy quantifying metric. Leaving the decision to share raw data

with the user does not mean the privacy issue has been resolved. Rather, it allows users

to share data that is relatively insensitive to them, so they feel comfortable even if it is

leaked.

(a) (b) (c)

Figure 1.1: Sample data from: (a) an RGB camera, (b) a microphone, and (c) a mmWave

radar.

The only relevant work [12] applied raw data directly in the FL scenario. This work

proposes the concept of data sensitivity differentiation, which divides different modalities

of data into sensitive and insensitive. Fig. 1.1 shows an example to illustrate the data

sensitivity differentiation among different modality data, which uses an RGB camera to

capture the driver’s facial expressions, a microphone to record the tone of the driver’s

speech, and a mmWave radar to capture the driver’s hand gestures. Notice that we can

easily recognize the driver’s identity through images from RGB cameras. Conversely, it’s

much harder to identify the driver using the sparse point clouds from mmWave radars.
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The difference in the amount of information contained in various modality data can fur-

ther influence the user’s willingness to share data. Generally, users do not want to share

their RGB images, but it may not matter for celebrities. Different users have subjective

considerations regarding their willingness to share different modality data. However, this

work is limited to the scenario where all training data needs to be labeled and cannot be

applied to the problem of scarce labeled data.

1.1 Contributions

We proposed the Modality-Aware Federated Semi-Supervised Learning (MAFS) paradigm

as shown in Fig. 1.2 for a broader scenario, which makes the following contributions:

Figure 1.2: Illustration of multimodal sensor data sharing in MAFS.

• MAFS paradigm collects unlabeled insensitive data from clients and uses SSL

pseudo-labeling to generate usable data for server training. This novel approach

in FSSL reduces client model bias and increases convergence speed.

• MAFS paradigm comes with a modularized design on FL clients and servers, al-

lowing developers to readily augment FL neural network structures into MAFS-ied

version.

• MAFS paradigm has been applied to two sample classification problems on Emo-

tion Recognition (ER) and Human Activity Recognition (HAR) to demonstrate its

practicality and efficiency.
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1.2 Limitations

While the MAFS paradigm shows significant promise, it also has certain limitations.

One major limitation is the dependency on the pseudo-labeling technique used for unla-

beled data, which may introduce noise and inaccuracies, potentially impacting the overall

model performance. Additionally, the computational overhead required for training com-

plex multimodal models on client devices could be a bottleneck, especially for clients

with limited resources. Furthermore, while MAFS improves privacy by only sharing in-

sensitive data, there remains a risk of indirect privacy leakage through model updates

and pseudo-label data. Another limitation is the assumption that the data collected from

clients includes complete and correct labels and modalities. Addressing these limitations

requires ongoing research and development to enhance the robustness, efficiency, and

privacy-preserving capabilities of federated learning systems.

1.3 Organizations

This thesis is organized into several sections to provide a comprehensive understanding

of the MAFS paradigm and its implications. Ch. 1 outlines the motivations behind this

research, the challenges faced in federated learning with multimodal data, and the contri-

butions of the MAFS paradigm. Ch. 2 provides an overview of federated learning, data

sharing, distillation, federated transfer learning, and multimodal representation learning.

It also includes a convergence analysis of the proposed methods. Ch. 3 introduces our

previous work called Heterogeneous Privacy Federated Learning (HPFL), which pro-

posed the idea of data sensitivity differentiation. We apply this concept to our MAFS

paradigm and promote the model performance in federated learning. Ch. 4, discusses the

current state of research in multimodal federated learning and federated semi-supervised

learning, highlighting the gaps that this thesis aims to address. Ch. 5 defines the specific

problems that this research tackles, such as the challenges of unlabeled data usage and

missing modality issues. Ch. 6 details the MAFS framework, including the client trainer,

aggregator, server trainer, and merger. It explains the methodology used to address the

identified challenges. Ch. 7 describes the datasets and neural network architectures used

in the experiments, specifically for emotion recognition and human activity recognition.

Ch. 8 presents the implementation details, hyperparameters, and the experimental results

that demonstrate the effectiveness of the MAFS paradigm. Ch. 9 summarizes the findings

of the research, the contributions of the MAFS paradigm, and potential future directions

for further improving federated learning systems.
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Chapter 2

Background

In this chapter, we introduce three important keywords: Federated Learning (FL), Semi-

Supervised Learning (SSL), and Data Sharing in FL. Through FL, we can reduce the

degree of privacy leakage during the process of training machine learning models. We

can also utilize SSL to help us extract more useful information from large amounts of

unlabeled data, thereby enhancing the performance of the machine learning model. Fi-

nally, through the mechanism of selective data sharing, we can effectively obtain clients’

unlabeled data to assist in the training of the semi-supervised learning model while mini-

mizing privacy leakage.

2.1 Federated Learning

Machine Learning (ML) aids in solving various tasks in daily life, such as Human Activ-

ity Recognition, Object Detection, and Emotion Recognition. Conventional ML involves

collecting data and training models on a powerful machine, a method known as Central-

ized Learning (CL). However, CL faces several challenges:

Privacy Preservation. Training a CL model requires collecting data from all users,

including photos and videos, potentially leading to privacy leakage issues.

Computation Overhead. Large volumes of collected user data can cause computa-

tional overload on the machine. While user data can grow infinitely, machine computation

power has inherent bottlenecks.

Model Personalization. A CL model trained on data from all users may achieve high

generalization but often fails to perform well on subtle differences between users, such as

variations in country or habits. Conversely, training individual CL models for each user

can result in poor performance when collected data significantly differs from training data,

indicating insufficient robustness.

Federated Learning (FL) effectively addresses these issues. Fig. 2.1 illustrates the FL
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training process:

Client trainer. Each user employs a client trainer to train their own client model

locally and shares the parameters of this model with the server.

Aggregator. The aggregator implements various FL algorithms. The server receives

client models from different clients and uses the aggregator to combine these into a single

global model. This global model is then sent back to clients, completing one epoch.

At the start of each new epoch, clients fine-tune the received global model and gener-

ate a new client model. This process repeats continuously. During the FL model training

process, the server does not collect any user data, effectively resolving the user privacy

leakage problem. The server also doesn’t perform any model training; all training occurs

on the client side, significantly reducing the server’s computation overhead. Furthermore,

the global model incorporates knowledge from various clients, enhancing the generaliza-

tion ability of client models. When combined with fine-tuning user data, this approach

produces improved personalized models.

Figure 2.1: Illustration of Federated Learning Workflow.

2.2 Semi-supervised Learning

Machine learning has transformed numerous fields, yet it frequently encounters signifi-

cant challenges:

Limited Labeled Data. Many ML algorithms, especially Supervised Learning (SL)

methods, demand substantial amounts of labeled data for optimal performance. However,

acquiring labeled data in various domains proves challenging. For example, in medical
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imaging, the annotation of images by expert radiologists is both time-consuming and

costly.

High Costs of Data Labeling. Data labeling often requires considerable human effort

and expertise, making it prohibitively expensive, particularly for large datasets. In natural

language processing, tasks such as sentiment analysis or named entity recognition demand

skilled linguists and significant time investment for text annotation.

Impracticality of Full Data Labeling. Labeling all available data is often unfeasible

in real-world scenarios. This is especially true in domains with continuous data genera-

tion, such as social media content or IoT sensor readings, where the volume and velocity

of data production frequently exceed manual labeling capacity.

Semi-supervised learning (SSL) emerges as a potent solution to these challenges. SSL

utilizes both labeled and unlabeled data for model training. SSL algorithms initially learn

patterns and decision boundaries from a small amount of labeled data, then refine and

improve these models using a larger quantity of unlabeled data. Common SSL techniques

include pseudo labeling (self-training), co-training, and graph-based methods.

By learning from a limited set of labeled examples and extending this knowledge to

a larger unlabeled dataset, SSL can significantly enhance model performance compared

to using only the limited labeled data. This approach substantially reduces the cost and

effort associated with data annotation by requiring labeling for only a fraction of the

data. Consequently, SSL enables the development of effective models even when labeling

resources are constrained.

2.3 Data Sharing in FL

FL faces the challenge of data incompleteness for individual clients, necessitating inno-

vative solutions for data sharing without compromising privacy. Direct large-scale data

sharing is restricted to maintain privacy, leading researchers to explore alternative ap-

proaches. These efforts can be categorized into two main strategies.

The first strategy involves the FL server providing additional data to clients before

training begins, either from other clients or public datasets. For example, Huang et al.[28]

suggested the server distribute a small, random subset of the data (up to 1%) to each client.

Although this approach does not consider the local data distribution of each client, it yields

a performance boost of around 1.5%. Jeong et al.[31] improved on this by having clients

upload sample data and report their local data distributions. The server uses these samples

to train a generative adversarial network (GAN) to augment the data, then redistributes

data matching each client’s distribution, enhancing performance by 6%.

Wang et al. [59] introduced the K-Nearest-Neighbors Synthetic Minority Over-Sampling
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Technique (K-SMOTE) for the peer-to-peer (P2P) FL architecture. K-SMOTE generates

new data from existing data, and during P2P communication, clients exchange these syn-

thetic data points along with the model, increasing the volume of training data.

The second strategy allows the FL server to use collected data for further training after

aggregating client models. Yoshida et al.[68] proposed using the server to create an i.i.d.

dataset from client-collected data for additional training. Elbir et al.[16] suggested a hy-

brid training approach where some clients upload all their training data to the server. The

server performs centralized machine learning on this data while clients conduct FL, and

the models are then combined at the server. Hong et al. [27] also proposed a hybrid sys-

tem focusing on minimizing communication and computation overhead while optimizing

model performance.

In contrast to these approaches, Heterogeneous Privacy Federated Learning (HPFL) [12],

which is our previous work, offers a novel solution by leveraging the diverse privacy sen-

sitivity levels of various data types. In Ch.3, we will introduce this work in more detail.

8



Chapter 3

Heterogeneous Privacy Federated
Learning (HPFL)

In this chapter, we introduce our previous work called Heterogeneous Privacy Federated

Learning (HPFL) [12], which is the first work that considers the diverse privacy sensitivity

levels of different modalities in FL. We summarize what kind of problem we try to solve,

how we overcome the challenges, and analyze the model convergence issue.

3.1 Design Intuition

Ideally, we can roughly categorize sensor data based on their level of privacy risk. For

example, an IR image is usually considered being privacy risky than RGB images. How-

ever, determining an exact value to evaluate data sensitivity is challenging. To the best

of our knowledge, there is no clear definition of sensitivity levels for media data as it

largely depends on an individual’s subjective opinion. Therefore, there are no set rules

to determine the accessibility and sharing of data. Hence, we leave it up to users to de-

cide whether specific data can be shared. We also encourage users to share more data to

improve model performance. We use three tools to solve the challenges we meet, which

are Knowledge Distillation (KD), Federated Transfer Learning (FTL), and Multimodal

Representation Learning (MRL).

3.2 Distillation in FL

Knowledge distillation, originally developed for neural network compression, transfers

insights from complex ”teacher” models to simpler ”student” models [26, 22]. Jeong

et al. [30] adapted this concept to FL, introducing Federated Distillation (FD) to reduce

communication costs [49, 73, 24]. In FD, clients send model-specific outputs (logits)
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to the server after local training. The server averages these logits and returns them to

clients for use as soft targets in subsequent training rounds. While FD typically yields

lower performance than FedAvg, it significantly reduces bandwidth usage to about 1%

of FedAvg’s requirements. Park et al. [49] proposed Federated Learning After Distilla-

tion (FLD), which combines FL and FD elements. FLD addresses limited client upload

bandwidth by having clients upload logits and a small portion of their local dataset for

server-side knowledge distillation (KD), while downloading the model. This approach

halves communication overhead compared to FedAvg while maintaining similar perfor-

mance. Further innovations in FD include Zhu et al.’s [73] server-side knowledge gen-

erator to enhance client model training, and Guha et al.’s [24] use of public datasets for

model compression. FD has also been applied to personalize FL methods [34] and sup-

port heterogeneous client model structures [40]. HPFL distinguishes itself by focusing

on improving server model performance without accessing privacy-sensitive data. Un-

like traditional offline distillation, HPFL uses client-computed model-specific outputs to

guide the training of the distillation model on the server. This novel approach utilizes

in-domain privacy-insensitive data, reducing privacy risks compared to methods relying

on client-uploaded or public datasets.

3.3 Federated Transfer Learning (FTL)

Transfer learning [57] involves applying domain knowledge from one area to a different

but similar target domain. This approach is particularly useful when training complex

models on small datasets. By pretraining a model on a large dataset and then fine-tuning

it on a smaller, domain-specific dataset, we can achieve good performance on the target

task. In deep neural networks, shallow layers learn general features, while deeper layers

learn specific features. Typically, the shallow layers are trained on large public datasets

to capture general features and are then frozen. The deeper layers are subsequently fine-

tuned on the target task dataset. In FL, transfer learning is employed for personaliza-

tion [33]. While a global model may not adapt well to each client due to varying data

distributions, the server model generally possesses more knowledge than individual client

models. Federated Transfer Learning (FTL) [13, 66] applies transfer learning principles to

FL, enhancing knowledge transfer between server and client models. Similar techniques

have been extended to more secure systems [53, 43]. Both FTL and HPFL freeze certain

model parameters during training, albeit for different purposes. FTL freezes high-level

general features to derive personalized client models, while HPFL freezes parameters

related to privacy-sensitive data unavailable on the server. These approaches are comple-

mentary due to their orthogonal goals. The key difference between FTL and HPFL lies
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in their methods and targets. FTL freezes layers learning general features and fine-tunes

low-level layers to adapt to local data distributions. In contrast, HPFL freezes model com-

ponents related to sensitive data, effectively fine-tuning specific parts of the model. HPFL

conducts this fine-tuning on the server-side to improve global performance and reduce

model bias, whereas FTL aims for client-side personalization.

3.4 Multimodal Representation Learning

A modality represents a distinct form of data or information, reflecting a unique way of

perceiving or interacting with the world. Common modalities include visual (e.g., im-

ages, video), auditory (e.g., speech, music), textual (e.g., natural language, documents),

numerical (e.g., structured data, time series), and tactile (e.g., touch, pressure) data. These

diverse modalities often provide complementary information, which, when combined, can

lead to a more comprehensive understanding of complex phenomena. For instance, in hu-

man communication, we simultaneously process visual cues (facial expressions, gestures)

and auditory information (speech, tone) to fully comprehend the message.

Leveraging this advantage, multimodal approaches frequently outperform unimodal

methods, particularly in complex real-world scenarios. This superiority is evident in tasks

such as emotion recognition, where combining facial expressions, voice tone, and linguis-

tic content yields more accurate results than using any single modality alone. Multimodal

Representation Learning (MMRL) applies this concept to Machine Learning (ML), fo-

cusing on creating unified representations from multiple modalities. The objective is to

learn a joint representation that captures cross-modal relationships and correlations, en-

abling a more robust and comprehensive understanding of complex data. This approach

is particularly valuable in fields like human-computer interaction, medical diagnosis, and

autonomous systems, where integrating diverse data types can lead to more powerful and

versatile models.

Fig 3.1 illustrates the MMRL workflow. In this context, representation refers to the

encoded or transformed format of data that algorithms can effectively process. It captures

essential features or characteristics of the data, often in a lower-dimensional space. These

representations can be learned through various methods, including deep neural networks,

dimensionality reduction techniques, or embedding algorithms.

Common techniques for generating representations include using Convolutional Neu-

ral Networks (CNNs) for visual data processing, which excel at capturing spatial hierar-

chies in images. Recurrent Neural Networks (RNNs) or Transformers are often employed

for textual data handling, effectively capturing sequential dependencies in language. Fol-

lowing representation generation, fusion techniques combine these representations from
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different modalities. This step is crucial in MMRL as it determines how information

from different sources is integrated. Popular fusion methods include concatenation-based,

weighted sum, attention-based, and so on. Through this process, MMRL facilitates the

extraction of more valuable information from diverse modality data, enhancing the overall

performance and capabilities of machine learning models in multimodal tasks.

Figure 3.1: Illustration of Multimodal Representation and Fusion.

3.5 Convergence Analysis on HPFL.

We prove that the HPFL with KD architecture converges. The HPFL architecture com-

bines the FL and KD features. On the client side, HPFL trains the model using a method

similar to FedAvg. We thus prove the convergence of the client model using a method

similar to FedAvg convergence analysis. On the server side, HPFL trains a distillation

model. We prove the convergence of HPFL by observing the trend of the global model

loss after combining the client model and the distillation model. Our proof process con-

sists of three steps: (i) analyzing the convergence of the client model, (ii) analyzing the

convergence of the server-side distillation model, and (iii) analyzing the convergence of

the global model resulting from the merging of the client and distillation models. The

following sections provide a detailed explanation of each of these steps.
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3.5.1 Convergence Analysis on Client Models

We present a proof technique based on Li et al. [36] and make assumptions about the loss

function and optimizer. The first two assumptions restrict the selection of loss function by

requiring convexity and smoothness. Limiting the convexity and smoothness of loss func-

tions is crucial for the convergence of deep learning models. Convex functions guarantee a

single global minimum, ensuring optimization algorithms like gradient descent converge

effectively. Smoothness relates to the behavior of function gradients; a smooth function

provides consistent gradient directions, facilitating stable optimization. In the complex,

high-dimensional landscapes of deep learning, ensuring convexity and smoothness can

mitigate issues like local minima and saddle points, leading to faster convergence. The

latter two constrain the selection of the optimizer by focusing on the gradients produced

during each update. High gradient variance can cause unstable parameter updates, lead-

ing to oscillation or divergence. Bounding the squared norm ensures manageable update

sizes, facilitating appropriate learning rate selection. Theoretical convergence guarantees

for optimization methods like SGD often require gradient boundedness assumptions. Ad-

ditionally, controlling gradient variance helps in preventing overfitting by reducing the

model’s susceptibility to training data noise and enhancing optimization robustness. In

essence, to ensure stability, convergence, and generalization in deep learning, it is crucial

to manage the magnitude and variability of gradient updates.

Assumption 1 (Smoothness) For all k ∈ K, Lk are all L-smooth, i.e., for any two

points w and w′ within the convex set of the loss function, Lk(w) − Lk(w
′) ≤ L∥w −

w′∥, for some L > 0, Lk is the loss function of the k-th client.

Assumption 2 (Convexity) For all k ∈ K, Lk are all convex, i.e., for any two points w

and w′ within the convex set of the loss function, Lk(a · w + (1− a) · w′) ≤ a · Lk(w) +

(1− a) · Lk(w
′), a ∈ [0, 1].

We aim to discuss whether the chosen loss function conforms to the first two assump-

tions. Specifically, we employed the Categorical Cross Entropy (CE) as the loss function

for the experimental design, including the semantic segmentation and emotion recogni-

tion tasks. Notably, CE itself is an L-smooth function, which satisfies Assumption 1.

Furthermore, we incorporated the softmax function into our experiments, which renders

the resulting function convex. As such, our experimental design satisfies Assumption 2.

Assumption 3 (Bounded Variance of Stochastic Gradient) E∥∇Lk(M
k
C,t, S

k
t )−∇Lk(M

k
C,t)∥2 ≥

σ2
k, Sk

t is the local data uniformly sampled at random from the k-th device at the t-th round,

σk is the expected value of the squared L2 norm of the gradient, Mk
C,t is the parameter of

the k-th client model at the t-th round.
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Assumption 4 (Bounded Squared Norm of Stochastic Gradient) E∥∇Lk(M
k
C,t, S

k
t )∥2 ≤

G2, G = σk

η
, η is the step size.

Next, we discuss the selection constraints for the optimizer. Our experiments used

two optimizers: Stochastic Gradient Descent (SGD) and Adaptive Momentum Estimation

(Adam). Although SGD cannot guarantee that stochastic gradient has bounded variance

and squared norm, reducing momentum and decaying learning rate over time can limit the

variance. Additionally, gradient clipping can limit the squared norm. Hence, by adjusting

hyperparameters such as momentum and learning rate, SGD can meet Assumptions 3

and 4.

Similarly, Adam cannot guarantee bounded variance and squared norm for its stochas-

tic gradient. However, adjusting the momentum and learning rate can limit the magnitude

of the stochastic gradient, enabling Adam to meet Assumption 3 and Assumption 4. In

Appendix 3.5.3, we provide a more detailed explanation of the impact of the size of mo-

mentum and learning rate on convergence. In our experiments, we selected the commonly

used cross-entropy (CE) loss function for classification tasks and the two commonly used

optimizers, SGD and Adam. We have shown that HPFL can train a client-side model that

converges under most similar conditions.

3.5.2 Convergence Analysis of the Distillation Model

KD uses different sources of distilled knowledge and loss functions depending on the task,

necessitating the establishment of a separate loss function for each task [22]. In HPFL,

the distillation model is trained on knowledge sources from the intermediate layers of the

client model, also known as the learning target. This method is called feature-based KD.

To perform HPFL, we establish the following loss function: LS(ϕt(ft(x)), ϕs(fs(x))),

where ft(x) and fs(x) are the feature maps of the intermediate layers for the teacher and

student models, respectively. ϕt, ϕs are the transformation functions to ensure the output

size from both models is the same. Lastly, LS(·) is the similarity function to match teacher

and student feature maps.

To prove the convergence of feature-based KD, we rely on three assumptions based on

Phuong and Lampert [50]. Assumption 5 limits the number of training samples. Assump-

tion 6 requires the loss function to be convex, like Assumption 2, whereas Assumption

7 guarantees that each update of the model parameters brings us closer to the optimal

solution.

Assumption 5 DT ≤ d, where DT and d are the volumes of training data and whole

dataset, respectively.
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Assumption 6 LS(MD,t) → 0 when t → ∞, where LS(·) is the loss function of the

distillaion model, and MD,t is the distillation model parameter after t rounds.

Assumption 7 LS(MD,t) ≥ µ
2
∥MD,t −M∗∥2 for some µ > 0. where M∗ is the optimal

model parameter.

Assumptions 5, 6 and 7 are important to the success of the distillation model. Assump-

tion 5 states that with enough training samples, KD guarantees that the distillation model

parameters will approach the teacher model. Even if the training samples are insufficient,

the distillation model’s parameters will still be a projection in the dataset’s space, meaning

the number of training samples does not directly affect the model’s convergence. Assump-

tion 6 requires that the loss function must be convex. Assumption 7 requires the model

weight to continuously approach the optimal solution during training, which depends on

the optimizer. Sec. 3.5.1 provides more detailed information on these assumptions. In

summary, we satisfy the above three assumptions and complete the convergence proof of

the server-side distillation model.

3.5.3 Convergence Analysis of the Global Model

We investigate the impact of the weight allocation between the client model and the distil-

lation model on the convergence of the global model since it is determined via the weight

allocation between the client and distillation models. As training the distillation model

lacks sensitive data information, it introduces uncertainty in the convergence of the global

model. Hence, we compare the loss curve between the client, distillation, and global

models to evaluate the convergence of the global model. Next, we individually discuss

the two target problems in the experiments.

Semantic segmentation. Fig. 3.2 shows that the client model and global model ex-

hibit decreasing loss as the number of epochs increases, and the loss oscillates within

a fixed range. We also found that as the momentum decreases, the oscillation becomes

more moderate. In addition, it can be observed from Fig. 3.3 that adjusting the decay rate

of the learning rate helps reduce the oscillation of the loss curve without impacting the

overall trend of the loss curve. However, a decay rate that is too large may decrease the

model’s performance. Therefore, we chose 0.95 as the optimal decay rate.

Emotion recognition. From Fig. 3.4, it can be observed that the loss curve oscillates

between 0.6 and 0.7. As the momentum decreases, the oscillation not only becomes

milder but also the upper bound of the oscillation can be reduced to lower than 0.65. We

also examined the effect of different learning rate decay values on the loss. As shown in

Fig. 3.5, the lower the learning rate decay value, the smaller the oscillation amplitude and

the faster the convergence. After testing different learning rate decay values, we found
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that a decay value of 0.92 provides the best balance to prevent performance degradation

of the model.

Overall, the HPFL architecture’s convergence depends on the target task, loss func-

tions, and optimizers. If the loss function and optimizer meet the aforementioned assump-

tions, the model trained by the HPFL framework will converge.
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Figure 3.2: Semantic segmentation loss curves with different momentum: (a) 0, (b) 0.5,

and (c) 0.9.
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Figure 3.3: Emotion recognition loss curves with different learning rate decay: (a) 0.91,

(b) 0.93, and (c) 0.95.
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Figure 3.4: Emotion recognition loss curves with different momentum: (a) 0, (b) 0.5, and

(c) 0.9.
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Figure 3.5: Emotion recognition loss curves with different learning rate decay: (a) 0.9,

(b) 0.92, and (c) 0.94.
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Chapter 4

Related Work

In this chapter, we introduce research related to our work. We discuss three areas: Mul-

timodal Federated Learning, Federated Semi-Supervised Learning, and Modality-Aware

Selective Data Sharing.

4.1 Multimodal Federated Learning

Multimodal Federated Learning (MFL) allows the model to leverage a diverse set of

data modalities, enhancing its ability to capture complex patterns and insights that might

not be possible with unimodal data. The approaches to MFL can be naturally grouped

into several related research directions, each tackling different facets of the field. The

first cluster focuses on enhancing model performance with modality-specific features.

Xiong et al. [64] proposed a unified framework for MFL that addresses the challenges

of modality discrepancy and limited high-quality labeled data in traditional FL methods.

The framework employs three key components: a co-attention mechanism for integrating

complementary cross-modal information, an advanced FL algorithm for extracting global

features across modalities, and a MAML-based personalization technique to tailor the

final model to individual clients. This approach aims to leverage the benefits of multi-

modal data while preserving privacy and improving model performance in FL settings.

Similarly, Yang et al. [67] introduced a feature-disentangled activity recognition network

(FDARN) to address the new task of cross-modal federated human activity recognition

(CMF-HAR). The network is structured around five essential components: two distinct

encoders (altruistic and egocentric), dual activity classifiers (shared and private), and a

modality discriminator. The FDARN aims to learn modality-agnostic features across

clients while preserving modality-specific characteristics collaboratively. It utilizes de-

centralized optimization with a spherical modality discriminative loss to achieve good

generalization across clients and capture client-specific discriminative features. This ap-
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proach is designed to promote large-scale deployment of HAR models on local devices

while addressing the challenges of cross-modal FL. Zhao et al. [70] enhanced the existing

approaches by introducing a framework that combines multimodal and semi-supervised

federated learning, utilizing autoencoders to derive shared or correlated representations

from diverse local data modalities across client devices. This approach incorporates a

novel multimodal FedAvg algorithm to consolidate locally trained autoencoders across

various data modalities. By utilizing auxiliary labeled data on the server, the frame-

work employs the global autoencoder for downstream classification tasks. Experiments

conducted on a diverse dataset, including sensory data and both depth and RGB camera

videos, reveal enhanced classification performance when integrating multiple modalities

into federated learning. The framework demonstrates robust cross-modal generalization,

achieving F1 scores of up to 60% when applying models trained on single-modality la-

beled data to test data from different modalities. This performance is particularly notable

when leveraging inputs from both unimodal and multimodal clients.

Another significant research direction is the application of FL to specific fields. Ber-

necker et al. [7] addressed challenges in liver segmentation across multi-modal medical

imaging using FedNorm and FedNorm+, two FL algorithms with modality-based nor-

malization. These methods overcome privacy concerns and data heterogeneity issues,

achieving Dice scores up to 0.961 across 428 patients from six databases. The approaches

outperform local models and are comparable to centralized models. In parallel, Agbley et

al. [1] applied MFL to melanoma disease analysis, fusing skin lesion images with clinical

data while preserving patient privacy. The FL model’s performance nearly matched CL,

with only slight differences in F1-Score and Accuracy. FL demonstrated higher sensitivity

and competitive results compared to the literature, effectively learning predictive models

without sharing training data.

Advancing FL with cross-modal retrieval and grounding is another area of focus.

Zong et al. [74] cross-modal retrieval by proposing federated cross-modal retrieval (Fed-

CMR), which learns from decentralized multi-modal data. The method trains local mod-

els, aggregates a common subspace on a central server, and updates local models accord-

ingly. This approach addresses privacy concerns and maintenance costs while leveraging

FL benefits, demonstrating effectiveness across four benchmark datasets. Complemen-

tarily, Liu et al. [42] merged image representations from various vision-and-language

grounding tasks using a federated learning framework called aimNet (Aligning, Integrat-

ing and Mapping Network). This approach combines features from different tasks to

create more powerful representations. Tested on image captioning and VQA, aimNet

demonstrated significant improvements over baselines, with up to 14% gains in task-

specific metrics. Guo et al. [25] centered on the method called Contextual Optimization
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(CoOp) to adapt pre-trained vision-language models in FL. However, current FL methods

lack personalization. To address this, pFedPrompt leverages multimodality to personalize

prompts, enhancing performance. Extensive experiments confirm pFedPrompt’s superi-

ority and robust performance across datasets. Liang et al. [38] proposed an FL algorithm

that learns compact local representations on devices and a global model across all devices,

reducing communicated parameters. This approach enhances communication efficiency,

handles heterogeneous data, and maintains privacy, with theoretical and empirical valida-

tion demonstrating reduced variance and fair representation learning.

However, it’s important to note that these studies often overlook the aspect of data

sensitivity differentiation. This aspect is crucial in FL due to the diverse nature of data

sources and the varying levels of privacy concerns associated with different types of data.

By considering data sensitivity, MFL systems can ensure more robust privacy protection,

build trust with data providers, and comply with varying regulatory requirements. This

tailored approach not only enhances data security and user trust but also improves the

overall efficacy and adaptability of the learning model to diverse data environments.

4.2 Federated Semi-Supervised Learning

In traditional FL, models are trained collaboratively across multiple clients without shar-

ing their data, thus preserving privacy. However, FL typically assumes that sufficient

labeled data are available for training, which isn’t always the case. On the other hand,

SSL can leverage a large amount of unlabeled data along with a small portion of la-

beled data to improve learning efficacy. Therefore, Federated Semi-Supervised Learning

(FSSL) addresses a common real-world limitation: the scarcity of labeled data.

Xu et al. [65] introduced the Ada-FedSemi system, which combines on-device labeled

data with cloud-based unlabeled data to enhance deep learning model performance in FL.

Using a multi-armed bandit algorithm, it adaptively determines client participation and

pseudo-label confidence, achieving higher accuracy and lower training costs, especially

with heterogeneous clients. Diao et al. [15] tackled the issue of unlabeled data in FL by

introducing SemiFL, which combines communication-efficient FL with Semi-Supervised

Learning. In SemiFL, clients train with unlabeled data while the server fine-tunes the

global model with labeled data, significantly improving performance and outpacing ex-

isting SSFL methods. Jeong et al. [32] addressed the challenge of unlabeled data in FL

by proposing Federated Matching (FedMatch), which improves upon traditional methods

with inter-client consistency loss and parameter decomposition for disjoint learning on la-

beled and unlabeled data. This approach outperforms both local semi-supervised learning

and naive FL combinations. Fan et al. [18] focused on developing a federated semi-
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supervised learning framework (FedSSL) to train models using scarce and unevenly dis-

tributed labeled data. By creating a unified data space and integrating differential privacy,

FedSSL effectively leverages both labeled and unlabeled data, achieving a 5-20% perfor-

mance boost on SSL tasks with minimal labeled data. Finally, Liang et al. [39] considered

the challenge of FSSL in a Non-IID setting, introducing RSCFed, which addresses uneven

model reliability among clients. By using random sub-sampling and distance-reweighted

aggregation, RSCFed effectively distills sub-consensus models, achieving superior per-

formance on various datasets compared to state-of-the-art methods.

4.3 Modality-Aware Selective Data Sharing

In the realms of MFL and FSSL, recent advancements showcase enhanced model perfor-

mance through diverse data modalities and the innovative use of both labeled and unla-

beled data. MFL studies have improved healthcare diagnostics and personalized learning,

focusing on modality-specific features and cross-modal retrieval. FSSL addresses labeled

data scarcity so as to optimize data use and enhance model efficacy. However, both fields

often overlook data sensitivity differentiation. To our best knowledge, modality-aware

selective data sharing has only been mentioned by Chen et al. [12], but their method is

limited to ideal scenarios where data are all labeled for training. This is why MAFS is

critical, as it generalizes to more realistic use cases.
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Chapter 5

Problem Statement

To increase the model’s training data as much as possible in the FL scenario with scarce

labeled data, we considered that different clients have subjective opinions on sharing data

of different modalities. As Fig. 5.1 shows, we refer to the data that the client is willing

to share as insensitive data and the data that they are not willing to share as sensitive

data. Based on the above scenario, we consider K clients, for all i ∈ {1, 2, . . . , k}. Each

client collects a dataset Di = DSL
i ∪DSU

i ∪DIL
i ∪DIU

i . We use DSL
i ,DSU

i ,DIL
i ,DIU

i

to represent sensitive labeled data, sensitive unlabeled data, insensitive labeled data and

insensitive unlabeled data of i-th client, respectively. Our goal is to solve the problem of

declining model performance caused by labeled data scarcity by leveraging the insensitive

data the client is willing to share.

Figure 5.1: Problem Statement.

Challenge 1: Unlabeled data usage. The advantage of SSL over UL is that SSL

applies the information in labeled data to unlabeled data, allowing the model to gain better

generalization and robustness to noise [72, 37, 6]. Hence, we have decided to use SSL to

handle a large amount of unlabeled data. SSL can be divided into two scenarios: client-

and server-side SSL. Almost all prior FSSL methods adopted client-side SSL, where each

client uses labeled and unlabeled data to train an SSL model and then sends this model
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to the server for aggregation. Since clients can only use their own data for SSL, if the

distribution of the unlabeled data is not similar to that of the labeled data, it will cause the

SSL model to be biased toward the labeled data at the clients. For example, if most actions

in client A’s labeled data are drinking water, and the unlabeled data contains many phone-

calling actions, client A’s SSL model may not be able to learn the phone-calling actions

effectively. Although FL algorithms can aggregate SSL models, while considering the

fractions of labeled data to reduce model bias, the effect may not be obvious. We propose

to address this challenge by leveraging server-side SSL combined with data sensitivity

differentiation. Server-side SSL can learn from labeled data shared by different clients

to benefit others with unlabeled data. Based on the data sensitivity differentiation, we

allow users to subjectively choose which modalities to share. This method allows us to

harness the power of SSL on the server while minimizing privacy risks, striking a balance

between model performance and user privacy protection.

Challenge 2: Missing modality. Clients have varying degrees of willingness to share

different data modalities, which can lead to the problem of missing modalities in the

model input. For example, in a multimodal model that requires audio, video, and text in-

puts. If a client is only willing to share the text modality, the audio and video inputs would

become missing modalities. Researchers proposed methods to handle missing modalities,

including modality imputation [56, 48], and adaptive fusion [63]. However, these meth-

ods require modifications to the original model structure and training samples, or even

a new model to generate full-modality data. These methods increase the time and engi-

neering complexity. We propose to address this challenge by simply filling the missing

modality input with zeros. This method is conservative, giving a lower bound of model

performance while significantly reducing the complexity.
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Chapter 6

Proposed Solutions

6.1 Overview

We propose the Modality-Aware Federated Semi-Supervised Learning (MAFS) paradigm

to utilize the data these clients are willing to share, increasing the model’s training data

and mitigating the performance degradation brought by FL. Our more general focus is

on obtaining more raw data by leveraging the characteristic that each client has a differ-

ent willingness to share data of different modalities rather than focusing on designing a

brand-new model architecture or new feature extraction methods to improve the model

performance of FSSL.

Fig. 6.1 shows the training workflow of the MAFS. The client holds data from multi-

ple modalities. Among these, not all data have labels. We refer to the data with labeled

data, represented in the figure with solid-line boxes, while those without labels are re-

ferred to as unlabeled data, represented with dashed-line boxes. Moreover, based on data

sharing considerations, each client categorizes these various modalities of data into two

types: sensitive and insensitive data, represented in the figure with red and yellow boxes,

respectively. Before training begins, the client sends the labeled and unlabeled insensitive

data to the server, as well as all the yellow boxes in the figure.

During the training process on the client side, each client first utilizes a client trainer

to train their respective labeled data and generate their own client model, denoted as

MC in the diagram. Upon completion of training, all clients send their respective client

models to the server. The server first utilizes an aggregator to aggregate all collected client

models into one aggregated model, denoted as MA in the diagram, adopting FedAvg [45]

approach after receiving client models from each client. During the SSL process, the

server feeds insensitive unlabeled data from different clients into the aggregated model,

retains data that meets certain criteria, and generates a pseudo-label dataset. Subsequently,

the server employs a server trainer to train the insensitive labeled data shared by clients
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Figure 6.1: Training workflow of the Modality-Aware Federated Semi-Supervised Learn-

ing (MAFS).

and the newly generated pseudo-label dataset to produce an SSL model, denoted as MS in

the diagram. Then, the server uses a merger to merge the aggregated and SSL models to

generate the final global model, denoted as MG in the diagram. Finally, the server sends

this global model back to all clients for the next round of training, enabling all clients to

possess knowledge and information of both labeled and unlabeled data simultaneously.

6.2 Notations

We consider K clients, for all i ∈ {1, 2, . . . , K}. Each client collects a dataset Di =

DSL
i ∪ DSU

i ∪ DIL
i ∪ DIU

i . We use DSL
i ,DSU

i ,DIL
i ,DIU

i to represent sensitive labeled

data, sensitive unlabeled data, insensitive labeled data and insensitive unlabeled data of i-

th client, respectively. Considering the whole training process with T rounds, we use MC
i,t

to represent the client model of i-th client in t-th round. We also use DP
t ,M

A
t ,M

S
t ,M

G
t

to represent pseudo-label dataset, aggregated model parameter, SSL model parameter and

global model parameter in each round, respectively. During the training, we use τ to

represent the pseudo-label threshold and use hyperparameter α to represent the weight

that will be applied to merge the SSL model MS and the aggregated model MA.

6.3 Client Trainer

The purpose of the client trainer is to allow each client model to learn its features and

distribution from its own collected data. In each round t, client i would use its collected

labeled data DL
i = DSL

i ∪ DIL
i with labels Yi to train its client model MC

i,t by its client
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trainer.

MC
i,t+1 = argmin

MC
i,t

Li(D
L
i , Yi | MC

i,t), where

Li(D
L
i , Yi | MC

i,t) =
1

|DL
i |

∑
CE(MC

i,t(D
L
i ), Yi),

(6.1)

Li(·) represents the client loss function. Developers can choose a suitable loss function

according to different tasks or applications, such as Cross Entropy (CE) or Mean Square

Error (MSE), among others. Similarly, the model architecture used for training client

models can also be different depending on the developer’s task, and the client trainer’s

training steps will also differ. Fig. 6.2(a) illustrates the operation of the model trainer un-

der one model architecture. This client trainer comprises three steps: (i) using an encoder

to convert raw data into feature vectors, (ii) fusing feature vectors of different modalities

through mid-level fusion (e.g., concatenation, matrix multiplication, etc.), and (iii) feed-

ing the fused vector into a classifier to obtain the output, eventually resulting in the client

model, which is then sent to the server.

(a)

Labeled Dataset

Unlabeled Dataset

Aggregated Model

Pseudo-lable Dataset

SSL Model

Unlabeled Data Data with different labels 

Deep Learning Model

(b)

Figure 6.2: Training workflows of: (a) client model and (b) server trainer.
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6.4 Aggregator

The most important core concept of MAFS is how to utilize the insensitive unlabeled data

that clients are willing to share. We hope to use the pseudo-labeling method to select

suitable unlabeled data to augment the training dataset. Like traditional FL algorithms,

we use an aggregator to aggregate client models from different clients into an aggregated

model MA
t . We believe that this aggregated model contains knowledge from different

client data, and the pseudo-label data obtained through pseudo-labeling using this ag-

gregated model has higher reliability. After collecting DI
i and MC

i,t from all the clients,

the server aggregator aggregates the client models to generate the aggregated model MA
t .

Here, the aggregator applies FedAvg as the aggregation algorithm, where

MA
t =

1

K

K∑
i=1

MC
i,t. (6.2)

6.5 Server Trainer

Training the SSL model with the server trainer involves two steps: (i) generating a pseudo-

label dataset and (ii) training using both the labeled dataset and the pseudo-label dataset.

Fig. 6.2(b) shows the server trainer’s more detailed training process. The server trainer

first uses the aggregated model MA
t to pseudo-label all the insensitive unlabeled data

DIU = DIU
1 ∪ DIU

2 ∪ · · · ∪ DIU
K shared by different clients, employing the same archi-

tecture as the client model (as referenced in Fig. 6.2(a)). We believe that when using the

aggregated model for pseudo-labeling, compared to each client using only its own client

model to pseudo-label unlabeled data, the labels determined by the aggregated model

through integrating knowledge from different client models and pseudo-labeling the un-

labeled data are more accurate. Since not all modalities have data when clients share

unlabeled data, our approach to addressing this missing modality issue is to replace the

missing input modality data with zeros directly. Once the prediction probability of the

unlabeled data is higher than the threshold τ , this unlabeled data would be grouped into

the pseudo-label dataset DP
t .

DP
t = {x ∈ DIU | f(x) > τ},

Y P
t = {f(x) | x ∈ DIU

t ∧ f(x) > τ}, where

f(x) = argmax(MA
t (x)),

(6.3)

Then, The server uses both the insensitive labeled dataset DIL = DIL
1 ∪DIL

2 ∪ · · · ∪
DIL

K and the pseudo-label dataset DP
t to train the SSL model MS

t . Again, the model ar-

chitecture of the SSL model and the client models are the same, and we also replace the
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missing modality data with zeros. Here, we use the aggregated model MA
t as the initial

model parameters instead of using random model parameters due to the faster conver-

gence speed. The training process is similar to the client trainer, and the loss function of

the SSL model is as follows:

MS
t = argmin

MA
t

LS(D
IL,DP

t , Y
IL, Y P

t | MA
t ), where

LS(·) =
∑

CE(MA
t (D

IL), Y IL) +
∑

CE(MA
t (D

P
t ), Y

P
t )

|DIL|+ |DP
t |

,

(6.4)

Here, LS(·) is the total loss of the insensitive labeled dataset DIL and the pseudo-label

dataset DP
t with label set Y IL and Y P

t , respectively.

6.6 Merger

Unlike the aggregated model, which contains only knowledge from clients’ labeled data,

the SSL model incorporates knowledge from pseudo-label data. However, we cannot

guarantee that the labels of these pseudo-labeled data are completely correct. In contrast,

the training data seen by the aggregated model all have correct labels. Therefore, we use

a merger to balance the high accuracy of the small amount of labeled data and the label

uncertainty of the large amount of pseudo-labeled data. The server merger would merge

the aggregated model MA
t and the SSL model MS

t to generate the final global model MG
t :

MG
t = α×MA

t + (1− α)×MS
t , (6.5)

balanced by a hyperparameter α. At the end of each round, the server would send the

global model MG
t back to all the clients for the next training round. If the global model

MG converges, the MAFS training procedure will be stopped.
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Chapter 7

Multimodal Applications

7.1 Emotion Recognition Dataset

We use the IEMOCAP [8] dataset for the Emotion Recognition (ER) application exper-

iment. This dataset captures the dialogues of two actors. The facial and tonal changes

during the actors’ conversations are recorded separately using a camera and a microphone

to capture the emotional expressions. Additionally, the dialogue content is recorded in a

purely textual format. The dataset includes 4453 triplets with three different modalities of

data, represented by audio, video, and text, capturing the overall conversation processes of

the two actors. We split the dataset into training and testing data at an 8:2 ratio, resulting

in 3515 and 938 instances, respectively.

The 3515 training data instances are further allocated to {8, 16, 32} clients, with 30%

of the allocated training data for each client being treated as labeled data and the remaining

70% as unlabeled data to simulate a scenario with the scarcity of labeled data. Each

client trainer uses labeled data in all modalities allocated to it to train its respective client

model. When clients share their client models with the server, they selectively share their

unlabeled data for one or two unspecified modalities. The server uses the 938 testing data

instances for model performance evaluation to evaluate the global model.

7.2 IEMOCAP Neural Networks

We adopted the Low-rank-Multimodal-Fusion (LMF) [44] approach as our neural net-

work architecture during training, with a more detailed model architecture shown in

Fig. 7.1. The audio and video inputs are passed through an encoder with three fully

connected layers, while the text input is passed through an encoder with one LSTM layer

and one fully connected layer. The modality features are then fused through matrix mul-

tiplication to obtain the output.
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Figure 7.1: Neural network for LMF.

7.3 Human Activity Recognition Dataset

We use KU-HAR [54] as the dataset for our Human Activity Recognition (HAR) exper-

iments. This dataset collected data from 90 users using wearable devices. The user data

includes two modalities, accelerometer and gyroscope data, to recognize user actions,

with 18 actions. Due to hardware computational resource limitations, we did not use the

complete KU-HAR dataset. We followed the method from the FedMultimodal [19] to use

a portion of the dataset. This paper is the first to propose a benchmark for MFL, covering

various multimodal applications, multimodal datasets, and FL algorithms and comparing

the performance of different algorithms. In the KU-HAR dataset, they selected only 65

users and included only 8 actions. We used their lightweight version of the KU-HAR

dataset for our experiments.

Unlike IEMOCAP, KU-HAR treats each user as a client, eliminating the need to divide

the dataset into different clients using a Dirichlet parameter. Among the 65 users, 63 are

used for training data, 1 for validation, and 1 for testing. Each client will use 70% of

their data as unlabeled data, simulating a scenario of labeled data scarcity. During the

MAFS training process, each client will first train their individual client model using 30%

of the labeled data, and then share insensitive labeled data and unlabeled data with the

server. Finally, the server will perform tests on the test client to evaluate the performance

of MAFS.

7.4 KU-HAR Neural Networks

We also referred to FedMultimodal’s neural network architecture for training KU-HAR.

Fig. 7.2 provides a more detailed explanation of the neural network we used. The ac-

celerometer input and gyroscope input each pass through 3 layers of 1D convolution lay-

ers and 1 layer of Gated Recurrent Unit (GRU) to obtain their respective modality feature

vectors. Then, concatenation-based fusion combines these two feature vectors into a sin-

gle feature vector. Subsequently, this fused feature vector is fed into a classifier composed
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of two fully connected layers to obtain the output.

Figure 7.2: Neural network for LMF.
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Chapter 8

Evaluations

8.1 Implementations

We referred to the FL algorithms selected by FedMultimodal and chose three of them:

FedAvg, FedProx, and FedOpt, to compare with the MAFS paradigm. All experiments

were implemented using PyTorch 1.7.1 and Python 3.8.5 with CUDA 10.1 acceleration,

and were run on an Intel E5 server at 2.50 GHz with 4 NVIDIA GTX1080Ti GPUs.

8.2 Hyperparameters

For the ER experiment, we set the hyperparameters as follows: (i) 100 rounds, each round

containing three client epochs and ten server epochs (ii) batch size of 16, (iii) Cross-

Entropy (CE) as the loss function, (iv) learning rate ηt = 0.003× 0.965t−1, (v) the client

trainer using the Adam optimizer with a weight decay of 0.002, and (vi) the server trainer

using the SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005. For

the HAR experiment, we set the hyperparameters as follows: (i) 200 rounds, each round

containing one client epoch and ten server epochs (ii) batch size of 16, (iii) NLLLoss as

the loss function, (iv) learning rate ηt = 0.001, (v) both the client trainer and the server

trainer using the SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005.

Additionally, when the FL algorithm is FedProx, we set the regularization parameter as

0.001.

8.3 System Parameter Settings

We conducted experiments and discussions within the MAFS paradigm for the following

parameters. For the ER task, the default values shown in bold: (i) c ∈ {8, 16, 32}, (ii)

τ ∈ {0.5,0.6, 0.7, 0.8, 0.9}, (iii) α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, (iv) Dirichlet Distribution
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Parameter ∈ {0.1, 1, 10}. For the HAR task, the default values shown in bold: (i) τ ∈
{0.5,0.6, 0.7, 0.8, 0.9}, (iii) α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

8.4 Results

In this section, we discuss the impact of different system parameters on MAFS perfor-

mance. Additionally, we examine how various modality sharing combinations among

clients affect MAFS. In the ER experiments, we selected five different seeds to determine

the division of training and testing samples, and averaged the experimental results. The

standard deviation of accuracy and F1-score for each different set of experiments falls

between 0.87% and 1.22%. In the HAR experiments, we similarly selected five different

seeds to determine which one of the 65 clients would be the testing client, and averaged

the experimental results. The standard deviation of accuracy and F1-score for each differ-

ent set of experiments falls between 6.50% and 7.39%.

8.4.1 Impact of Pseudo-Labeling Threshold τ .

We conducted experiments for a classification task, using a threshold τ during the pseudo-

labeling to determine whether unlabeled data should be added to the pseudo-label dataset

for retraining. Specifically, if the model’s predicted probability for an unlabeled data

point in a particular class is more significant than τ , then that data point is added to the

pseudo-label dataset.

We conducted tests with different values of τ on both the ER and HAR tasks. Looking

at ER, since the clients share a variety of modalities, we will use the case where all clients

are willing to share audio and video data as an example to analyze the impact of τ .

From Fig. 8.1, we can see that when the value of τ is 0.6, the improvement in the

global model’s accuracy and F1-Score is the largest, reaching 6.94% and 9.49%, respec-

tively.

Fig. 8.2 shows the performance of MAFS on the HAR task with different τ values.

From the figure, we can see that regardless of the τ value, its impact on MAFS is minimal.

Therefore, in our subsequent experiments, we will use 0.6 as the default value for τ on

both ER and HAR tasks.

8.4.2 Impact of Labeled Data Proportion

A labeled data ratio of 30% is commonly used in SSL [72]. For the ER experiment,

our default setting also uses 1000 labeled samples out of the total 3515 training samples,
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Figure 8.1: MAFS results for ER under different τ values.

which is slightly lower at around 29%. We also evaluated MAFS performance with train-

ing sample sizes of 1500, 2000, 2500, 3000. Again, we will use the case where all clients

are willing to share audio and video data as an example to observe the impact of different

labeled data proportions on MAFS.

As observed from Table 8.1, training solely with labeled data leads to a decline in both

accuracy and F1-score as the quantity of labeled data decreases. However, when employ-

ing MAFS for pseudo-labeling and training with unlabeled data, there is an improvement

in both accuracy and F1-score, indicating that increasing the amount of training data

through this method enhances model performance.

For HAR, in addition to using 30% labeled data rate to simulate a scenario of labeled

data scarcity, we also used 40%, 50%, 60%, 70%, and 80% labeled data rates to observe

how MAFS performs when there is sufficient labeled data. Furthermore, we used the

example where all clients are willing to share accelerometer data. As seen in Table 8.2,

MAFS performs the best among all compared methods, regardless of whether the labeled

data rate is high or low. Moreover, the lower the labeled data rate, the greater the improve-

ment in model performance by MAFS. For example, when the labeled data rate is 80%,

MAFS improves accuracy and F1-score by 12.18% and 16.08% respectively compared

to FedAvg. When the labeled data rate decreases to 30%, MAFS improves accuracy and

F1-score by 35.43% and 28.57% respectively compared to FedAvg, significantly mitigat-

ing the problem of model performance degradation caused by labeled data scarcity. In

the following experiments, we will use a labeled data rate of 30% to observe MAFS’s

performance in addressing the labeled data scarcity problem under different scenarios.
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Figure 8.2: MAFS results for HAR under different τ values.

8.4.3 Impact of Merger Weight α

Since the SSL model refers to pseudo-label data during training, inaccurate pseudo-labels

could decrease SSL model performance. In contrast, the aggregated model’s training sam-

ples all have correct labels. Therefore, we use α to adjust the weights of the aggregated

and SSL models, with a lower α value indicating a lower contribution from the aggregated

model. Again, for the ER task, we will use the case where all clients are willing to share

audio and video data as an example to observe the impact of different α values on MAFS.

As shown in Fig. 8.3, a gradual decrease in the α value correlates with increases in both

model accuracy and F1-score. This suggests that a higher proportion of the SSL model

parameter leads to more significant improvements in model performance. Therefore, we

recommend setting α to 0.1 in the LMF context.

For the HAR task, we used the example where all clients are willing to share ac-

celerometer data. From Fig 8.4, we can see that MAFS performs best when the α value

is 0.1. However, compared to the ER task, changes in the α value do not have a very

significant impact on MAFS performance in the HAR task. Considering the results from

both ER and HAR, we recommend setting the α value to 0.1. We have also set this as the

default value and used it in subsequent experiments.

8.4.4 Impact of the Dirichlet Parameter

We adjusted the Dirichlet parameter for the ER experiment to split the 3515 training

samples across eight clients, simulating different degrees of non-i.i.d. data distribution.
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Table 8.1: ER model performance comparisons across different labeled data propotion

under threshold = 0.6.

Compared to FedAvg
# of labeled data 1000 1500 2000 2500 3000

Impr. of Accuracy +3.09% +2.78% +0.96% +0.85% +0.22%

Impr. of F1-Score +4.45% +3.92% +3.74% +2.79% +2.43%

Compared to FedProx
# of labeled data 1000 1500 2000 2500 3000

Impr. of Accuracy +3.73% +3.30% +2.45% +2.34% +1.60%

Impr. of F1-Score +8.89% +8.82% +7.92% +7.88% +5.45%

Compared to FedOpt
# of labeled data 1000 1500 2000 2500 3000

Impr. of Accurcy +26.12% +25.69% +24.84% +24.73% +23.99%

Impr. of F1-Score +41.48% +41.41% +40.51% +40.47% +38.04%

A smaller Dirichlet parameter indicates a higher degree of non-i.i.d. Again, we will use

the case where all clients are willing to share audio and video data as an example to

observe the impact of different Dirichlet parameters on MAFS. Fig. 8.5 illustrates the

effect of MAFS on model performance under various degrees of non-i.i.d. conditions.

From the figure, it can be observed that, regardless of the severity of non-i.i.d., ranging

from 0.1, representing the most severe non-i.i.d. condition, to 10, representing the mildest

non-i.i.d. condition, there is minimal fluctuation in the accuracy and F1-score of the

model. Moreover, MAFS consistently outperforms the scenario without using MAFS

by a significant margin. This indicates that even in situations with considerable non-

i.i.d., using MAFS substantially increases the amount of data available for the SSL model

during training, effectively addressing issues related to uneven data distribution.

8.4.5 Sharing One Modality vs. Two Modalities

Among the different modality-sharing scenarios, we first wanted to observe whether the

model performance would be better when clients share two modalities than when sharing

only one. Here, we take the ER task as an example and consider the case where all clients

share the same types and quantities of modalities, while the case where some clients

share one modality and others share two modalities will be discussed in the following

subsection. Fig. 8.6 illustrates the impact of MAFS on model performance when different

clients share one or two modality data. If clients are willing to share both audio and

video modalities, the model performance is the best, with accuracy and F1-score reaching

71.01% and 70.68%, respectively. This difference is only 0.63% and 0.46% compared to
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Table 8.2: HAR model performance comparisons across different labeled data propotion

under threshold = 0.6.

Compared to FedAvg
Labeled data rate 30% 40% 50% 60% 70% 80%

Impr. of Accuracy +35.43% +34.49% +29.78% +24.50% +14.86% +12.18%

Impr. of F1-Score +28.57% +29.02% +27.88% +25.26% +17.21% +16.08%

Compared to FedProx
Labeled data rate 30% 40% 50% 60% 70% 80%

Impr. of Accuracy +35.47% +34.40% +30.94% +24.34% +14.74% +11.52%

Impr. of F1-Score +29.75% +29.02% +28.27% +24.23% +17.58% +15.87%

Compared to FedOpt
Labeled data rate 30% 40% 50% 60% 70% 80%

Impr. of Accurcy +6.04% +5.37% +4.94% +4.33% +3.10% +3.55%

Impr. of F1-Score +5.15% +4.08% +3.49% +2.88% +4.67% +3.14%

the scenario with 100% labeled data. If clients are willing to share two modalities, such

as audio and text, the model’s performance is also quite good. If clients are only willing

to share one modality, such as video, the performance gap increases to 3.73% and 7.33%,

but it still shows a performance improvement of 3.84% and 2.62% compared to not using

MAFS. Additionally, we can observe that, in general, sharing two modalities leads to a

higher improvement in model performance compared to sharing only one modality.

8.4.6 Impact of Selective Modality Sharing

The above experimental analyses assume that all clients are willing to share the same types

and numbers of modalities, which may not reflect real-world scenarios. We conducted

additional experiments with different modality-sharing combinations to observe MAFS’

performance. We categorized the experiments into three main groups, where clients are

willing to share only two modalities: audio and video, audio and text, and video and

text. Within each group, we varied the number of clients who are only willing to share

one modality, with 2, 4, 6, 8 clients in this setting. For the remaining clients, they share

two modalities, with 6, 4, 2, 0 clients. Since we want MAFS to perform well even in

highly non-i.i.d. scenarios (Dirichlet parameter of 0.1), selecting which clients share only

one modality becomes essential. Here, we used the number of training samples as the

selection criterion, either starting with: (i) the clients with the least training samples or

(ii) the clients with the most training samples.

When comparing sharing one or two modalities (reported above), we found the model
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Figure 8.3: MAFS results for ER under different α values.

performance is always better when clients are willing to share two modalities. Among the

cases of sharing only one modality, the performance is best for sharing audio, followed by

video, and then text. Therefore, in this subsection, where we discuss the mixed modality

sharing scenario, we will use the modality with the worst performance as the baseline.

Taking Table 8.3 as an example, since the model performance with eight clients sharing

only video is lower than eight clients sharing only audio, we use the case of 8 clients

sharing only video as the baseline. We then gradually increased the number of clients

sharing two modalities to observe the impact of the additional audio data shared by some

clients on the model performance. The “number of clients” column indicates the number

of clients sharing only one modality. The “client selection” column represents the method

used to choose which clients will share two modalities—“least to most” means starting

with the clients who have the least training samples, while “most to least” means starting

with the clients with the most training samples. From Table8.3 to Table 8.5, we will use

video, text, and text as the modality that clients are only willing to share.

From Table 8.3, we can observe that regardless of whether the clients with more train-

ing samples or those with fewer training samples are willing to share two modalities, the

global model’s accuracy and F1-score are improved compared to the case where all clients

only share one modality. As the number of clients sharing two modalities increases, the

degree of improvement in the global model performance also increases. The most signifi-

cant performance improvement is seen when four clients are willing to share one modality

and the other four are willing to share two modalities. In other words, as long as half of the

clients are willing to share more modalities, the model performance can be maximized.
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Figure 8.4: MAFS results for HAR under different α values.

Table 8.3: Global Model Performance with Different Numbers of Clients Sharing Audio

and Video
Client selection

(Based on data amount)
Least to Most Most to Least

# of Clients 8 6 4 2 8 6 4 2

Accuracy 68.12% +2.02% +2.77% +2.66% 68.12% +2.45% +3.41% +2.45%

F1-Score 65.98% +3.32% +4.25% +3.1% 65.98% +3.98% +4.95% +3.51%

This result can also be observed in Table 8.4 and Table 8.5.
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Figure 8.5: Model performance comparisons across different Dirichlet distribution pa-

rameters.

Table 8.4: Global Model Performance with Different Numbers of Clients Sharing Audio

and Text
Client selection

(Based on data amount)
Least to Most Most to Least

# of Clients 8 6 4 2 8 6 4 2

Accuracy 67.91% +1.27% +2.98% +1.81% 67.910% +1.59% +2.34% +2.87%

F1-Score 63.81% +3.71% +6.37% +4.57% 63.81% +3.92% +5.51% +5.99%

Table 8.5: Global Model Performance with Different Numbers of Clients Sharing Video

and Text
Client selection

(Based on data amount)
Least to Most Most to Least

# of Clients 8 6 4 2 8 6 4 2

Accuracy 67.91% +1.5% +1.82% -2.02% 67.91% +1.39% +2.03% +2.46%

F1-Score 63.81% +3.5% +4.02% +0.21% 63.81% +3.61% +5.59% +6.3%
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Figure 8.6: Model performance comparisons across different sharing modality types.

44



Chapter 9

Conclusions & Future Works

This paper proposes the MAFS paradigm to tackle data sensitivity differentiation and

labeled data scarcity in FL setup. MAFS is the very first FSSL paradigm that allows

individual clients to selectively share insensitive data modalities for augmenting training

samples and mitigating labeled data scarcity. Our extensive experiments reveal that: (i)

MAFS outperforms SOTAs under different labeled data rates and data distributions; (ii)

MAFS allows and encourages clients to selectively share more data modalities, while

more clients share more data modalities lead to better model performance; and (iii) MAFS

works well in two sample tasks under our recommended hyperparameters, while the same

hyperparameter search strategy can be readily applied to other tasks. The proposed MAFS

can be extended in several directions, including:

• Addressing pseudo-label dataset concerns. The pseudo-label dataset may be-

come biased if labeled and unlabeled data features differ significantly. Solutions

like domain adaptation [20] or data augmentation [10] could be employed to ensure

the pseudo-label dataset remains representative and sufficiently large.

• Managing dynamic unlabeled data and diverse user participation. The quan-

tity of unlabeled data may grow as new data are continuously collected, and more

diverse users joining the FL setup could affect model performance due to variations

in data distribution. Adaptive algorithms that dynamically adjust the model training

process could be employed to cope with this issue. Additionally, user stratification

or data filtering mechanisms could be integrated to maintain model stability.

• Promoting client data sharing incentives. Implementing a reward mechanism

could motivate clients to share more data, improving model performance and ro-

bustness. These incentives stimulate a collaborative ecosystem where clients feel

valued for their contributions to improving overall model accuracy and effective-

ness.
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• More applications and baselines. MAFS achieved good performance on both the

IEMOCAP and KU-HAR datasets. However, these experiments cannot compre-

hensively demonstrate that MAFS is suitable for all multimodal datasets and appli-

cations. Other fields such as Social Media, Healthcare, and similar applications can

be explored further in the future. Additionally, the current FSSL SOTAs are only

applicable to unimodal datasets and cannot be applied to multimodal datasets. To

compare with these SOTAs, it would be necessary to adapt them to versions that can

handle multimodal datasets, which is also a potential direction for future research.
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