MAFS: Modality-Aware Federated Semi-Supervised Learning with Selective Data Sharing Specified by Individual Clients

Yi-Chen Li (calvin0205calvin0205@gmail.com)

Network and Multimedia Systems Lab Department of Computer Science National Tsing Hua University

NMSL@NTHU Networking and Multimedia Systems Lab

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Multi-Modal Sensors

- We often use **machine learning models** in our daily lives to help us finish some certain tasks.
- In order to train these models, we need to deploy **sensors** to collect training data. mmWave radar

RGB image

IR image

point clouds

1.5 1.0 0.5

-0.5 -1.0 -1.5

Federated Learning

• As **privacy** becomes increasingly important to everyone, how the collected sensor data is handled has become a very important issue.

 Train the client model.
 Upload client models.
 Aggregate different client models.
 Send back the global model.

Problem Statement

- Labeled data scarcity in Federated Learning poses challenges in training robust and generalizable models.
- Without enough labeled examples, a model might **overfit to the limited data** it has encountered. This leads to **poor performance on unseen data**.

Objective

• Use **unlabeled data** to increase the accuracy of the client model and improve its robustness.

Challenges

- How to **get** the unlabeled data?
- How to **utilize** the unlabeled data?
- How to solve the **missing modality** issue?

C1: How to get the unlabeled data?

Solution 1: Selective Data Sharing

• Users can decide **which types of data to share** based on their own privacy considerations.

Solution 2: Semi-Supervised Learning

- The **knowledge** contained in the **unlabeled data** can significantly improve model performance.
- We need to effectively obtain **correct labels** for unlabeled data.

C3: How to solve the missing modality issue?

Solution 3: Multimodal Representation Learning

- We use different networks to process different modalities.
- We fill the missing modality input with zeros.

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Related Work

- Multimodal Federated Learning (MFL)
 - Modality-specific feature extraction [AAAI'22, SIGIR'21]

The features obtained after extraction contain less information than the raw data.

- Federated Semi-Supervised Learning (FSSL)
 - Client-side FSSL [arxiv'20]

The SSL model trained by each client will be biased towards its own data.

- Server-side FSSL [TMC'23]

Only applicable to unimodal datasets, and requires all raw data for training.

- Modality-Aware Selective Data Sharing
 - HPFL [TOMM'24]

This paradigm cannot perform well on labeled data scarcity problem.

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

MAFS Paradigm Workflow

Client Trainer

- Methodology
 - 1. Use an **encoder** to convert raw data into **feature vectors**.
 - 2. Fuse feature vectors of different modalities through mid-level fusion.
 - 3. Feed the fused vector into a **decoder** to obtain the output.

- D^{SL}: Sensitive Labeled Data D^{IL}: Insensitive Labeled Data
- M^G: Global Model
- M^C: Client Model

- We **aggregate all the client models** sent from different clients through the server aggregator, which is the same as the FL workflow.
- The default aggregator use Fed Avg to generate the aggregated model.

$$\mathbf{M}_t^A = \frac{1}{K} \sum_{i=1}^K \mathbf{M}_{i,t}^C$$

• MAFS can be generalized for different FL algorithms.

Server Trainer

- Methodology
 - 1. Use the aggregated model to **pseudolabel** the **insensitive data** and generate the **pseudo-label dataset**.
 - 2. We use system parameter τ as the **pseudo-labeling threshold**.
 - 3. Train using both the **labeled dataset** and the **pseudo-label dataset** to generate the **semi-supervised model**.

- D^{IU}: Insensitive Unlabeled Data
- D^{IL} : Insensitive Labeled Data
- D^P : Pseudo-label Data
- M^A: Aggregated Model
- M^S : Semi-Supervised Learning Model

- The **aggregated model** represents the knowledge learning from **labeled data**, while the **semi-supervised learning model** represents **pseudo-label data**.
- We use the weighted sum and set the system parameter α to balance the proportion between the aggregated model and the semi-supervised learning model.

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Emotion Recognition (ER)

- We use the IEMOCAP [1] dataset for the ER application.
- We adopted the Low-rank-Multimodal-Fusion [2] approach as our neural network structure.

[1] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jeannette Chang, Sungbok Lee, and Shrikanth Narayanan.
2008. IEMOCAP: Interactive emotional dyadic motion capture database. Language Resources and Evaluation 42, 4 (2008).
[2] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Liang, Amir Zadeh, and Louis-Philippe Morency. 2018. Efficient low-rank multimodal fusion with modality-specific factors. arXiv preprint arXiv:1806.00064 (2018).

Human Activity Recognition (HAR)

- We use the KU-HAR [1] dataset for the HAR application.
- We refer to FedMultimodal's [2] neural network structure for training.

[1] Niloy Sikder and Abdullah-Al Nahid. 2021. KU-HAR: An open dataset for heterogeneous human activity recognition. Pattern Recognition Letters 146 (2021), 46–54.

[2] Tiantian Feng, Digbalay Bose, Tuo Zhang, Rajat Hebbar, Anil Ramakrishna, Rahul Gupta, Mi Zhang, Salman Avestimehr, and Shrikanth Narayanan. 2023. Fedmultimodal: A benchmark for multimodal federated learning. In Proc. of

the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4035–4045.

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Datasets and Data Partition

• ER task

- We split IEMOCAP into 3515 training (80%) and 938 testing (20%) samples.
- We set different **Dirichlet parameters** to control the amount of data distributed to individual clients.

• HAR task

- KU-HAR contains accelerometer and gyroscope data.
- We use a subset of KU-HAR from **65 users** and **8 actions**.
- We divided 65 users into 63 for training, 1 for validation, and 1 for testing.
- We perform **5-fold cross-validation**.

Hyperparameters

Hyperparameter	ER Task	HAR Task	
Rounds	100	200	
Client Epochs per Round	3	1	
Server Epochs per Round	10	10	
Batch Size	16	16	
Loss Function	Cross-Entropy	NLLLoss	
Learning Rate	$\eta_t = 0.003 \times 0.965^{t-1}$	$\eta_t = 0.001$	
Client Optimizer	Adam	SGD	
Client Weight Decay	0.002	0.0005	
Server Optimizer	SGD	SGD	
Server Momentum	0.9	0.9	
Server Weight Decay	0.0005	0.0005	
Regularization Parameter (FedProx)	0.001	0.001	

System Parameter

- ER task
 - No. client $c \in \{8, 16, 32\}$
 - Pseudo-label threshold $\tau \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$
 - Merger weight $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
 - Dirichlet Distribution Parameter $\in \{0.1, 1, 10\}$
- HAR task
 - Pseudo-label threshold $\tau \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$
 - Merger weight $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
- SOTAs
 - FedAvg [1], FedProx [2], FedOpt [3]

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In Proc. of PMLR International Conference on Artificial Intelligence and Statistics (AISTATS). 1273–1282.

[2] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated optimization in heterogeneous networks. Proc. of Machine learning and systems 2 (2020), 429–450.

[3] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečn`y, Sanjiv Kumar, and Brendan McMahan. 2020. Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020).

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Impact of Pseudo-Labeling Threshold τ

- For the **ER** task, using a threshold τ of **0.6** during pseudo-labeling resulted in the largest improvements in accuracy (6.94%) and F1-score (9.49%).
- For the HAR task, τ does not affect the accuracy and F1-score much.
- We recommend using **0.6** as the default τ value for both tasks.

Impact of Labeled Data Proportion in ER Task

- Training solely with labeled data leads to a **decline in both accuracy and F1-score** as the quantity of labeled data decrease.
- **MAFS enhances model performance** while increasing the amount of training data.

Impact of Labeled Data Proportion in HAR Task

- MAFS performs the best among all compared methods, regardless of whether the labeled data rate is high or low.
- The lower the labeled data rate, the greater the improvement in model performance by MAFS.

Impact of Merger Weight α

- A gradual decrease in the α value correlates with increases in both model accuracy and F1-score.
- We recommend setting the α value to **0.1**.

Impact of the Dirichlet Parameter

- MAFS leads to very little fluctuations in the accuracy and F1-score regardless of the non-i.i.d. severity.
- MAFS consistently **outperforms FedAvg** by a large margin
- MAFS **increases the amount of data available** for training the SSL model even in situations with considerable non-i.i.d. distribution.

Uneven						
	Dirichlet Para. 0.1		Dirichlet Para. 1		Dirichlet Para. 10	
Algo.	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score
MAFS	69.93%	68.70%	69.72%	68.48%	69.82%	69.69%
FedAvg	64.07%	61.19%	63.43%	55.38%	66.52%	62.61%

MAFS Encourages Users to Share More Modalities for Better Performance

- Sharing two modalities, like audio and text, results in good performance.
- When clients share only one modality, such as video, the performance gap increases to 3.73% and 7.33%.

MAFS Allows Privacy-conscious Clients to Selectively Share Fewer Modalities

	Fewer Samples			More Samples				
# of clients share two modalities	0	2	4	6	0	2	4	6
Accuracy	0%	+2.02%	+2.77%	+2.66%	0%	+2.45%	+3.41%	+2.45%
F1-score	0%	+3.32%	+4.25%	+3.10%	0%	+3.98%	+4.95%	+3.51%

Summary

- MAFS **outperforms SOTAs** under different labeled data rates and data distributions.
- MAFS allows and encourages clients to **selectively share more data modalities**, while more clients share more data modalities lead to better model performance.
- MAFS works well in two sample tasks under **our recommended system parameters**, while the same hyperparameter search strategy can be readily applied to other tasks.

- Introduction
- Related Work
- Modality-Aware Federated Semi-Supervised Learning (MAFS)
- Multimodal Applications
- Experiment Setup
- Evaluations
- Conclusion & Future Works

Conclusion

- MAFS paradigm collects **unlabeled insensitive data** from clients and uses **SSL pseudo-labeling** to generate usable data for server training.
- MAFS paradigm comes with a **modularized design** on FL clients and servers, allowing developers to readily augment FL neural network structures into MAFS-ied version.
- MAFS paradigm has been **applied to two sample classification problems** on Emotion Recognition (ER) and Human Activity Recognition (HAR) to demonstrate its practicality and efficiency

Future Works

Thanks for listening

Special thanks for:

Chih-Fan Hsu, Inventec,

Chung-Chi Tsai, Qualcomm Technologies, Inc., USA, Jian-Kai Wang, Qualcomm Technologies, Inc., Taiwan, and all labmates.

Publications:

G. Li, H. Chiang, <u>Y. Li</u>, S. Shirmohammadi, and C. Hsu, "A Driver Activity Dataset with Multiple RGB-D Cameras and mmWave Radars", in Proceeding of the 15th ACM Multimedia Systems Conference, 2024.
 C. Hsu, <u>Y. Li</u>, C. Tsai, J. Wang, and C. Hsu, "Federated Learning Using Multi-Modal Sensors with Heterogeneous Privacy Sensitivity Levels", ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, Accepted.
 <u>Y. Li</u>, C. Hsu, C. Tsai, J. Wang, and C. Hsu, "MAFS: Modality-Aware Federated Semi-Supervised Learning with Selective Data Sharing Specified by Individual Clients", ACM Multimedia Asia, 2024, Under review.

Questions or comments?