
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

在建構於物聯網之上的智慧環境中最佳化網路數位孿生控制

器

Optimizing Network Digital-Twin Controllers for
Internet-of-Things Instrumented Smart Environments

吳仕群

Chih-Chun Wu

學號：111062668
Student ID:111062668

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 113年 8月
August, 2024

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

在
建
構
於
物
聯
網
之
上
的
智
慧
環
境
中
最
佳
化
網
路

數
位
孿
生
控
制
器

吳
仕
群

112

Abstract

The rapid deployment of Internet-of-Things (IoT) devices in smart envi-
ronments such as smart campuses and cities necessitates robust Quality-of-
Service (QoS) management across heterogeneous networks. In this thesis,
we extend the concept of Network Digital Twin (NDT) to networked IoT de-
vices, presenting a Network Digital Twin Controller (NDTC) that enhances
the functionality and performance of smart environments. Our NDTC ad-
dresses key challenges by creating Digital Twins (DTs) of Physical Twins
(PTs), synchronizing their states, and performing QoS-related what-if analy-
sis. Specifically, we build a DT-enabled IoT-instrumented smart environment
by utilizing an open-source Software-Defined Network (SDN) controller. We
formulate and solve the state synchronization problem using our proposed
Optimal Update (OU) and Gradient-driven Update (GU) algorithms, care-
fully adjusting the update frequency and data granularity to minimize DT/PT
state deviation within given network bandwidth budgets. We also formulate
and address the what-if analysis problem by selecting optimal what-if ana-
lyzers using our Optimal Selection (OS) algorithm for the most accurate QoS
predictions under a given computing time budget. Our extensive experiments
on a real testbed demonstrate the merits of our proposed solution: (i) our de-
veloped NDTC and algorithms meet the functional requirements, (ii) our OU
and GU algorithms significantly reduce the state deviation between PTs and
DTs, (iii) our OS algorithm largely reduces the prediction errors of what-if
analysis, and (iv) all our proposed algorithms incur acceptable overhead.

i

中文摘要

隨著物聯網（IoT）設備在智慧環境中的快速部署，如智慧校園
和城市，對於異質網路的服務品質（QoS）管理需求日益增長。在
本論文中，我們將網路數位孿生（NDT）的概念擴展到網路化的物
聯網設備，提出了一種增強智慧環境功能和性能的網路數位孿生控

制器（NDTC）。我們的NDTC通過創建實體孿生（PT）的數位孿生
（DT）、同步它們的狀態以及進行與QoS相關的假設分析，解決了關
鍵挑戰。具體而言，我們利用開源軟體定義網路（SDN）控制器構建
了一個DT支持的物聯網儀器化智慧環境。我們使用我們提出的最佳更
新（OU）和梯度驅動更新（GU）演算法來解決狀態同步問題，通過
調整更新頻率和資料粒度，在給定的網路頻寬預算內最小化DT/PT狀
態偏差。我們還通過使用最佳選擇（OS）演算法選擇最優的假設分
析器來解決假設分析問題，以在給定的計算時間預算內進行最準確

的QoS預測。我們在真實測試平台上進行的實驗展示了我們所提出解
決方案的優點：（i）我們開發的NDTC和演算法滿足功能需求，（ii）
我們的OU和GU演算法顯著減少了PT與DT之間的狀態偏差，（iii）我
們的OS演算法大幅減少了假設分析的預測誤差，（iv）所有我們提出
的演算法均帶來可接受的資源消耗。

ii

Contents

Abstract i

中文摘要 ii

1 Introduction 1
1.1 Contributions . 3
1.2 Limitations . 4
1.3 Organization . 4

2 Background 5
2.1 Internet-of-Things . 5
2.2 Smart Environments . 5
2.3 Digital Twins . 6

2.3.1 Features of Digital Twins . 7
2.3.2 Popular Digital Twins Usage Scenarios 8
2.3.3 Urban Digital Twins Infrastructure 8
2.3.4 Network Digital Twins . 9

2.4 Software Defined Networking . 10
2.5 Online Machine Learning . 10

3 Related work 11
3.1 Network Digital Twin Controller . 11
3.2 State Synchronization . 11
3.3 What-if Analysis . 12

4 Network Digital Twin Controller 13
4.1 System Overview . 13
4.2 Components . 14

5 Optimization Problems and Solutions 15
5.1 State Synchronization . 15
5.2 What-if Analysis . 19

6 Implementations 22
6.1 Testbed . 22
6.2 Baseline Algorithms . 25

iii

7 Evaluations 27
7.1 Model Deviation . 27
7.2 Setup . 28
7.3 Results . 30

8 Conclusion 43
8.1 Concluding Remarks . 43
8.2 Future Work . 43

Bibliography 45

iv

List of Figures

1.1 A sample DT-enabled smart campus. 1

2.1 Unique features provided by DTs. 7

2.2 The layering structure of DTs in smart environments. 9

4.1 Overview of our NDTC. 13

5.1 Overview of the OML model in our NDTC. 17

5.2 Impact of update frequency and data granularity on state deviation and its

continuity. 19

6.1 Overview of the emulator. 23

6.2 Workflow of our NDTC. 23

6.3 The real testbed for evaluations. 24

6.4 A snapshot of our testbed. 24

7.1 Evaluation metrics of OML algorithms: (a) RMSE, (b) MAE, and (c) R-

Squared. 28

7.2 Prediction error and computing time of our what-if analyzers. 29

7.3 Comparison of PT/DT states from a sample run at: (a) an IoT device, (b)

a workstation, and (c) a network switch. 32

7.4 Control server throughput under different update frequencies: (a) RX and

(b) TX. 33

7.5 State deviation from different state synchronization algorithms. Expected

state deviation: (a) from a network switch in a sample run and (b) across

all networked devices. Actual state deviation: (c) from a network switch

in a sample run and (d) across all networked devices. 34

7.6 Overhead caused by different state synchronization algorithms: (a) run-

ning time, (b) total control server throughput, (c) application server CPU

utilization, and (d) application server memory utilization. 35

v

7.7 State deviation from different state synchronization algorithms under 2

Mbps networked device bandwidth. Expected state deviation: (a) from

a network switch in a sample run and (b) across all networked devices.

Actual state deviation: (c) from a network switch in a sample run and (d)

across all networked devices. 36

7.8 State deviation from different state synchronization algorithms under 1

Mbps networked device bandwidth. Expected state deviation: (a) from

a network switch in a sample run and (b) across all networked devices.

Actual state deviation: (c) from a network switch in a sample run and (d)

across all networked devices. 37

7.9 State deviation from different state synchronization algorithms under 0.5

Mbps networked device bandwidth. Expected state deviation: (a) from

a network switch in a sample run and (b) across all networked devices.

Actual state deviation: (c) from a network switch in a sample run and (d)

across all networked devices. 38

7.10 State deviation from different state synchronization algorithms under 15

Mbps control server bandwidth. Expected state deviation: (a) from a net-

work switch in a sample run and (b) across all networked devices. Actual

state deviation: (c) from a network switch in a sample run and (d) across

all networked devices. 39

7.11 State deviation from different state synchronization algorithms under 10

Mbps control server bandwidth. Expected state deviation: (a) from a net-

work switch in a sample run and (b) across all networked devices. Actual

state deviation: (c) from a network switch in a sample run and (d) across

all networked devices. 40

7.12 State deviation from different state synchronization algorithms under 5

Mbps control server bandwidth. Expected state deviation: (a) from a net-

work switch in a sample run and (b) across all networked devices. Actual

state deviation: (c) from a network switch in a sample run and (d) across

all networked devices. 41

7.13 Performance of different what-if analysis algorithms under different num-

bers of queries: (a) prediction error and (b) running time. 41

7.14 Performance of different what-if analysis algorithms under different com-

puting time budgets: (a) prediction error and (b) running time. 42

vi

List of Tables

5.1 Symbols Used in the thesis . 16

7.1 Sample Prediction and Computing Time of Different What-if Analyzers . 33

vii

viii

Chapter 1

Introduction

Increasingly more Internet-of-Things (IoTs) devices have been deployed in smart envi-

ronments, such as smart rooms, buildings, campuses, communities, and cities, to collect

data in surrounding areas and perform actions dictated by innovative applications, like

illegal parking detection, adaptive streetlight control, and air pollution mitigation. Such

smart environments utilize heterogeneous wireless networks, including WiFi, 5G cellu-

lar, LoRa, and Bluetooth, for data exchange. Networked devices, e.g., hosts, routers,

switches, gateways, and middleboxes, are deployed in IoT-instrumented smart environ-

ments for interconnecting IoT devices to edge/cloud servers through heterogeneous wire-

less and wired networks.

Figure 1.1: A sample DT-enabled smart campus.

Fig. 1.1 shows a sample smart environment–a smart campus, which hosts three ap-

plications: illegal parking detection, adaptive streetlight control, and lecture streaming.

Illegal parking detection uses surveillance cameras and ultrasound sensors to recognize

illegally parked cars. Adaptive streetlight control also utilizes the same sensors to count

1

the number of pedestrians for suitable streetlight brightness. Lecture streaming multi-

casts multiple video feeds from the blackboard, slideshow, and audience cameras in a

classroom for online attendees. Administrators of smart environments, such as university

administration, need to specify the Quality-of-Service (QoS) requirements to ensure the

functionality and performance of these applications [18]. QoS requirements can be spec-

ified in various metrics, such as bandwidth, delay, and packet loss rate at each networked

device.

Guaranteeing these QoS requirements of each application is no easy task as a large

number of physical devices, such as hosts, links, sensors, and actuators, are involved, and

the smart environments are highly dynamic. A naive way to concurrently support multiple

applications is by asking each of them to interface with all the devices. Doing so, however,

leads to duplicated deployment and operational investments in hardware and software. A

better solution is to construct a unified platform that collects the latest states from the

physical devices and running applications. By doing so, individual applications no longer

need to interface with physical devices, avoiding undesirable application silos [57].

Another challenge for administrators is to determine how to upgrade a smart environ-

ment when the QoS requirements cannot be met. Take lecture streaming as an example,

when the backhaul of the classroom network has insufficient bandwidth, the university

administration needs to propose a cost-effective upgrade plan, leading to multiple what-if

queries, e.g., “would adding an extra optical fiber from the classroom to a nearby router

resolve the QoS issues?” A straightforward solution is trial-and-error, which is expensive,

time-consuming, and error-prone. A better solution is to integrate the emerging concept of

Digital Twin (DT) [11,17,20,28,29,47,50,53,54,56] into smart environments to answer

the what-if queries from administrators. More specifically, DT mirrors each real-world

physical device, referred to as a Physical Twin (PT) with all its states into a digital repre-

sentation referred to as a DT [17, 20, 29]. Incorporating DT with IoT-instrumented smart

environments has several benefits, including: (i) live device states shared by multiple ap-

plications, (ii) what-if analysis based on live data feeds, and (iii) Artificial Intelligence

(AI) driven predictions based on historical device states, among others.

In this thesis, we strive to build DT-enabled IoT instrumented smart environments,

which can be seen as extending the idea of Network Digital Twin (NDT) [3,16,47,50,56]

to networked IoT devices. Our core task is developing an NDT Controller (NDTC), whose

jobs include: (i) creating DTs as the foundation, (ii) synchronizing DT/PT states for mul-

tiple applications, and (iii) performing what-if analysis for administrators. We develop

an NDTC and optimize it by addressing two key problems: (i) the state synchronization

problem to find the best balance between the update frequency and state granularity of in-

dividual PTs so as to minimize the DT/PT state deviation under given network bandwidth

2

budgets; and (ii) the what-if analysis problem to select the best what-if analyzer for each

query from the heterogeneous ones built upon the Machine Learning (ML) algorithm,

queuing theory, network simulator, and network emulator given a computing time budget.

Our extensive experiments demonstrate that: (i) our developed NDTC and optimiza-

tion algorithms meet the functional requirements, (ii) our proposed optimal and efficient

state synchronization algorithms significantly reduce the state deviation in a real testbed

by up to 99.49% and 98.92%, (iii) our proposed optimal what-if analysis algorithm sig-

nificantly reduces the prediction error of what-if queries by more than 83.63%, and (iv)

our proposed algorithms terminate fast without incurring high overhead.

Another challenge of NDTCs is the capability to perform what-if analysis, which

allows administrators to predict the impact of various network configurations and op-

erational scenarios on the Quality of Service (QoS) metrics. We formulate the what-if

analysis problem and develop an Optimal Selection (OS) algorithm. This algorithm in-

telligently selects a what-if analyzer to provide the most accurate QoS predictions within

a given computing time budget. This capability is crucial for making informed decisions

regarding network upgrades and reconfigurations in smart environments.

1.1 Contributions

In particular, this thesis makes these contributions:

• We design and implement an IoT-instrumented smart environment that leverages

the capabilities of Digital Twin (DT) technology. By extending an open-source

Software-Defined Network (SDN) controller into a Network Digital Twin Con-

troller (NDTC), our system integrates multiple DT-based modules to support the

creation and management of DTs. This extension not only facilitates real-time mon-

itoring and control of physical IoT devices through their DTs but also enhances the

flexibility and scalability of smart environment management.

• A major challenge in an NDTC is maintaining accurate and up-to-date synchro-

nization between the states of Physical Twins (PTs) and their DTs. We address this

challenge by formulating the state synchronization problem and proposing efficient

algorithms: Optimal Update (OU) and Gradient-driven Update (GU). These algo-

rithms dynamically adjust update frequencies and data granularities based on the

available network bandwidth, ensuring that state deviations between PTs and DTs

are minimized.

• Another challenge for an NDTC is the capability to perform what-if analysis, en-

abling administrators to predict the impact of various network configurations and

3

operational scenarios on Quality of Service (QoS) metrics. We formulate the what-

if analysis problem and develop an Optimal Selection (OS) algorithm, which in-

telligently selects a what-if analyzer to provide the most accurate QoS predictions

within a given computing time budget. This capability is crucial for making deci-

sions regarding network upgrades and reconfigurations in smart environments.

1.2 Limitations

In this thesis, we make the following assumptions:

• We assume that the bandwidth budgets for each PT, the NDTC, and the network

topology are predefined. This simplification allows us to focus on optimizing our

algorithms in a controlled setting, which reflects common real-world constraints.

• It is assumed that all networked devices are equipped with software to synchronize

their states with the NDTC. This assumption simplifies integration and aligns with

the trend of standardized protocols in modern IoT devices.

• We also assume that the switches in our network are compatible with the OpenFlow

protocol, which supports flow and port statistics synchronization. While this may

limit the applicability to non-OpenFlow environments, it ensures our research is

based on a widely accepted and reliable standard.

1.3 Organization

In this thesis, we start by explaining our motivation in Chapter 1. Then, in Chapter 2, we

describe the related techniques for IoT-instrumented smart environments. In Chapter 3,

we review related works on building and optimizing NDTC. We presents our design of

the NDTC and explains the function of each component in Chapter 4. In Chapter 5, we

introduce the formulation of the two considered problems and our proposed algorithms.

Chapter 6 describes the implementation of our testbed and the four what-if analyzers.

Finally, in Chapter 7, we discuss the evaluations setup and results, and we conclude the

thesis in Chapter 8.1.

4

Chapter 2

Background

In this chapter, we introduce the background knowledge of IoT, DTs, SDN, and the online

machine learning techniques used in this thesis.

2.1 Internet-of-Things

The Internet of Things (IoT) refers to the concept where everyday physical objects are

connected through embedded sensors, software, and other technologies, allowing them to

communicate and share data over the Internet. This connectivity is essential for develop-

ing smart environments like cities, homes, and healthcare systems. The IoT depends on

crucial technologies and diverse communication protocols that enable seamless interac-

tion between devices, irrespective of their source or capabilities. These elements are vital

for ensuring the scalability and reliability of IoT systems.

IoT architectures are designed to handle the vast amounts of data produced by con-

nected devices. Integrating cloud computing and big data analytics is essential for pro-

cessing this data, enabling real-time decision-making and enhancing efficiency across

multiple sectors. However, the deployment of IoT comes with challenges, particularly

concerning the security of communications and the privacy of user data. Addressing

these challenges is critical to maximizing the benefits of IoT. Furthermore, establishing

standardized protocols is necessary to ensure that devices from different manufacturers

can work together seamlessly, facilitating the broad adoption of IoT technologies across

various industries [1].

2.2 Smart Environments

Smart environments represent a significant advancement in urban development, combin-

ing IoT and big data technologies to create responsive, efficient, and sustainable urban

5

spaces. Commonly referred to as smart cities, these environments leverage interconnected

devices and advanced computing to streamline resource management, improve public ser-

vices, and elevate the overall quality of life. By gathering and analyzing vast amounts of

data, smart environments support informed decision-making and automation, which are

crucial for managing the complex systems of modern cities [59].

Implementing smart environments brings challenges in areas like data management,

security, and the need for scalable and adaptable infrastructures. To overcome these chal-

lenges, technologies such as fog computing are used to process data nearer to its source,

reducing latency and enhancing real-time decision-making. This approach is especially

crucial in urban settings where timely and accurate data processing is critical for services

like traffic management, energy distribution, and public safety. Additionally, integrating

big data analytics ensures efficient handling of the vast data generated, supporting smarter

and more sustainable urban development [46].

2.3 Digital Twins

Digital Twins (DTs) is the emerging technologies that have been mainly applied to the

manufacturing industry to facilitate the product life-cycle from design, development, val-

idation, production, maintenance, and retirement. A DT is essentially a softwarized digital

representation of an object, referred to as its Physical Twin (PT), where DT encompasses

the data characterizing its PT’s behavior. More comprehensive DT systems support bi-

directional data updates between DTs and PTs, which enables applications like remote

monitoring and control. Multiple DTs could interact with one another in the digital world,

where diverse granularity levels of physical models are employed for real-time or what-if

analysis through simulations. The simulation results, driven by real sensor data from the

PTs, can be sent to PTs for autonomous actuation or human-in-the-loop decisions. In

more generalized DT systems, humans and environments can also be abstracted away as

DTs, although no concrete, single PT exists. In fact, some DTs can exist without their

corresponding PTs, which further enable novel applications, such as testing an alterna-

tive or upgraded turbine design of an airplane engine, where the turbine may only exist

in CAD (Computer-Aided Design) software. Different from traditional simulations, DTs

without PTs can interact with other DTs, serving as virtual duplicates of real PTs, which

can be physical objects, humans, or environments.

6

2.3.1 Features of Digital Twins

DT concepts can be applied to many applications, e.g., Savage [44] presented three sam-

ple DT applications: airplane manufacturing, building energy consumption, and Earth

system. Rasheed et al. [39] gave an extensive survey on the value of DTs, enabling tech-

nologies, and common challenges. Furthermore, Minerva and Crespi [28] compiled an

exhaustive list of possible DT features, which can be classified into four categories:

• Object mirroring features enable: (i) a DT to represent a PT, (ii) a DT to reflect

the status of its corresponding PT, and (iii) a DT’s status to be entangled with its

PT’s status in real-time and vice versa.

• Object relation features allow: (i) primitive DTs to be aggregated into more com-

prehensive ones, similar to their PT counterparts and (ii) DTs to be augmented for

new or different characteristics than their PTs.

• Data availability features offer: (i) persistent data even when PTs are temporar-

ily offline, (ii) memorized data of PTs in the past or different contexts, and (iii)

predicted data of PTs in the future or under different contexts via DTs.

• User interaction features ensure that each DT is: (i) managed for timely execution

without excessive resource consumption and (ii) servitized for on-demand accessi-

bility to potentially many users.

Fig. 2.1 illustrates these ten features, which are built upon IoT, big data, ML, physical

models, and service computing technologies.

Figure 2.1: Unique features provided by DTs.

7

2.3.2 Popular Digital Twins Usage Scenarios

The majority of existing DT applications only leverage a subset of the abovementioned

features for remote monitoring, controlling, predicting, and optimizing a system of PTs

for better decision-making throughout their life cycle. Hence, this feature list enables us

to come up with innovative usage scenarios and applications of DTs. Different research

communities have considered different sets of DT features and tackled diverse research

challenges. For example, Kim et al. [49] compared DTs with traditional simulation ap-

proaches, and then discussed unique challenges brought by DT systems. Major et al. [25]

focused on the visualization aspect and demonstrated a graphic DT system for a variety

of smart city applications, such as building information systems, energy management,

weather forecasts, air quality monitoring, etc. El Saddik et al. [8] took a multimedia

networking approach by considering multi-modal interactions, such as Extended Reality

(XR), haptic, and gesture. They also pointed out the importance of Quality-of-Experience

(QoE) driven communications and cybersecurity.

2.3.3 Urban Digital Twins Infrastructure

Only recently, DTs have been gradually applied to smart city applications. For instance,

Mylonas et al. [29] pointed out the main difference between applying DTs in smart man-

ufacturing and smart cities. They also presented sample smart city applications that will

benefit from DTs. A wide spectrum of open challenges are listed, including the following

ones that are more relevant to networked sensing systems in urban setup: (i) privacy and

security concerns, which were well recognized in smart cities, (ii) distributed and edge

analytics for city-wide services to citizens, (iii) low latency services for on-demand re-

quests with stringent time requirements, (iv) 5G cellular technologies for multi-tenant and

diverse Quality-of-Service (QoS) supports, and (v) scalability by trading the complexity

and accuracy of simulation models.

Several studies [26,31,37] tackled these challenges. For example, El Marai et al. [26]

created DTs of road segments using IoT devices equipped with webcams, GPS readers,

thermometers, and hydrometers. The challenges addressed in their paper were, however,

closer to those in traditional IoT systems, including hardware deployment, detection accu-

racy, information visualization, and data security. Raes et al. [37] presented a framework

for data exchanges among DTs and PTs in smart cities. The proposed framework has

been tested for smart city applications related to traffic, air quality, and noise emission in

three European cities. Nguyen et al. [31] studied how DTs can be used to accelerate the

deployment and optimization of 5G cellular networks. In addition to 5G automotive and

new radio emulations, DTs also enable continuous validation and optimization of new (al-

8

ternative) 5G devices. Fig. 2.2 shows our layering structure DTs in smart environments.

Figure 2.2: The layering structure of DTs in smart environments.

2.3.4 Network Digital Twins

NDTs have been studied in the literature, e.g., Rosello et al. [41] conducted a case study

demonstrating how NDTs help configure and deploy industrial 5G networks. Li et al. [21]

proposed solutions to enhance user satisfaction by optimally placing the DTs of net-

worked servers. Lin et al. [22] developed NDTs for identifying key influencing factors of

network behaviors. Guemes-Palau et al. [12] presented a technique to accelerate deep re-

inforcement learning for optimizing NDTs, significantly reducing the training time. Liu et

al. [24] proposed NDTs for predicting resource demands and migrating Virtual Network

Functions (VNFs), in order to minimize energy consumption and improve load balancing

of wireless networks. Dai et al. [6] leveraged NDTs to optimize the computation offload-

ing and resource allocation. These previous works [6, 12, 21, 22, 24, 41] focus on the

high-level design of NDTs rather than their implementation and optimization. In contrast,

our work proposes an NDTC that supports efficient synchronization and multiple what-if

analyzers, enabling QoS prediction and optimization.

9

2.4 Software Defined Networking

Software-Defined Networking (SDN) Offers an innovative approach to network manage-

ment by separating the control plane from the data plane, allowing for more flexible,

programmable, and centralized control over network resources. This architecture stream-

lines network management by allowing administrators to modify network configurations

and services through software-based controllers, abstracting the complexity of the under-

lying hardware. This technology enhances the network’s adaptability to shifting demands

and improves its scalability and efficiency, particularly in settings such as data centers

and IoT networks [19]. The centralized structure of SDN is particularly effective for the

rapid deployment of new services and the streamlined management of extensive, diverse

network infrastructures [60].

Nevertheless, integrating SDN into environments with diverse devices and protocols,

such as IoT, introduces significant challenges. The resulting heterogeneity in network

technologies and devices requires careful management of QoS and security concerns. Re-

cent research has suggested strategies to address these challenges by grouping heteroge-

neous controllers into homogeneous sets, which can significantly reduce response times

and improve both QoS and security across the network [45].

2.5 Online Machine Learning

Online Machine Learning (OML) is designed for environments where data is continuously

generated, requiring models to adapt in real-time. Unlike traditional machine learning

methods that depend on static datasets, OML enables models to be dynamically updated

as new data becomes available, making it particularly effective in situations that demand

constant adaptation and learning. This approach is especially important in networking,

where traffic patterns, user behavior, and other variables can shift rapidly, necessitating

real-time adjustments to maintain optimal performance [13].

OML excels in managing changes in data patterns over time. By incrementally up-

dating the model, OML can sustain its predictive accuracy without needing a complete

retraining process. In networking, OML is well-suited for tasks like traffic prediction,

anomaly detection, and resource allocation, where traditional batch learning methods

may fall short in adapting to the dynamic nature of the environment. Recent research

has underscored the benefits of OML in enhancing the adaptability and responsiveness of

machine learning models in complex and rapidly evolving network scenarios [40].

10

Chapter 3

Related work

In this chapter, we review existing research on the development and optimization of

NDTCs, state synchronization methods, and what-if analysis in networked environments.

3.1 Network Digital Twin Controller

In NDTs [3, 16], the NDTC builds a DT for each networked device, enabling innovative

network management, monitoring, and optimization. Instead of developing NDTCs from

scratch, researchers have extended SDN controllers for NDTs [27, 35, 51] to avoid rein-

venting the wheel. For instance, Raj et al. [38] developed an NDTC using knowledge

graphs to improve NDTs’ query efficiency. Hong et al. [14] built an NDTC that provides

a unified interface to create DTs of heterogeneous devices. These works [14, 38], how-

ever, didn’t optimize their NDTCs, setting them quite different from our current work. In

fact, to the best of our knowledge, our thesis is the first attempt to optimize NDTCs in

IoT-instrumented smart environments. In particular, we strive to: (i) minimize the state

deviation between the DTs and PTs given network bandwidth budgets and (ii) maximize

the prediction accuracy of heterogeneous what-if analyzers under a server computing time

budget.

3.2 State Synchronization

Several previous studies have considered adaptive SDN state updates. For instance, Tian

et al. [48] considered the trade-off between the state update frequency and bandwidth con-

sumption. Poularakis et al. [36] optimized the update frequency among distributed SDN

controllers for better overall performance. Nabil et al. [30] studied the data aggregation

strategies, revealing the trade-offs among data granularity, reliability, and delay. Chen et

al. [5] constructed DTs with different accuracy levels, update frequencies, and available

11

bandwidth. Alanezi and Mishra [2] proposed edge-based NDTs equipped with prioritized

synchronization mechanisms. None of the previous studies [2,5,30,36,48] exercised het-

erogeneous data granularities, while our proposed NDTC includes state synchronization

algorithms to adapt to the bandwidth dynamics.

3.3 What-if Analysis

DT-enabled what-if analysis has been investigated in the past, e.g., Polverini et al. [34]

proposed an NDT platform hosting DTs of the control plane to support what-if analysis

in simulators to optimize the Border Gateway Protocol (BGP) configurations. Wieme et

al. [55] implemented NDTs of a Bluetooth network using simulated network traffic to

optimize network configurations. Wang et al. [52] proposed NDTs for 5G core networks

to predict end-to-end QoS metrics using Graph Neural Networks (GNNs). Similarly,

Ferriol-Galmes et al. [9] and Rusek et al. [42] applied GNNs to extract relations among

the queuing policies, network topologies, routing algorithms, and ingested traffic pat-

terns, aiming to predict network performance and optimize network configurations. Yu et

al. [58] proposed an NDT platform utilizing GNNs to predict network performance and

detect anomalies, enabling proactive service redeployment to ensure service stability and

reduce delays in 6G edge networks. These works [9, 34, 42, 52, 55, 58] built NDTs for

homogeneous what-if analyzers. In contrast, our NDTC supports multiple what-if ana-

lyzers with varying accuracy and resource demands. The selections of what-if analyzers

are made by our what-if analysis algorithm.

12

Chapter 4

Network Digital Twin Controller

In this chapter, we introduce our NDTC, which extends an SDN controller to manage and

optimize networked environments using DT technology. We detail the core components

and functionalities that enable real-time state synchronization and what-if analysis for

smart environments.

Figure 4.1: Overview of our NDTC.

4.1 System Overview

Fig. 4.1 shows our NDTC design. The NDTC is built on a commodity SDN controller that

includes two key components: the flow manager and the stats collector. The flow manager

maintains the flow tables of individual networked devices to create end-to-end data flows,

13

while the stats collector gathers QoS metrics from these devices. Both components use

the OpenFlow protocol to establish connections with switches and receive messages from

them.

Our proposed NDTC offers a southbound API for physical devices to update their

states and receive dictated actions, as well as a northbound API to exchange data with

NDT applications. These NDT applications, such as failure recovery, routing algorithms,

VNF deployment, and visualization, can be implemented in smart environments using

real-time and historical data from DTs. For instance, the VNF deployer can leverage

CPU and RAM usage data from all DTs to generate an optimized deployment plan for

VNFs on the corresponding PTs.

To extend this SDN controller into an NDTC, we introduce six additional components

in the following section: (i) DT specification, (ii) state database, (iii) state synchronizer,

(iv) state synchronization algorithm, (v) what-if analyzer, and (vi) what-if analysis algo-

rithm.

4.2 Components

• The DT specification defines the behavior of DTs, including the attributes and states

of their corresponding PTs. It outlines the types and numbers of states, along with

specific details of the PTs. These specifications are then used to create the DTs for

the actual PTs.

• The state database stores the historical states of DTs for future analysis.

• The state synchronizer enables PTs to update their states. It supports multiple proto-

cols, such as OpenFlow, MQTT, and NETCONF, allowing various types of physical

devices to update their states.

• The state synchronization algorithm adaptively optimizes update frequency and

data granularity based on the available network bandwidth budgets.

• The what-if analyzers are implemented using various approaches, such as ML algo-

rithms, queuing theory, network simulators, and network emulators. Each what-if

analyzer takes the network topology and traffic as input and outputs the predicted

QoS metrics. However, the prediction results from different what-if analyzers vary

in accuracy and differ from the ground truth, which is referred to as prediction error.

• The what-if analysis algorithm considers the trade-off between prediction error and

computing time of the what-if analyzers. When users send a what-if analysis query

to the NDTC, the algorithm selects the most suitable what-if analyzer.

14

Chapter 5

Optimization Problems and Solutions

In this chapter, we formulate the state synchronization problem and what-if analysis prob-

lem and present the solution for these two problems. Table 5.1 gives all symbols used in

the thesis.

5.1 State Synchronization

In a DT-enable IoT instrumented smart environment, each PT periodically updates its

states with the NDTC, which associates the states with the corresponding DT. Higher up-

date frequencies and data granularities result in lower state deviations between PT and DT

but lead to more network traffic. Conversely, lower update frequencies and data granular-

ities cause higher state deviations. Therefore, the update frequency and data granularity

need to be carefully selected to minimize the state deviation under the bandwidth budgets.

We consider N PTs, where the number of states of PT n ∈ {1, 2, . . . , N} is denoted by

Kn. We write the k-th state of PT n in time slot t as sp(n, t, k), where n ∈ {1, 2, . . . , N},
k ∈ {1, 2, . . . , Kn}, and t ∈ {1, 2, . . . , T}. Here, T represents the time horizon of each

state synchronization problem. Similarly, we use sd(n, t, k) to represent the k-th state of

DT n in time slot t. In addition, we let mn,k be the update message size of PT/DT n’s state

k. We write the update frequency fn ∈ R+ to denote how many times PT n synchronizes

the states with its DT per second. We sort PT n’s Kn states in the descending priority

and define PT n’s data granularity zn ∈ {1, 2, . . . , Kn} to indicate how many states are

synchronized in an update message. The total size of each update message of PT n at data

granularity zn is
∑zn

k=1 mn,k.

In terms of network bandwidth budgets, each PT n has bandwidth Bn, and the NDTC

has a bandwidth B, shared by all PTs. We define the state deviation between PT/DT n at

time slot t as θ(n, t), inspired by the definition in Vaezi et al. [50]. Each state k of DT n

has a different importance, denoted as αn,k, where 0 < αn,k ≤ 1 and
∑Kn

k=1 αn,k = 1,∀n ∈

15

Table 5.1: Symbols Used in the thesis

Symbol Description
N Number of PTs
Kn Number of States of PT n
T Time horizon of each state synchronization problem

sp(n, t, k) k-th state of PT n in time slot t
sd(n, t, k) k-th state of DT n in time slot t

mn,k Update message size of PT/DT n’s state k
fn Update frequency of PT n
zn Data granularity of PT n
Bn Bandwidth of PT n
B Bandwidth of the NDTC

θ(n, t) State deviation between PT/DT n at time slot t
αn,k Importance weight of state k of DT n
β Weight of EWMA

θ̃(fn, zn) Prediction model for PT n
∇fn Gradient of update frequency of PT n
∇zn Gradient of data granularity of PT n
∆f System parameter of update frequency
∆z System parameter of data granularity
Q Number of queries
W Number of what-if analyzers
E Number of considered QoS metrics
C Computing time budget

e(q, w) Prediction error answering query q with what-if analyzer w
c(q, w) Computing time answering query q with what-if analyzer w
pe Ground truth of QoS metric e
p̃e Predicted value of QoS metric e
xq,w Decision variable of query q using what-if analyzer w

16

{1, 2, . . . , N}. We employ Exponentially Weighted Moving Average (EWMA) [7] with

a weight 0 < β < 1 to filter out high-frequency noise. αn,k and β can be specified by

the user, taking into account the significance of each state and the importance of previous

state deviations. With these symbols, we write θ(n, t) as:

β
Kn∑
k=1

αn,k
|sd(n, t, k)− sp(n, t, k)|

sp(n, t, k)
+ (1− β)θ(n, t− 1). (5.1)

Figure 5.1: Overview of the OML model in our NDTC.

The actual values of θ(n, t) can be calculated whenever the NDTC receives an update

message from PT n. However, to solve the state synchronization problem, the expected

state deviation under any fn and zn needs to be predicted. To cope with this, we em-

ploy Online Machine Learning (OML) algorithms [4, 13, 40] to build a prediction model

θ̃(fn, zn) so that θ(n, t) ≃ θ̃(fn, zn) for PT n in any future time slot t. In particular, upon

receiving an update message, the computed θ(n, t) is sent into an OML algorithm to re-

fine θ̃(fn, zn), which is in turn used to solve our state synchronization problem. Fig. 5.1

illustrates the input and output of our OML algorithm, which takes the bandwidth of PT,

update frequency, data granularity, and states of DT as inputs to predict the expected state

deviation of DT. Several OML algorithms have been proposed [4], and we empirically

compare the representative ones in Sec. 7.1 using a real testbed for the best-performing

one.

With the symbols defined above, we write the state synchronization problem as:

minimize
{fn,zn|∀n}

N∑
n=1

θ̃(fn, zn) (5.2a)

s.t.: fn ×
zn∑
k=1

mn,k ≤ Bn, ∀n ∈ {1, 2, . . . , N}; (5.2b)

N∑
n=1

fn ×
zn∑
k=1

mn,k ≤ B. (5.2c)

This formulation is an Integer Programming (IP) problem, which can be solved by

17

generic solvers, such as CPLEX [15] and GLPK [10]. We develop a CPLEX-based Opti-

mal Update (OU) algorithm to solve this problem optimally.

Although the OU algorithm gives the optimal update frequency and data granularity,

it may take too long to complete for larger problems. Hence, we also propose an efficient

Gradient-driven Update (GU) algorithm to solve this problem, which iteratively adjusts fn
and zn, so as to reduce the state deviation without overloading the network. Across these

iterations, we keep track of best-known fn and zn. At the beginning of each iteration, we

use θ̃(fn, zn) to compute the gradients ∇fn and ∇zn, which represent the state deviation

differences per unit bandwidth change. When increasing fn or zn, we prefer bigger abso-

lute gradients as they lead to more state deviation reduction. In contrast, when decreasing

fn or zn, we prefer smaller gradients. We use system parameters ∆f and ∆z to denote

the steps for incrementing (or decrementing, as explained later) fn and zn, respectively.

More specifically, the GU algorithm consists of: (i) per-PT and (ii) overall phases for

constraints in Eqs. (5.2b) and (5.2c), respectively. In the per-PT phase, for each PT n, we

let fn = f0 and zn = z0. In the following iterations, after calculating ∇fn and ∇zn, we

update fn or zn by: 
fn ← fn +∆f if |∇fn| ≥ |∇zn|;

zn ← zn +∆z if |∇fn| < |∇zn|,
(5.3)

and move to the next iteration. By doing so, we invest bandwidth from Bn to the more

rewarding option chosen between the update frequency and data granularity. This step

is repeated until Bn is used up. The per-PT phase traverses through all N PTs. After

that, we check if the bandwidth consumption of all PTs exceeds the bandwidth of NDTC,

which is B. If it doesn’t, the GU algorithm terminates and returns the fn and zn, ∀n.

Otherwise, the GU algorithm gets into the overall phase, in which it iteratively reduces

the fn or zn of a selected PT n from n ∈ {1, 2, . . . , N}, to minimize the state deviation

increase per unit bandwidth change. At the beginning of each iteration, we calculate the

gradients ∇fn and ∇zn for all PTs n = 1, 2, . . . , N . We then select the smallest absolute

gradient among all 2N of them. Assuming ∇fn∗ is the smallest one in its absolute value,

we update fn∗ by:

fn∗ ← fn∗ −∆f, (5.4a)

so that we cut some bandwidth usage while controlling the state deviation increase. On

the other hand, if∇zn∗ is the smallest gradient in its absolute value, we update zn∗ by:

zn∗ ← zn∗ −∆z. (5.4b)

This is repeated until the total bandwidth consumption of all PTs no longer exceeds B.

18

The GU algorithm then returns the fn and zn, ∀n, computed in the overall phase.

To demonstrate that changes in update frequency and data granularity can reduce both

the magnitude and the continuity of state deviation, we analyze the data collected in 7.1.

As shown in Fig. 5.2, increasing the update frequency and data granularity not only de-

creases the overall state deviation but also significantly reduces its continuity, thereby

confirming our hypothesis.

Figure 5.2: Impact of update frequency and data granularity on state deviation and its
continuity.

5.2 What-if Analysis

We consider Q queries sent by the administration of a smart environment, where each

query q ∈ {1, 2, . . . , Q} can be answered by one of the what-if analyzers w ∈ {1, 2, . . . ,W}.
Here, W denotes the total number of heterogeneous what-if analyzers. The job of what-

if analyzers is to predict the QoS metrics of individual networked devices in the smart

environment. We let E be the number of considered QoS metrics and C be the comput-

19

Algorithm 1 Gradient-driven Update Algorithm (GU)
for n ∈ {1, 2, . . . , N} do

2: r = 0
while r < MaxIteration do

4: f
′
n ← fn, z′

n ← zn
∇f,∇z ← ComputeGradient(fn,∆f, zn,∆z)

6: if |∇f | ≥ |∇z| then
f

′
n ← fn +∆f

8: else
z
′
n ← zn +∆z

10: if f ′
n ×

∑z
′
n
k=1 mn,k > B then

break
12: fn ← f

′
n, zn ← z

′
n

r ← r + 1
14: while

∑N
n=1 fn ×

∑zn
k=1 mn,k > B do

F = {},Z = {}
16: for n ∈ {1, 2, . . . , N} do

∇f,∇z ← ComputeGradient(fn,∆f, zn,∆z)
18: F.append(∇f),Z.append(∇z)

Let∇fn∗ be the smallest absolute gradient in F, and∇zn∗ be the smallest absolute
gradient in Z

20: if |∇fn∗| < |∇zn∗| then
fn∗ ← fn∗ −∆f

22: else
zn∗ ← zn∗ −∆z

24: Return {fn, zn|n ∈ {1, 2, . . . , N}}

20

ing time budget for answering Q queries on the edge/cloud servers. Our what-if analysis

problem is to select the most suitable what-if analyzer for each query to minimize the

QoS prediction error without exceeding the computing time budget.

Note that different what-if analyzers achieve different QoS prediction errors and con-

sume different computing times. Without loss of generality, we assume all W what-if

analyzers are sorted in the ascending order of the computing time and also in the descend-

ing order of the QoS prediction error. We write the prediction error and computing time

answering query q ∈ {1, 2, . . . , Q} with what-if analyzer w ∈ {1, 2, . . . ,W} as e(q, w)

and c(q, w), respectively. In practice, we execute each what-if analyzer w for query q on

a given IoT network topology and traffic pattern multiple time and calculate the average

prediction error as:

e(q, w) =
1

E

E∑
e=1

∥∥∥∥pe − p̃e
pe

∥∥∥∥ , (5.5)

where pe and p̃e denote the ground truth and predicted values of QoS metric e. Similarly,

we set c(q, w) to be the average computing time. Next, we let xq,w ∈ {0, 1}, ∀q ∈
{1, 2, . . . , Q} and w ∈ {1, 2, . . . ,W} be the decision variables. Here, xq,w = 1 iff we

answer query q using what-if analyzer w. It it not hard to see that
∑W

w=1 xq,w = 1,∀q ∈
{1, 2, . . . , Q}.

With the notations developed above, we write the what-if analysis problem as:

minimize
{xq,w|∀q,w}

Q∑
q=1

W∑
w=1

e(q, w)× xq,w

s.t.:
Q∑

q=1

W∑
w=1

c(q, w)× xq,w ≤ C.

This formulation is also an IP problem. We develop a CPLEX-based Optimal Selection

(OS) algorithm to solve the what-if analysis problem optimally.

21

Chapter 6

Implementations

In this chapter, we describe the implementation of our NDTC on a real testbed, detailing

the integration of six DT-related components into an open-source SDN controller. Addi-

tionally, we outline the setup of our testbed and the baseline algorithms used to evaluate

the performance of our state synchronization and what-if analysis algorithms.

6.1 Testbed

We have implemented the proposed NDTC based on the open-source Ryu SDN con-

troller [43] by adding six DT-related components to it. We have also implemented four

what-if analyzers leveraging ML algorithm, queuing theory, network simulator, and net-

work emulator. The ML algorithm analyzer employs a recent GNN [42]. With queuing

theory, we model each network link as an M/M/1 queue using the SimPy library [33]. We

adopt NS-3 [32] as our network simulator. For the network emulator, we integrate some

data flows from our testbed with an NS-3 simulator. Fig. 6.1 illustrates the implementa-

tion of the network emulator. We connect the network interface of the application server

to the Linux bridge and establish a Linux TAP, which serves as the Ethernet tunnel soft-

ware network interface, also linked to the bridge. Subsequently, we connect the TAP to

the corresponding network interface in the NS-3 simulation, enabling the transmission of

network traffic from the real network interface to the virtual network interface. All these

enhancements are done through four thousand lines of new Python code.

Fig. 6.2 depicts the workflow of our NDTC. When PT updates its states to the NDTC,

the NDTC updates the corresponding DT’s states and uses the previous states from the

DT to calculate the actual state deviation. It then inputs the current update frequency, data

granularity, states, and the actual state deviation of the DT into the OML model for online

learning.

We built a real testbed for all experiments, as illustrated in Fig. 6.3. Also, Fig. 6.4

22

Figure 6.1: Overview of the emulator.

Figure 6.2: Workflow of our NDTC.

23

Figure 6.3: The real testbed for evaluations.

Figure 6.4: A snapshot of our testbed.

shows a snapshot of our testbed. The testbed consists of seven networked devices and two

servers connected by wired and wireless networks. The network switches are based on

the well-known OpenvSwitch [23]. Our proposed NDTC runs on a control server, while

applications run on an applications server. We used a PC with an AMD Ryzen 5 CPU @

3.6 GHz, 6 cores, and 64 GB RAM as the control server and a PC with an AMD Ryzen

5 CPU @ 3.6 GHz, 4 cores, and 16 GB RAM as the application server. Two classroom

workstations stream two camera feeds of the blackboard and instructor to the application

server, which in turn disseminates the lecture videos to online students over the Inter-

net. The two IoT devices are based on Raspberry Pi (RPi), equipped with a camera and

an ultrasound sensor, respectively. The video and distance readings are streamed to the

application server for illegal parking detection and pedestrian counting, which trigger

notifications to law enforcement and brightness changes of streetlights, respectively. If

not otherwise specified, all videos are encoded in H.264 at 10 Mbps, and the time-series

ultrasound distances occupy 0.5 kbps. These three smart-environment applications run

throughout our experiments, producing realistic workloads.

24

6.2 Baseline Algorithms

The state synchronization and what-if analysis algorithms are the main software com-

ponents under evaluation, which, to our best knowledge, were never considered in the

literature [2, 3, 5, 14, 16, 27, 35, 38, 48, 51]. Hence, in addition to our proposed OU, GU,

and OS algorithms, we also implemented four baseline algorithms for comparison. For

the state synchronization problem, we propose two baseline algorithms:

• Alternative Update (AU) Algorithm: The AU algorithm alternates between ran-

domly incrementing the update frequency or the data granularity for all PTs in the

network until the bandwidth budget is exceeded. The AU algorithm ensures that

both frequency and granularity are gradually increased, providing a straightforward

mechanism to balance the load across the network. However, it does not account

for the specific requirements or conditions of individual PTs, which may lead to

suboptimal state synchronization under varying network conditions.

• Random Update (RU) Algorithm: The RU algorithm randomly selects either the

update frequency or data granularity of a PT and increments it. This process is re-

peated for random PTs until the bandwidth budget is exceeded. The randomness

in selection introduces variability in the synchronization process, which might help

prevent the network from becoming too predictable and could handle diverse con-

ditions better than a uniform approach. However, this method may also lead to

inefficient use of bandwidth, as the updates are not driven by the actual needs of the

PTs or the network.

For the what-if analysis problem, we also propose two baseline algorithms:

• Alternative Selection (AS) Algorithm: The AS algorithm consistently selects the

most complex what-if analyzer available for each query, ensuring that the maxi-

mum level of detail and computational resources are used in the analysis. This

approach assumes that more complex analyzers yield better predictions. The selec-

tion process continues until the computing time budget is close to being exceeded.

While this method prioritizes accuracy and thoroughness, it may result in unneces-

sarily high computational costs, particularly when simpler analyzers could provide

sufficient accuracy.

• Random Selection (RS) Algorithm: The RS algorithm randomly chooses a what-if

analyzer for each query, continuing until the computing time budget is exceeded.

The randomness allows the RS algorithm to explore a diverse set of analytical meth-

ods, potentially uncovering efficient solutions that might be overlooked by more

25

deterministic approaches. However, like the RU algorithm, this randomness can

lead to inefficiencies, as it does not account for the specific characteristics of the

queries or the capabilities of the analyzers.

26

Chapter 7

Evaluations

In this chapter, we present a comprehensive evaluation of our NDTC implementation,

focusing on the effectiveness of our proposed state synchronization and what-if analy-

sis algorithms. Through a series of experiments conducted on a real testbed, we analyze

model deviations, assess the performance of baseline algorithms, and examine the over-

head introduced by our solutions to validate their functionality and efficiency in smart

environments.

7.1 Model Deviation

With our testbed, we derive the models used by our proposed solution. For the state syn-

chronization problem, we develop an OML-based state deviation model θ̃(·), which takes

the update frequency, data granularity, and DT states as inputs to predict the state devia-

tion. We consider four representative OML algorithms: Linear Regression (LR), Hoeffd-

ing Tree (HT), Multi-layer Perceptron (MLP), and Gaussian Naive Bayes (GNB) [4]. We

conduct experiments on our testbed to compare their performance in Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2).

In particular, we measure the QoS metrics under random settings chosen from: (i)

update frequency ∈ {0.1,0.5,1,3,10} Hz, (ii) data granularity ∈ {4,9,14}, where the total

number of states is 14, and (iii) bandwidth budget ∈ {0.5,1,2,4}Mbps In total, 1000 state

measurements are taken and randomly divided into 80/20 for training/testing. Our grid

search gives the best hyperparameters for experiments, e.g.: (i) the learning rate of LR

is 0.01, (ii) the number of leaves of HT is 50, and (iii) the number of the neurons of the

hidden layer of MLP is 10. Fig. 7.1 shows the evaluation metrics of OML algorithms. We

found that the LR algorithm constantly outperforms other OML algorithms by nontrivial

margins: at least 4.3% in RMSE, 3.3% in MAE, and 35.5% in R2 were observed. Hence,

we employ the LR algorithm for the model θ̃(·).

27

LR HT MLP GNB

Model

0.000

0.003

0.006

0.009

0.012

0.015
r
m
s
e

(a)

LR HT MLP GNB

Model

0.0000

0.0015

0.0030

0.0045

0.0060

0.0075

m
a
e

(b)

LR HT MLP GNB

Model

−0.45

−0.30

−0.15

0.00

r
2

(c)

Figure 7.1: Evaluation metrics of OML algorithms: (a) RMSE, (b) MAE, and (c) R-
Squared.

For the what-if analysis problem, unlike what-if analyzers based on the queuing the-

ory, network simulator, and network emulator, the ML-based what-if analyzer needs to

be trained with real measurement results from a site survey. On our testbed, we carry

out 100 measurements under the workloads generated by the three smart-environment ap-

plications. We use 20 % of all the measurements for testing while the rest for training

our ML-based what-if analyzer. We consider two QoS metrics: one-way delay and delay

jitter in our discussion. Fig. 7.2 compares the trade-off between e(·) and c(·) among over

what-if analyzers, which confirms our intuitions, e.g., the network emulator achieves the

smallest prediction error but consumes the most computing time. The derived models are

used in the rest of the evaluations.

7.2 Setup

We conduct experiments using our testbed to evaluate our NDTC solution, focusing on

the two optimization components. We empirically choose the following system param-

28

0 2 4 6 8 10
Computing Time (s)

0

10

20

30

40
P

re
d

ic
ti

o
n

 E
rr

o
r

(%
) ML

Queuing
Simulator
Emulator

Figure 7.2: Prediction error and computing time of our what-if analyzers.

eters: (i) f0 = 1 Hz, (ii) z0 = 4, (iii) ∆f = 0.1 Hz, (iv) ∆z = 1, (v) N = 7, (vi)

T = 10 s, (vii) Kn = 14, ∀n, (viii) αn,k = 1/14, ∀n, (ix) β = 0.9, and (x) W = 4.

We vary the following parameters, where the default values are underlined: (i) control

server bandwidth budget: B ∈ {5, 10, 15, 30} Mbps, (ii) networked device bandwidth

budget: Bn ∈ {0.5, 1, 2, 4} Mbps, (iii) number of queries: Q ∈ {15, 20, 25, 30}, and

(iv) computing time budget: C ∈ {60, 120, 240, 480} seconds. For each combination of

the parameters, we conduct experiments with different state synchronization and what-if

analysis algorithms for comparison. For statistically meaningful results, we repeat each

experiment for 10 runs, where each run lasts for 10 seconds. For each what-if analysis

query, we randomly select a networked device with a QoS metric to mimic an inquiry

made by the administration.

We measure the following metrics:

• State deviation: θ(·) is computed whenever a state update message is received,

which is the objective function in Eq. (5.1).

• Prediction error: e(·) of the queries from the administration, which is the objective

function in Eq. (5.6).

• Running time of the optimization algorithms.

• Memory utilization of the application server.

• CPU utilization of the application server.

29

• Control message throughput at the control server.

We report the average of measured results with 95% confidence intervals whenever appli-

cable.

7.3 Results

The proposed NDTC functions correctly without incurring excessive overhead. To

validate the functionality of our NDTC, we zoom into a sample run of our experiments

with default parameters. Fig. 7.3 plots PT/DT states from sample networked devices. This

figure shows that the states of DT are updated every second, which is the employed update

frequency. Table 7.1 gives the QoS prediction and computing time of individual what-if

analyzers for a sample what-if question: ”What are the expected QoS measurements if

we reduce the bitrate of all video streams from 10 to 5 Mbps?” This table depicts that

all our what-if analyzers meet the functional requirements: QoS predictions are provided.

Fig. 7.4 presents the control message throughput at the control server. This figure reveals

that the overhead is manageable: about 200 (150) kbps in the RX (TX) directions even

when the update frequency is as high as 8 Hz. In summary, these sample results confirm

that our NDTC functions well with an acceptable control message overhead.

Our proposed OU and GU algorithms reduce the state deviation of networked
devices. Fig. 7.5 presents the state deviation achieved by different state synchronization

algorithms under the default parameters. Figs. 7.5(a) and 7.5(b) report the expected state

deviation from our optimization problem from a sample network switch and across all

networked devices, respectively. These two figures reveal that our proposed OU algo-

rithm indeed leads to the lowest state deviation, up to 8.39 times smaller than the baseline

algorithms. Moreover, our proposed GU algorithm also results in a smaller state deviation

than the baseline algorithm, although the gap is small. Figs. 7.5(c) and 7.5(d) give the ac-

tual state deviation collected from our testbed. These two figures show that our proposed

GU algorithm significantly outperforms the baseline algorithms by a large margin, up to

a 98.92% reduction in the state deviation is observed. Also, Our proposed OU algorithm

also outperforms the baseline algorithms by up to 99.49% in state deviation. We note that

the GU algorithm performs better in actual state deviation compared to expected state de-

viation. In fact, the GU algorithm even outperforms the OU algorithm in terms of actual

state deviation in our testbed, as shown in Fig. 7.5(d). Moreover, Figs. 7.7-7.12 show the

result under different networked device bandwidth and control server bandwidth. Our GU

and OU algorithms also outperform in expected state deviation and actual state deviation.

In summary, our proposed OU and GU algorithms successfully reduce the expected and

actual state deviation in the optimization formulation and real testbed.

30

Our proposed algorithms incur acceptable overhead. Fig. 7.6 presents the overall

overhead across all runs under the default parameters. Fig. 7.6(a) reveals that the GU algo-

rithm runs much faster than the OU algorithm, with a 10.46 times speed-up in terms of the

running time. Furthermore, even for the optimal OU algorithm, its running time is merely

∼ 800 ms. Considering the state synchronization problem only needs to be solved when-

ever the environment (like the control server bandwidth) is changed, sub-second running

time is quite reasonable. Figs. 7.6(b)–7.6(d) give the control message throughput, ap-

plication server memory utilization, and application server CPU utilization, respectively.

Fig. 7.6(b) depicts that our proposed algorithms increase the control message through-

put: up to 40.19% and 132.97% increases are observed. Even with such an increase,

the proposed GU algorithm only consumes ∼ 400 kbps of total bandwidth, which is not

high in modern networks. Figs. 7.6(c) and 7.6(d) confirm that the state synchronization

algorithms impose no impact on the application server overhead.

In summary, our proposed OU algorithm incurs higher control message throughput.

With that said the various aspects of the overheads are all acceptable.

Our proposed OS algorithm significantly reduces the prediction error and scales
to larger what-if analysis problems. Fig. 7.13 compares our proposed OS algorithm

against two baseline algorithms under different numbers of queries. Fig. 7.13(a) shows

that our optimal OS algorithm always leads to the lowest prediction error: up to 107.55%

and 103.35% reductions are observed, compared to the AS and RS algorithms, respec-

tively. Fig. 7.13(b) reveals that unlike the AS and RS algorithms, which demonstrate

increasing running time with more queries, our proposed OS algorithm incurs almost

constant running time, up to 101.59 ms. Fig. 7.14 compares our proposed OS algorithm

against two baseline algorithms under different computing time budgets. Fig. 7.14(a)

shows that our optimal OS algorithm always achieves the lowest prediction error: up to

75.77% and 83.63% reductions are observed, compared to the AS and RS algorithms, re-

spectively. Fig. 7.14(b) shows that the OS algorithm terminates faster when the computing

time budget is looser, which is intuitive. More importantly, this figure confirms that even

with a challenging 60-s computing time budget, our OS algorithm takes no more than

70.67 ms to terminate.

In summary, our proposed OS algorithm delivers the smallest prediction error for all

what-if analysis queries yet terminates within 1 s.

31

0 2 4 6 8 10
Time (s)

42

44

46

48

50

52

S
e
c
o
n

d
 o

f
th

e
 M

in
u

te
 (

s
) PT DT

(a)

0 2 4 6 8 10
Time (s)

0

1

2

3

4

5

C
P

U
 U

ti
li

.
(%

)

PT DT

(b)

0 2 4 6 8 10
Time (s)

90.45

91.49

92.53

93.57

94.61

95.65

T
X

 P
a
c
k
e
ts

 (
k
)

PT DT

(c)

Figure 7.3: Comparison of PT/DT states from a sample run at: (a) an IoT device, (b) a
workstation, and (c) a network switch.

32

0 2 4 6 8 10
Time (s)

0

25

50

75

100

125

150

175

200

225

R
X

 T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

8 Hz 4 Hz 1 Hz

(a)

0 2 4 6 8 10
Time (s)

0

50

100

150

200

250

300

350

T
X

 T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

8 Hz 4 Hz 1 Hz

(b)

Figure 7.4: Control server throughput under different update frequencies: (a) RX and (b)
TX.

Table 7.1: Sample Prediction and Computing Time of Different What-if Analyzers

Pred. Pred. Comp.
Metrics Delay Jitter Time

(ms) (ms) (ms)
ML 19.07 16.88 2.38

Queuing 43.50 40.40 5.16
Simulator 10.32 0.34 4338
Emulator 11.06 0.10 10,000

Ground Truth 0.70 0.15 10,000

33

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.5: State deviation from different state synchronization algorithms. Expected
state deviation: (a) from a network switch in a sample run and (b) across all networked
devices. Actual state deviation: (c) from a network switch in a sample run and (d) across
all networked devices.

34

OU GU AU RU
Algorithm

10−3

10−2

10−1

R
u

n
n

in
g

 T
im

e
 (

s
)

(a)

OU GU AU RU
Algorithm

0

100

200

300

400

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

(b)

OU GU AU RU
Algorithm

0.00

0.02

0.04

0.06

0.08

0.10

M
e
m

.
U

ti
li

.
(%

)

(c)

OU GU AU RU
Algorithm

0

1

2

3

4

5

C
P

U
 U

ti
li

.
(%

)

(d)

Figure 7.6: Overhead caused by different state synchronization algorithms: (a) running
time, (b) total control server throughput, (c) application server CPU utilization, and (d)
application server memory utilization.

35

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.7: State deviation from different state synchronization algorithms under 2 Mbps
networked device bandwidth. Expected state deviation: (a) from a network switch in
a sample run and (b) across all networked devices. Actual state deviation: (c) from a
network switch in a sample run and (d) across all networked devices.

36

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.8: State deviation from different state synchronization algorithms under 1 Mbps
networked device bandwidth. Expected state deviation: (a) from a network switch in
a sample run and (b) across all networked devices. Actual state deviation: (c) from a
network switch in a sample run and (d) across all networked devices.

37

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−8

10−7

10−6

10−5

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.9: State deviation from different state synchronization algorithms under 0.5
Mbps networked device bandwidth. Expected state deviation: (a) from a network switch
in a sample run and (b) across all networked devices. Actual state deviation: (c) from a
network switch in a sample run and (d) across all networked devices.

38

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.10: State deviation from different state synchronization algorithms under 15
Mbps control server bandwidth. Expected state deviation: (a) from a network switch in
a sample run and (b) across all networked devices. Actual state deviation: (c) from a
network switch in a sample run and (d) across all networked devices.

39

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−10

10−8

10−6

10−4

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.11: State deviation from different state synchronization algorithms under 10
Mbps control server bandwidth. Expected state deviation: (a) from a network switch in
a sample run and (b) across all networked devices. Actual state deviation: (c) from a
network switch in a sample run and (d) across all networked devices.

40

0 2 4 6 8 10
Time (s)

10−3

10−2

10−1

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(a)

1 3 5 7 9 Avg.
Run

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(b)

0 2 4 6 8 10
Time (s)

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

S
ta

te
 D

e
v
ia

ti
o
n

OU GU AU RU

(c)

1 3 5 7 9 Avg.
Run

10−10

10−8

10−6

10−4

10−2
S

ta
te

 D
e
v
ia

ti
o
n

OU GU AU RU

(d)

Figure 7.12: State deviation from different state synchronization algorithms under 5 Mbps
control server bandwidth. Expected state deviation: (a) from a network switch in a sample
run and (b) across all networked devices. Actual state deviation: (c) from a network
switch in a sample run and (d) across all networked devices.

15 20 25 30
Number of Queries

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

P
r
e
d

ic
ti

o
n

 E
r
r
o
r
 (

%
)

OS AS RS

(a)

15 20 25 30
Number of Queries

10−1

100

101

102

R
u

n
n

in
g

 T
im

e
 (

m
s
)

OS AS RS

(b)

Figure 7.13: Performance of different what-if analysis algorithms under different numbers
of queries: (a) prediction error and (b) running time.

41

60 120 240 480
Computing Time Budget (s)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

P
re

d
ic

ti
o
n

 E
rr

o
r

(%
)

OS AS RS

(a)

60 120 240 480
Computing Time Budget (s)

10−1

100

101

102

R
u

n
n

in
g

 T
im

e
 (

m
s
)

OS AS RS

(b)

Figure 7.14: Performance of different what-if analysis algorithms under different com-
puting time budgets: (a) prediction error and (b) running time.

42

Chapter 8

Conclusion

In this chapter, we summarize the key contributions of our work, highlighting the success-

ful development and optimization of an NDTC for IoT-instrumented smart environments.

We also discuss potential future research directions to enhance the scalability and func-

tionality of our proposed solutions.

8.1 Concluding Remarks

We developed and optimized an NDTC for IoT-instrumented smart environments, which

has not been thoroughly studied in the literature. By extending an open-source SDN con-

troller, we constructed a DT-enabled smart environment that efficiently supports multiple

innovative applications. Our proposed OU and GU state synchronization algorithms ef-

fectively minimize state deviation between PTs and their DTs by optimizing the update

frequency and data granularity within the network bandwidth budgets. Our OS what-

if analysis algorithm accurately selects suitable what-if analyzers for individual queries,

minimizing QoS prediction errors under the computing time budget. Our extensive exper-

iments in a real smart environment testbed reveal the merits of our proposed algorithms

over the baseline ones. For example, our OU and GU algorithms outperform the baseline

algorithms in terms of state deviation: 99.49% and 94.92% reductions are observed. In

addition, our OS algorithm outperforms the AS and RS algorithms in terms of prediction

error: more than 75.77% and 83.63% reductions are observed.

8.2 Future Work

Our work in this thesis can be extended in the following directions:

• Network topology with larger scale. In our work, we develop and evaluate our

NDTC and state synchronization algorithms on a testbed containing seven net-

43

worked devices. In the future, we plan to implement our system in larger network

topologies with more networked devices to evaluate the scalability of the NDTC

and our state synchronization algorithm.

• Human-in-the-loop suggestion from what-if analyzers. In our work, we focus on

the implementation of four what-if analyzers. These analyzers utilize the network

topology and the states of DTs from our NDTC to conduct analysis and predict QoS

metrics. In the future, we plan to incorporate human-in-the-loop suggestions for

these analyzers, providing administrators with recommendations for new deploy-

ment plans or settings. These suggestions can assist in enhancing the performance

of smart environments.

• Domain-specific simulators. In our work, we use what-if analyzers to predict QoS

metrics and evaluate the network performance of smart environments. Additionally,

different types of what-if analyzers can be implemented with DTs. For example,

SUMO is a traffic simulator that can model urban traffic flow, while QBlade is a

wind turbine simulator that can simulate design and electricity generation under

various settings. These what-if analyzers can leverage DTs in smart environments

to provide analysis that help administrators evaluate different configurations and

settings.

44

Bibliography

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet

of things: A survey on enabling technologies, protocols, and applications. IEEE

communications surveys & tutorials, 17(4):2347–2376, June 2015.

[2] K. Alanezi and S. Mishra. Towards a Scalable Architecture for Building Digital

Twins at the Edge. In Proc. of IEEE/ACM Symposium on Edge Computing (SEC),

pages 325–329, Wilmington, DE, USA, December 2023.

[3] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino, D. López,

A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong, et al. Network digital twin: Con-

text, enabling technologies, and opportunities. IEEE Communications Magazine,

60(11):22–27, 2022.

[4] A. Benczúr, L. Kocsis, and R. Pálovics. Online machine learning in big data streams.

arXiv preprint arXiv:1802.05872, pages 1–40, 2018.

[5] H. Chen, T. Todd, D. Zhao, and G. Karakostas. Digital Twin Model Selection for

Feature Accuracy. IEEE Internet of Things Journal, 11(7):11415 – 11426, 2023.

[6] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang. Deep reinforcement learning for

stochastic computation offloading in digital twin networks. IEEE Transactions on

Industrial Informatics, 17(7):4968–4977, 2020.

[7] Y. Edalat, J.-S. Ahn, and K. Obraczka. Smart experts for network state estimation.

IEEE Transactions on Network and Service Management, 13(3):622–635, 2016.

[8] A. El Saddik, F. Laamarti, and M. Alja’Afreh. The potential of digital twins. IEEE

Instrumentation and Measurement Magazine, 24(3):36–41, May 2021.

[9] M. Ferriol-Galmés, J. Suárez-Varela, J. Paillissé, X. Shi, S. Xiao, X. Cheng,

P. Barlet-Ros, and A. Cabellos-Aparicio. Building a digital twin for network op-

timization using graph neural networks. Elsevier Computer Networks, 217:109329,

2022.

45

[10] Free Software Foundation. GLPK, 2012. https://www.gnu.org/

software/glpk/.

[11] A. Fuller, Z. Fan, C. Day, and C. Barlow. Digital twin: Enabling technologies,

challenges and open research. IEEE access, 8:108952–108971, May 2020.

[12] C. Güemes-Palau, P. Almasan, S. Xiao, X. Cheng, X. Shi, P. Barlet-Ros, and

A. Cabellos-Aparicio. Accelerating deep reinforcement learning for digital twin

network optimization with evolutionary strategies. In Proc. of IEEE/IFIP Network

Operations and Management Symposium (NOMS), pages 1–5, Budapest, Hungary,

April 2022.

[13] C. Hoi, D. Sahoo, J. Lu, and P. Zhao. Online learning: A comprehensive survey.

Elsevier Neurocomputing, 459:249–289, 2021.

[14] H. Hong, Q. Wu, F. Dong, W. Song, R. Sun, T. Han, C. Zhou, and H. Yang. Net-

graph: An intelligent operated digital twin platform for data center networks. In

Proc. of the ACM SIGCOMM workshop on network-application integration, pages

26–32, Virtual Event, USA, August 2021.

[15] International Business Machines Corporation (IBM). CPLEX, 2024. https://

www.ibm.com/products/ilog-cplex-optimization-studio.

[16] ITU-T. Digital twin network – Requirements and architecture, 2022. https:

//www.itu.int/rec/T-REC-Y.3090s.

[17] M. Jafari, A. Kavousi-Fard, T. Chen, and M. Karimi. A review on digital twin tech-

nology in smart grid, transportation system and smart city: Challenges and future.

IEEE Access, 11:17471 – 17484, February 2023.

[18] e. a. Jin, Jiong. Network architecture and QoS issues in the Internet of things for

a smart city. In Proc. of IEEE International Symposium on Communications and

Information Technologies (ISCIT), pages 956–961, October 2012.

[19] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of

the IEEE, 103(1):14–76, December 2014.

[20] G. Li, T. Luan, X. Li, J. Zheng, C. Lai, Z. Su, and K. Zhang. Breaking down data

sharing barrier of smart city: A digital twin approach. IEEE Network, pages 1 – 9,

May 2023.

46

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.itu.int/rec/T-REC-Y.3090s
https://www.itu.int/rec/T-REC-Y.3090s

[21] J. Li, J. Wang, Q. Chen, Y. Li, and A. Zomaya. Digital twin-enabled service satis-

faction enhancement in edge computing. In Proc. of IEEE INFOCOM Conference

on Computer Communications, pages 1–10, New York City, NY, USA, May 2023.

[22] G. Lin, J. Gel, Y. Wu, H. Li, and L. Li. Digital twin networks: learning dynamic

network behaviors from network flows. In Proc. of IEEE Symposium on Computers

and Communications (ISCC), pages 1–6, Rhodes, Greece, June 2022.

[23] Linux Foundation. OpenvSwitch, 2016. https://www.openvswitch.org/.

[24] Q. Liu, L. Tang, T. Wu, and Q. Chen. Deep reinforcement learning for resource

demand prediction and virtual function network migration in digital twin network.

IEEE Internet of Things Journal, 10(21):19102 – 19116, 2023.

[25] P. Major, G. Li, H. Hildre, and H. Zhang. The use of a data-driven digital twin of a

smart city: A case study of Ålesund, norway. IEEE Instrumentation & Measurement

Magazine, 24(7):39–49, 2021.

[26] O. Marai, T. Taleband, and J. Song. Roads infrastructure digital twin: A step toward

smarter cities realization. IEEE Network, 35(2):136–143, March-April 2021.

[27] K. Mayer, R. Pinto, J. Soares, D. Arantes, C. Rothenberg, V. Cavalcante, L. San-

tos, F. Moraes, and D. Mello. Demonstration of ML-assisted soft-failure local-

ization based on network digital twins. IEEE Journal of Lightwave Technology,

40(14):4514–4520, 2022.

[28] R. Minerva and N. Crespi. Digital twins: Properties, software frameworks, and

application scenarios. IT Professional, 23(1):51–55, April 2021.

[29] G. Mylonas, A. Kalogeras, G. Kalogeras, C. Anagnostopoulos, C. Alexakos, and

L. Muñoz. Digital twins from smart manufacturing to smart cities: A survey. IEEE

Access, 9:143222–143249, October 2021.

[30] Y. Nabil, H. ElSawy, S. Al-Dharrab, H. Mostafa, and H. Attia. Data aggregation in

regular large-scale IoT networks: Granularity, reliability, and delay tradeoffs. IEEE

Internet of Things Journal, 9(18):17767–17784, 2022.

[31] H. Nguyen, R. Trestian, D. To, and M. Tatipamula. Digital twin for 5G and beyond.

IEEE Communications Magazine, 59(2):10–15, February 2021.

[32] NS3 Network Simulator , 2011. https://www.nsnam.org/.

[33] Ontje Lünsdorf. Simpy, 2023. https://simpy.readthedocs.io/en/

latest/.

47

https://www.openvswitch.org/
 https://www.nsnam.org/
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/

[34] M. Polverini, I. Germini, A. Cianfrani, F. G. Lavacca, and M. Listanti. A Digital

Twin based Framework to Enable “What-If” Analysis in BGP Optimization. In Proc.

of IEEE/IFIP Network Operations and Management Symposium (NOMS), pages 1–

6, Miami, FL, USA, May 2023.

[35] M. Polverini, F. Lavacca, J. Galán-Jiménez, D. Aureli, A. Cianfrani, and M. Lis-

tanti. Digital twin manager: A novel framework to handle conflicting network ap-

plications. In Proc. of IEEE Conference on Network Function Virtualization and

Software Defined Networks (NFV-SDN), pages 85–88, Phoenix, AZ, USA, Novem-

ber 2022.

[36] K. Poularakis, Q. Qin, L. Ma, S. Kompella, K. K. Leung, and L. Tassiulas. Learning

the optimal synchronization rates in distributed SDN control architectures. In Proc.

of IEEE INFOCOM 2019 Conference on Computer Communications, pages 1099–

1107, Paris, France, April 2019.

[37] L. Raes, P. Michiels, T. Adolphi, C. Tampere, A. Dalianis, S. McAleer, and P. Kogut.

Duet: A framework for building interoperable and trusted digital twins of smart

cities. IEEE Internet Computing, 26(3):43–50, May 2022.

[38] D. Raj, T. Ahmed, A. Hirwe, P. Tammana, and K. Kataoka. Building a digital twin

network of sdn using knowledge graphs. IEEE Access, 11:63092 – 63106, 2023.

[39] A. Rasheed, O. San, and T. Kvamsdal. Digital twin: Values, challenges and enablers

from a modeling perspective. IEEE Access, 8:21980–22012, January 2020.

[40] A. Ridwan, M. Radzi, F. Abdullah, and Y. Jalil. Applications of machine learning in

networking: a survey of current issues and future challenges. IEEE access, 9:52523–

52556, 2021.

[41] M. M. Roselló, V. Cancela, I. Quintana, and M. Lorenzo. Network Digital Twin for

Non-Public Networks. In Proc. of IEEE 24th International Symposium on a World

of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 495–500, Boston,

MA, USA, June 2023.

[42] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-Aparicio.

Unveiling the potential of graph neural networks for network modeling and opti-

mization in sdn. In Proceedings of the 2019 ACM Symposium on SDN Research,

pages 140–151, 2019.

[43] Ryu SDN Framework Community. Ryu, 2017. https://ryu-sdn.org/.

48

https://ryu-sdn.org/

[44] N. Savage. Virtual duplicates. Commun. ACM, 65(2):14–16, January 2022.

[45] K. Sood, K. K. Karmakar, S. Yu, V. Varadharajan, S. R. Pokhrel, and Y. Xiang. Al-

leviating heterogeneity in SDN-IoT networks to maintain QoS and enhance security.

IEEE Internet of Things Journal, 7(7):5964–5975, December 2019.

[46] M. Talebkhah, A. Sali, M. Marjani, M. Gordan, S. J. Hashim, and F. Z. Rokhani. Iot

and big data applications in smart cities: recent advances, challenges, and critical

issues. IEEE Access, 9:55465–55484, April 2021.

[47] F. Tang, X. Chen, K. Rodrigues, M. Zhao, and N. Kato. Survey on digital twin edge

networks (DITEN) toward 6G. IEEE Open Journal of the Communications Society,

3:1360–1381, August 2022.

[48] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou. Self-adaptive de-

centralized monitoring in software-defined networks. IEEE Transactions on Net-

work and Service Management, 15(4):1277–1291, 2018.

[49] S. Taylor, B. Johansson, S. Jeon, L. Lee, P. Lendermann, and G. Shao. Using sim-

ulation and digital twins to innovate: Are we getting smarter? In 2021 Winter

Simulation Conference (WSC), pages 1–13, December 2021.

[50] M. Vaezi, K. Noroozi, T. Todd, D. Zhao, G. Karakostas, H. Wu, and X. Shen.

Digital twins from a networking perspective. IEEE Internet of Things Journal,

9(23):23525–23544, 2022.

[51] R. Vilalta, L. Gifre, R. Casellas, R. Muñoz, R. Martı́nez, A. Mozo, A. Pastor,

D. López, and J. P. Fernández-Palacios. Applying digital twins to optical networks

with cloud-native sdn controllers. IEEE Communications Magazine, 61(12):128 –

134, 2023.

[52] H. Wang, Y. Wu, G. Min, and W. Miao. A graph neural network-based digital

twin for network slicing management. IEEE Transactions on Industrial Informatics,

18(2):1367–1376, 2020.

[53] Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu. A survey on dig-

ital twins: Architecture, enabling technologies, security and privacy, and future

prospects. IEEE Internet of Things Journal, 10(17):14965–14987, 2023.

[54] J. Wen, B. Gabrys, and K. Musial. Toward digital twin oriented modeling of com-

plex networked systems and their dynamics: A comprehensive survey. Ieee Access,

10:66886–66923, 2022.

49

[55] J. Wieme, M. Baert, and J. Hoebeke. Managing a QoS-enabled Bluetooth Mesh net-

work using a Digital Twin Network: An experimental evaluation. Elsevier Internet

of Things, 25:101023, 2024.

[56] Y. Wu, K. Zhang, and Y. Zhang. Digital twin networks: A survey. IEEE Internet of

Things Journal, 8(18):13789–13804, 2021.

[57] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores, D. Carrera,

J. L. Pérez, D. Montero, P. Chacin, A. Corsaro, et al. A new era for cities with fog

computing. IEEE Internet Computing, 21(2):54–67, 2017.

[58] P. Yu, J. Zhang, H. Fang, W. Li, L. Feng, F. Zhou, P. Xiao, and S. Guo. Digital twin

driven service self-healing with graph neural networks in 6g edge networks. IEEE

Journal on Selected Areas in Communications, 41(11):3607 – 3623, 2023.

[59] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things for

smart cities. IEEE Internet of Things journal, 1(1):22–32, August 2014.

[60] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani. SDN con-

trollers: A comprehensive analysis and performance evaluation study. ACM Com-

puting Surveys (CSUR), 53(6):1–40, December 2020.

50

	Abstract
	中文摘要
	Introduction
	Contributions
	Limitations
	Organization

	Background
	Internet-of-Things
	Smart Environments
	Digital Twins
	Features of Digital Twins
	Popular Digital Twins Usage Scenarios
	Urban Digital Twins Infrastructure
	Network Digital Twins

	Software Defined Networking
	Online Machine Learning

	Related work
	Network Digital Twin Controller
	State Synchronization
	What-if Analysis

	Network Digital Twin Controller
	System Overview
	Components

	Optimization Problems and Solutions
	State Synchronization
	What-if Analysis

	Implementations
	Testbed
	Baseline Algorithms

	Evaluations
	Model Deviation
	Setup
	Results

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

