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中文摘要

SYN洪水攻擊持續挑戰伺服器的擴展性與可用性。現有的防禦方
法不是加重主機 CPU的負擔，就是超出可程式化硬體的記憶體限制。
本文提出 CUCKOOGUARD：智慧網路卡上的節約記憶體 SYN 洪水
攻擊防禦架構，透過分散式代理設計（split-proxy），將連線驗證卸
載至資料平面，以提升效能並降低主機負載。CUCKOOGUARD採用
Cuckoo濾波器來精確追蹤 TCP連線，並支援移除過時的連線項目，有
效提升記憶體使用效率並支援高連線流動性。系統以 P4語言實作，並
與現有技術進行效能比較，CUCKOOGUARD將流量過濾的誤判率由
7.66%降低至 1.56%，使主機 CPU負載減少達 79%。實驗結果顯示，
在資源受限的可程式化平台上，亦能實現準確且低負擔的 SYN洪水攻
擊防禦。
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Abstract

SYN flood attacks continue to challenge server scalability and availabil-
ity. Existing defenses either burden the host CPU or exceed the memory
limits of programmable hardware. We present CUCKOOGUARD, a memory-
efficient SYN flood mitigation architecture for SmartNICs that offloads con-
nection validation to the data plane using a split-proxy design. At its core,
CUCKOOGUARD uses Cuckoo filters to enable precise TCP connection track-
ing, including the removal of stale connection entries. This enhances memory
efficiency and supports high connection turnover. Implemented in P4 and
benchmarked against the state-of-the-art, CUCKOOGUARD reduces flow fil-
tering false positive rates from 7.66% to 1.56%, yielding a 79% reduction in
server CPU overhead. These results demonstrate that accurate, low-overhead
SYN flood defense is achievable on resource-constrained programmable plat-
forms.
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Chapter 1

Introduction

In the context of escalating geopolitical tensions in recent years, cyberspace has increas-

ingly become a battleground for state-sponsored and criminal actors alike, leading to a

notable surge in cyber attacks targeting critical infrastructure and digital services [15, 31].

Among these, Distributed Denial-of-Service (DDoS) attacks have emerged as a particularly

persistent threat. According to Cloudflare’s Q4 2024 report, a substantial proportion of

these attacks target the Layer 4 TCP protocol, with SYN flood attacks standing out as

the most prevalent form of network-layer DDoS activity [20]. SYN flood attacks exploit

the TCP handshake mechanism to overwhelm server resources, thereby impairing system

availability. Although stateless countermeasures, such as SYN-Cookies [8], have been

widely adopted, their reliance on host CPU resources renders them increasingly ineffective

due to the scale and frequency of contemporary DDoS campaigns. This evolving threat

landscape underscores the urgent need for more sophisticated and scalable defense frame-

works that can operate effectively under high-load scenarios and adapt to the dynamic

nature of modern cyber warfare.

Broader defenses, such as SDN-based filtering [91], offer coarse-grained protection,

e.g., by blocking spoofed or known malicious IPs. However, they lack the per-flow granu-

larity needed for effective SYN flood mitigation and are best viewed as complementary

solutions. Recent work has thus focused on in-network defenses implemented entirely

in the data plane [77]. One notable example is SMARTCOOKIE [92], which uses a split-

proxy design to offload SYN-Cookie validation from the server to programmable network

hardware. While effective, it relies on programmable switch hardware that has since been

discontinued by the manufacturer [43], its scalability is limited, and it incurs significant

server overhead due to a 7.66% false positive rate in flow filtering.

In this work, we present CUCKOOGUARD, a memory-efficient SYN flood defense

architecture designed for deployment on Smart Network Interface Cards (SmartNICs).

These widely used devices [33] offer line-rate packet processing near the server edge

1



and support programmable data planes via P4 [39], making them ideal for handling fine-

grained, low-latency traffic. We implement a proof-of-concept of CUCKOOGUARD using

the P4 language [62] to validate our approach. As a widely adopted domain-specific

language (DSL) for programmable data planes, P4 enables hardware-agnostic yet efficient

implementations, making it well-suited for deployment across SmartNIC platforms.

Unlike prior SYN-Proxy approaches such as SMARTCOOKIE [92], which relies on

time-decaying Bloom filters for flow filtering, CUCKOOGUARD aims to provide precise

and memory-efficient flow filtering. While an array of set-membership data structures

was considered, the Cuckoo filter, as introduced by Fan et al. [32], crystallized itself

as the correct data structure for this role. However, implementing Cuckoo filters in

programmable data planes presents notable challenges. Specifically, the element insertion

procedure involves conditional loops, typically unsupported or discouraged in data plane

programming due to pipeline constraints. Consequently, performance implications must

be thoroughly evaluated, and the filter configuration must be carefully tuned to mitigate

overhead and preserve line-rate processing. To address these challenges, CUCKOOGUARD

employs a tailored Cuckoo filter design that balances precision and efficiency, enabling

accurate flow tracking while remaining compatible with the constraints of programmable

data planes. This enables precise per-connection tracking with support for dynamically

removing flow entries, significantly reducing memory overhead. Our implementation

demonstrates that CUCKOOGUARD offers both precision and practicality, particularly in

SmartNIC environments where memory resources are limited due to hardware limitations

and the need for multiple concurrent network functions [38] deployed on a single device.

1.1 Contributions

Compared to state-of-the-art SYN-Proxy solutions, CUCKOOGUARD offers the following

contributions:

• Improved CPU Offload: Lower false positive rates at the flow filter reduce unnec-

essary cookie verifications at the server, decreasing server-side CPU overhead by up

to 79%.

• A Novel Memory-Efficient and Precise TCP-Connection Tracking Scheme:
Compact and precise connection tracking that uniquely supports the deletion of

individual flow entries (corresponding to terminated connections) and sustains high

connection churn, even when severely memory-constrained.

2



1.2 Thesis Organization

This thesis is structured to systematically introduce, design, implement, and evaluate

CUCKOOGUARD a hardware-accelerated defense architecture against SYN flood attacks in

programmable data planes.

Chapter 2 establishes the necessary background to understand the environment in which

modern network functions operate. It begins by contextualizing DDoS attacks, focusing

on SYN floods, and introducing the limitations of conventional mitigation techniques. The

chapter then presents the principles of data plane programmability, highlighting P4 as

a domain-specific language, and delves into P4-capable hardware targets, emphasizing

Field-Programmable Gate Array (FPGA)-based SmartNICs. The background concludes by

reviewing memory-efficient approximate filter data structures, which form a key component

in the proposed design.

Chapter 3 surveys the state of the art in SYN flood mitigation within programmable

network environments. Existing approaches are categorized into three main classes:

Machine Learning (ML)-based solutions, rule-based defenses, and SYN-Cookie-based

architectures. Their respective benefits and limitations are analyzed in preparation for the

architectural contributions of this thesis.

Chapter 4 consolidates the background and related work to define the precise objective

of this thesis: the development of a SYN flood defense architecture tailored for deployment

on hardware-accelerated, programmable data planes—specifically FPGA-based SmartNICs

programmed using P4. Two representative case studies are introduced to motivate this

need, from which a set of architectural requirements is derived.

Chapter 5 presents the CUCKOOGUARD architecture. It identifies the targeted envi-

ronment’s most appropriate flow filter data structure. Then, it justifies the selection of the

Cuckoo filter based on memory efficiency, precision, and deletion support. The chapter

then introduces our CUCKOOGUARD architecture centered around SYN-Cookie validation

and Cuckoo filter-based flow tracking. CUCKOOGUARD is subsequently evaluated against

the previously defined requirements, demonstrating comprehensive alignment.

Chapter 6 discusses the implementation of CUCKOOGUARD and the technical chal-

lenges encountered throughout the development process. Special attention is given to

implementing Cuckoo filter insertion logic within the constraints of programmable data

planes, as it represents a non-trivial contribution rarely addressed in existing systems.

Chapter 7 provides an empirical assessment of CUCKOOGUARD. The experiments ver-

ify the functionality of the architecture and identify optimized configuration parameters. A

comparative evaluation against the SMARTCOOKIE baseline highlights CUCKOOGUARD’s

superior performance in server offloading and filter precision, significantly reducing com-
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putational overhead.

Finally, Chapter 8 summarizes the key findings of this thesis, outlines the lessons

learned, and discusses promising directions for future research and development.

4



Chapter 2

Background

This chapter provides the reader with the background information necessary to understand

the following thesis.

2.1 DDoS Attacks in Modern Networks

DDoS attacks fall under the broader category of volumetric attacks [18], whose goal

is to saturate bandwidth or exhaust system resources. Three common techniques form

the basis of most DDoS operations: flooding, spoofing, and amplification. Flooding

refers to overwhelming a target with high volumes of traffic, often crafted to trigger

resource-intensive reactions. Spoofing involves forging packet headers—typically the

source IP address—to conceal the origin of traffic or to bypass filtering mechanisms.

Amplification, on the other hand, abuses legitimate services such as DNS or NTP to

generate disproportionally large responses from small requests [46].

These techniques are not mutually exclusive and are frequently combined in real-world

attacks. For instance, SYN flood attacks usually exploit the TCP handshake by initiating

handshakes with spoofed source IP addresses, tricking the server into handling packets

from the same source as if they came from different legitimate users. This causes the

server to perform costly operations for each incoming SYN flood packet, thereby straining

system resources.

2.2 SYN Flood Defenses

The primary scenario considered throughout this thesis involves a typical client-server

architecture, in which a server passively awaits TCP connection attempts initiated by

clients. Upon reception of a SYN packet, the server responds by sending a SYN-ACK

packet. The server also temporarily allocates memory for storing metadata related to
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this incomplete, or half-open, connection. This metadata includes essential information

such as connection tuples, sequence numbers, and timestamps, and is managed within a

data structure commonly referred to as the SYN backlog. The allocated memory remains

reserved until the handshake is successfully completed by the arrival of the final ACK

packet.

If, however, this concluding ACK never arrives—characteristic of SYN flood attacks—

the allocated backlog entry persists until a predefined timeout period, usually several

seconds, expires. Consequently, in a SYN flood scenario, the attacker deliberately generates

a high volume of spoofed or unresponsive SYN packets, rapidly saturating the backlog and

exhausting the server’s available memory resources. This effectively prevents legitimate

users from establishing new TCP connections, causing a denial-of-service.

2.2.1 Conventional Methods

Several conventional methods attempt to mitigate this form of resource exhaustion. One

such approach, the SYN cache [48], replaces comprehensive connection state entries

with smaller, lightweight fingerprints to reduce memory usage per connection. While

this increases an attacker’s effort, it does not fundamentally prevent memory exhaustion,

especially given increasingly large attack volumes. An alternative and widely adopted

strategy is rate limiting [81], where the server imposes a hard limit on the number of

connection attempts it processes within a certain time frame. Although effective in reducing

resource usage, rate limiting does not distinguish between legitimate and malicious traffic,

thus allowing attackers to cause a denial-of-service for legitimate clients through sheer

request volume.

Due to these inherent limitations, more sophisticated solutions have been developed,

among which SYN-Cookies have proven particularly effective.

2.2.2 SYN-Cookies

Initially introduced by Bernstein [8], SYN-Cookies represent a robust and widely adopted

approach to defending against SYN flood attacks. Traditional defense mechanisms require

the server to immediately allocate memory upon receiving the initial SYN packet and

store metadata until the handshake is complete. SYN-Cookies, however, circumvent this

early resource allocation by maintaining a completely stateless server during the initial

stages of the TCP handshake. The protocol-level operations can be traced in Figure 2.1.

Specifically, instead of storing connection details directly in memory, the server encodes

critical connection parameters—such as source and destination IP addresses, port numbers,

and timestamps—into the TCP sequence number field of the SYN-ACK response packet.
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Figure 2.1: Visualization of SYN-Cookie TCP handshake and connection validation

mechanism.

This encoded data, called a ”cookie”, effectively eliminates the need to maintain server-side

state for incomplete connections. The cookie-hash c is protected from forgery by utilizing

a cryptographic hash function (e.g., SipHash [21]) for encoding. Only after the client

responds with a valid ACK packet containing this cookie does the server reconstruct and

verify the embedded connection information. Upon successful verification, the server

then formally allocates memory resources and establishes the connection. This strategy

significantly reduces the server’s vulnerability to SYN flood attacks by ensuring resources

are dedicated exclusively to verified, legitimate connection attempts. However, when

SYN Cookies are deployed on commodity servers, this can lead to an exhaustion of

computational resources, as each cookie generation and validation requires an expensive

hash calculation. This computational expense can be offloaded as a network function to

programmable data planes with abundant computational resources, as explored in the next

section.

2.3 Programmable Data Planes

In contemporary networks, a clear separation exists between the control plane and the

data plane. While the control plane manages network configuration, routing decisions,

and policy enforcement, the data plane handles actual packet processing tasks, such as

forwarding, filtering, and packet transformations. Traditionally, data plane functions in

high-performance environments have been implemented using fixed-function hardware

with limited to no programmability. However, recent technological developments in

programmable data planes now allow network operators to dynamically develop, modify,
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and deploy custom network functions directly in the data plane while retaining line-rate

performance [53].

Programmable data plane solutions are characterized by a combination of varying

degrees of high performance, flexibility, and ease of programmability. They can be imple-

mented either purely in software running on general-purpose hardware or on specialized

hardware. Software-based implementations provide maximum flexibility but face chal-

lenges in achieving sufficiently high throughput. To tackle this, specific frameworks and

languages have emerged. For instance, eBPF (extended Berkeley Packet Filter) [28] and

DPDK (Data Plane Development Kit) [24] optimize software execution paths to minimize

processing overhead, whereas the P4 language [62] was explicitly designed to leverage

hardware acceleration in programmable network devices. The fundamental design differ-

ences and use cases of these programming paradigms will be elaborated in the following

sections.

2.3.1 P4

Figure 2.2: P4’s match-action pipeline architecture.

The P4 language [12] is a DSL explicitly designed for programming packet-processing

logic in programmable network devices such as programmable switches and Smart-

NICs [39]. Unlike general-purpose programming languages, P4 adheres to a structured

match-action pipeline model (see Figure 2.2). In this model, packets are first parsed, i.e.,

their header fields are extracted in a protocol-layered fashion. This programmable parser is

protocol-agnostic, allowing it to be adapted to existing or novel network protocols.

Following parsing, packets enter the programmable match-action pipeline, where they

are repeatedly classified based on selected header fields. Predefined actions—such as

forwarding, modifying, or dropping a packet—are then applied using so-called match-
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action tables. While the general structure of these tables (e.g., which packet fields to

match and what set of actions is available) is defined statically in P4 code, their content

can be dynamically configured at runtime by the control plane. This separation between

static table layout and dynamic table population enables flexible and adaptive network

functions. For instance, firewalls and access control mechanisms can update their behavior

in response to changing traffic patterns without needing to modify the core P4 program.

This control-plane-driven deployment model makes P4 particularly well-suited for dynamic

and stateful network applications.

After passing through the match-action pipeline, packets are reassembled in the de-

parser based on the outcomes of prior processing and are then emitted from the device.

Despite its flexibility, P4’s strict pipeline semantics constrain general-purpose pro-

grammability, most notably through the absence of native looping constructs, which renders

the language not Turing-complete. Iterative behavior is only supported through controlled

packet recirculation, where packets exiting the egress pipeline are redirected back to the

ingress for repeated processing. While this mechanism introduces a throughput trade-off

due to additional pipeline passes, it provides a practical solution for use cases that require

limited iteration.

Importantly, these constraints are a deliberate design choice. P4’s deterministic,

hardware-conscious model is optimized for high-speed, line-rate processing and pre-

dictable execution behavior. Rather than limiting expressiveness, this focus on structured

programmability ensures that network functions written in P4 are both efficient and portable

across a range of modern, performance-critical network devices.

2.3.2 eBPF

The extended Berkeley Packet Filter (eBPF) allows executing user-defined programs

directly within the Linux kernel [39]. eBPF programs, typically written in a restricted

subset of C, are dynamically loaded into the kernel at runtime. By running in kernel space,

eBPF efficiently intercepts and processes packets at various points in the networking stack,

eliminating costly context switches. Two common hook points are the eXpress Data Path

(XDP) and Traffic Control (TC), each suited to different types of network functionality:

• XDP [83] operates at the earliest possible point in the networking stack, directly

after the NIC driver receives a packet but before it enters the conventional kernel

pipeline. This early positioning allows XDP to drop, redirect, or modify packets

with minimal overhead, making it ideal for high-speed processing.

• TC [27], on the other hand, is situated later in the stack, just before packets are

handed to user space or forwarded by the kernel. TC programs are suitable for
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more complex operations that require awareness of routing and queuing decisions.

Additionally, TC supports cloning packets and redirecting them to multiple destina-

tions [45].

The primary benefit of eBPF is its flexibility and transparency to Linux user-space

software, which allows for real-time modifications to packet processing logic without

disrupting running services. However, because eBPF programs execute in kernel space,

they are subject to strict resource constraints and security checks: unbounded loops,

unsafe memory access, and blocking operations are disallowed. This limits programming

expressiveness compared to general-purpose user-space environments, but ensures system

stability and predictable performance. While eBPF may not reach the throughput of

specialized hardware data planes, such as those written in P4, it offers practical advantages

on general-purpose hardware, including access to ample memory resources and easier

integration with existing systems. This makes it well-suited for high-speed network

functions that require flexibility and adaptability.

2.3.3 DPDK

The Data Plane Development Kit (DPDK) consists of libraries and drivers designed

to facilitate high-performance packet processing entirely in user space, bypassing the

kernel networking stack [39]. By directly accessing hardware resources from user space,

DPDK avoids the overhead associated with kernel interactions, enabling line-rate packet

processing on general-purpose CPUs.

Compared to eBPF, DPDK offers greater programming flexibility, simpler debugging,

and fewer kernel-level restrictions. DPDK applications are typically developed in general-

purpose languages such as C. However, completely bypassing the kernel can increase the

complexity of integration within existing Linux environments and introduce additional

operational overhead. Unlike eBPF, DPDK-based applications are not transparent to the

rest of the system, which may complicate coordination with other networking components

or tools.

2.4 P4 Hardware Acceleration

Programmable data planes offer a flexible alternative to traditional fixed-function network

devices. However, when implemented purely in software, they often face performance

bottlenecks. The pace of improvement in general-purpose CPU throughput has not kept

up with the growing demands of modern network traffic [39, 40], making the role of

network domain-specific accelerators increasingly important. While frameworks such as
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eBPF and DPDK enable high-speed packet processing on commodity hardware, they are

fundamentally limited by the computational capabilities of modern CPUs.

To address these limitations, modern network systems are increasingly turning to

hardware-accelerated, programmable data planes. In this work, we focus on those based

on P4. Devices such as programmable switches (e.g., Intel Tofino [42]) and SmartNICs

are specifically designed to run data plane network functions at line rate. These platforms

combine the flexibility of software programmability with the speed and determinism of

specialized hardware, reaching processing rates of multiple terabits per second in some

deployments [57].

To understand how P4 targets achieve this, it is first necessary to consider the architec-

ture model they expose. Before discussing individual hardware platforms, the following

subsection introduces the concept of P4 architectures, which serve as a bridge between

high-level P4 programs and bare-metal hardware.

P4 Architectures

To bridge the gap between the abstract P4 language and the specific capabilities of target

hardware, the P416 specification [62] introduces the concept of P4 architectures. A P4

architecture defines the structure of the programmable data plane, for example, specifying

components such as parsers, match-action pipelines, and deparsers, and formalizes how

P4 programs interact with these components through well-defined interfaces. Different

targets implement different architectures to reflect their design and capabilities. While the

core P4 language remains portable, each architecture exposes a specific logical view of the

processing pipeline and may offer device-specific features through external components.

These externs enable support for additional operations, such as hash calculations, counters,

meters, or random number generators, which are, for example, implemented in hardware

outside the core packet-processing logic. This architectural abstraction allows P4 to

remain flexible across various targets while still enabling platform-specific optimizations.

However, it also means that P4 programs are generally tied to a specific architecture and

remain limited in their portability.

2.4.1 Hardware Targets

P4 programs can be deployed on different types of hardware, depending on where the

processing is performed in the network. As illustrated in Figure 2.3, two prominent target

classes are programmable switches, which operate in the network core and process high-

throughput traffic across many ports, and SmartNICs, which are typically deployed at the

edge and attached to individual servers, where they offload specific packet-processing
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Figure 2.3: Locations of P4-programmable hardware in the network: SmartNICs and

programmable switches.

tasks [79].

Programmable Switches

Among P4 hardware targets, programmable switches are designed to handle high-volume,

multi-port traffic in parallel, making them especially well-suited for deployment in aggre-

gation or backbone layers of the network. Although P4 is hardware-agnostic, the Intel

Tofino is the only widely used and practically deployed programmable switch platform

today. It is built around a specialized high-performance ASIC capable of full line-rate

processing and has become the de facto standard for P4-based switch deployments [42].

However, Intel has recently announced the end of life for Tofino devices [43], raising

concerns about the long-term sustainability of ASIC-based P4 switch hardware.

Tofino follows a highly parallel match-action pipeline architecture and supports the

Tofino Native Architecture (TNA)—a custom P4 architecture that extends the open PSA

(Portable Switch Architecture [60]) model [39]. TNA introduces a set of useful fea-

tures, including multiple programmable pipeline components, advanced non-cryptographic

hash functions, and registers for stateful processing. Notably, Tofino can support up

to 12.8 Tbit/s total throughput, with multiple independent pipelines that can be run in

parallel or chained together for more complex network functions [42]. The architecture

also supports a wide range of built-in primitives for tasks such as packet recirculation and

telemetry.

P4 development for Tofino is done via Intel’s P4 Studio [41, 65], which provides a

complete development toolchain, including a dedicated compiler, runtime SDKs, and

P4i—a visualization tool that maps P4 logic onto hardware resources. These tools allow

developers to optimize their programs for the chip’s parallel architecture and memory

layout.

Tofino-based switches are commercially available in white-box systems from vendors
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such as EdgeCore [29] and APS Networks [4], and are also embedded in proprietary

systems from major network equipment manufacturers like Arista [5] and Cisco [19].

These devices typically feature a separate control-plane CPU running Linux, which handles

device management, configuration, and interaction with the P4 runtime environment.

SmartNICs

SmartNICs (Smart Network Interface Cards) are programmable network adapters that

offload packet-processing tasks from the host CPU to the NIC itself, offering increased

performance, lower latency, and improved overall efficiency [23]. Unlike ASIC-based

NICs, which are fixed-function by design, SmartNICs are built around reprogrammable

architectures that expose varying degrees of flexibility and performance [39]. They are

typically deployed at the edge of the network, attached to a single server, though recent

trends have explored broader deployment models that integrate SmartNICs into distributed

network infrastructures [79].

At a high level, SmartNICs can be categorized into two main architectural classes: those

based on general-purpose processors (GPPs), and those built around field-programmable

gate arrays (FPGAs). Each class presents different trade-offs in terms of programmability,

performance, and development complexity.

GPP-based SmartNICs. GPP-based SmartNICs are centered around embedded pro-

cessors such as ARM cores. They benefit from mature software ecosystems, high-level

programming support, and relatively low barriers to development [23, 30]. These devices

are well-suited for tasks that require tight integration with user-space applications, software-

defined control logic, or flexible packet inspection. However, they inherit fundamental

limitations from their CPU-centric design: packet processing is sequential, throughput

scales poorly under load, and execution latency is variable and harder to predict. These

constraints limit their applicability in latency-critical or throughput-intensive scenarios.

A notable extension of this design is the SoC-based SmartNIC, which integrates fixed-

function accelerators, such as cryptographic engines or compression units—alongside the

GPP cores. For example, NVIDIA’s BlueField architecture combines ARM CPUs with

dedicated units for in-line encryption or data processing [58, 49]. While such devices

can reach line rate for specific tasks, the performance of fully custom network functions

remains constrained. The accelerators are typically fixed-purpose, and the CPU cores are

not designed to handle full-scale data plane workloads.

FPGA-based SmartNICs. FPGA-based SmartNICs, in contrast, offer a much higher

degree of architectural flexibility and are particularly well-suited for fully customized,
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Figure 2.4: AMD (Xilinx) U25 SmartNIC [88].

high-performance data plane programming. These devices consist of reconfigurable logic

blocks, programmable interconnects, and embedded hardware components such as Block

RAM (BRAM) and Digital Signal Processing units (DSPs) [39]. The defining feature of

FPGAs is that all processing logic executes in parallel, unlike the sequential execution

model of CPUs. This enables FPGA-based SmartNICs to implement fine-grained, deeply

pipelined network functions with consistent latency and true line-rate throughput.

Beyond parallel logic execution, FPGA architectures also support highly efficient

memory access patterns. In particular, on-chip memories such as BRAM naturally enable

fast, parallel lookup operations across multiple entries. It is common for FPGA-based

SmartNIC architectures to implement Content Addressable Memories (CAMs) using

BRAM resources, allowing packet header fields to be matched against a large number

of flow entries simultaneously [84]. Unlike standard RAM, where an address must be

provided to retrieve data, a CAM takes a search key as input and returns the matching

memory address directly, facilitating constant-time lookup performance [1]. This memory

model is particularly promising for network applications that require fast, scalable flow

state management.

From a performance-per-watt perspective, FPGAs are significantly more efficient than

CPUs and offer a compelling trade-off compared to ASICs. While they consume more

power than fixed-function hardware, they remain fully reprogrammable, providing a cost-

effective and flexible solution for evolving network applications [30, 33]. Their main

drawback lies in development complexity: programming FPGAs typically requires special-

ized knowledge of hardware design and toolchains. However, the increasing adoption of

high-level abstractions like P4 is gradually reducing these barriers, making FPGA-based

platforms increasingly accessible for network function development.
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Experience with the AMD Alveo U25 FPGA-based SmartNIC. While vendor toolchains

have made strides in making FPGA-based SmartNICs more accessible, programming them

remains a nontrivial task. For example, AMD (formerly Xilinx) provides VitisNetP4 [3], a

P4 IP (Intellectual Property) block that integrates into the broader FPGA development envi-

ronment. While this represents a significant step toward abstraction, deploying a functional

P4 application still requires deep familiarity with the FPGA toolchain and architecture. As

part of this thesis, the AMD (Xilinx) Alveo U25 [90] SmartNIC (shown in Figure 2.4) was

thoroughly investigated as a potential P4 hardware target. However, support for this device

appears to have been discontinued despite its release in 2020. Although documentation

advertised P4 programmability, actual deployment involved manually integrating IP blocks

into a larger hardware design—something not easily achieved without prior experience in

FPGA development. Due to these complexities and limited vendor support, the Alveo U25

was ultimately dropped as a target for experimentation.

Newer initiatives, such as AMD’s OpenNIC project [89], attempt to address these

challenges by offering predefined FPGA architectures with well-defined interfaces into

which custom P4 logic can be inserted. This significantly reduces the integration burden

and is a step toward more accessible and modular development. Nonetheless, the overall

state of tooling and documentation continues to vary widely between vendors and device

generations.

Standardization remains a major challenge in the SmartNIC ecosystem. While the P4

community has proposed the Portable NIC Architecture (PNA) to promote cross-platform

compatibility, major vendors such as AMD and Netronome have yet to adopt it in practice.

Most SmartNICs are shipped with their own P4 architecture models and rely on vendor-

specific toolchains and interfaces. As a result, developers often have to adapt their programs

for each target individually, which complicates deployment and limits P4 code portability.

Focus on FPGA-based SmartNICs. Despite these practical limitations, FPGA-based

SmartNICs remain the most compelling platform for high-performance, programmable

data planes. Their ability to implement the match-action abstraction of P4 in hardware

enables the deployment of custom line-rate network functions. Several works [33, 30]

reinforce this view, arguing that FPGA-based SmartNICs strike a practical balance between

flexibility, performance, and deployment cost. Given these considerations, this thesis

focuses primarily on FPGA-based SmartNICs as the most suitable hardware platform for

programmable data planes.
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2.4.2 The BMv2 Software Target

While hardware platforms offer impressive capabilities for high-speed packet process-

ing, they often come with considerable complexity in terms of toolchains, deployment

workflows, hardware cost and availability. To support the development and validation of

P4 programs in more accessible environments, the P4 community maintains a software

reference implementation known as BMv2 (Behavioral Model version 2 [63]).

BMv2 is a C++-based interpreter that executes the behavior defined by P4 programs

compiled via the p4c [66] compiler. Although designed to simulate switch architectures,

BMv2 is highly generic and flexible and can be used to prototype a wide range of network

functions, including those intended for deployment on SmartNICs. Its architecture accom-

modates key features, such as match-action tables, parsers, deparsers, and externs. BMv2

also supports integration with standardized control-plane APIs through P4Runtime [67, 61],

which communicates via gRPC, enabling dynamic control over the data plane. Moreover,

its compatibility with network emulation environments such as Mininet [56, 54] has made

BMv2 a popular choice in academic and experimental research. This ecosystem allows

researchers to simulate complex topologies and observe P4 behavior under realistic traffic

patterns without requiring specialized hardware.

Unlike hardware targets, BMv2 does not aim for line-rate performance. It prioritizes

functional correctness, portability, and observability. Depending on the complexity of

the deployed program and the host system, throughput can reach up to 1 gigabit per

second [64]. However, its strengths lie elsewhere: BMv2 offers line-by-line debugging,

extensive logging, and reproducibility—features that are essential for rapid prototyping,

controlled experimentation, and iterative development.

For these reasons, BMv2 was selected as the primary target for the implementation and

experimental evaluation in this thesis. It provides a stable, accessible, and sufficiently ex-

pressive platform for exploring and validating the behavior of P4-based network functions,

while preserving basic compatibility with future hardware deployment paths.

2.5 Memory-Efficient Approximate Filters

Probabilistic set-membership data structures, commonly referred to as filters [47], offer a

compact and efficient way to represent sets S ⊆U by supporting approximate membership

queries, where U represents the universe of possible elements. Given a query element

x ∈U , a filter answers whether x ∈ S, with a bounded false positive probability ε , but no

false negatives for our purposes. In contrast to exact data structures such as hash tables or

dictionaries, filters can reduce memory usage by an order of magnitude or more, making
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them well-suited for memory-constrained environments such as programmable data planes.

This efficiency is achieved by relaxing correctness guarantees: elements not in the set may

occasionally be reported as present.

For the purpose of this thesis, we distinguish two categories of filters [70]:

• Semi-dynamic filters, which support insertions but not deletions. These are suitable

when the set grows monotonically. A canonical example is the Bloom filter [10].

• Dynamic filters, which support both insertions and deletions. Examples include the

Cuckoo filter [32] and the Quotient filter [7].

In this section, we consider only fixed-size variants of these filters, that is, data struc-

tures whose memory footprint remains constant over time. This restriction reflects the

deployment context of programmable data planes, where static memory allocation is

standard. Only filters that guarantee the absence of false negatives are considered.

Motivation and Use Cases Set-membership filters are widely employed in systems that

must process large volumes of data while maintaining minimal memory overhead. Their

utility arises from the ability to provide fast, approximate lookups in throughput-sensitive

and memory-constrained environments.

Common application domains include databases and storage systems, where filters are

used to avoid costly disk lookups. For instance, Google Bigtable integrates Bloom filters

to pre-filter row key queries before accessing SSTables [16]. Additionally, in network

measurement and classification, filters allow efficient identification of known flows or

addresses at line rate. For example, Cuckoo filters have been used in high-speed telemetry

systems for accurate flow tracking [86]. These examples illustrate the contexts where

filters can yield drastic memory savings—often by multiple orders of magnitude—without

compromising latency or query performance, particularly in environments where a small

and controllable false positive rate is acceptable.

2.5.1 Bloom Filter

The Bloom filter, introduced by Burton Bloom in 1970 [10], is the foundational structure

among probabilistic set-membership data structures. Its simplicity has led to widespread

adoption across storage, networking, and database systems [80, 76]. The Bloom filter

provides approximate set membership with a guaranteed absence of false negatives.

Conceptually, a Bloom filter represents a set S ⊆ U using a bit array B ∈ {0,1}m

and a collection of k independent hash functions h1,h2, . . . ,hk, where each hi : U →
{0, . . . ,m−1} [47]. Initially, all bits in the array are set to zero. Insertions and queries are

handled by accessing the positions determined by the hash functions.
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Figure 2.5: Standard Bloom filter example with k = 3 hash functions applied to three

distinct elements: X , Y , and Z. Each element sets bits at positions determined by the

corresponding hash functions, illustrating the fundamental insertion mechanism.

Insertion and Querying To insert an element x ∈U , it is hashed using each of the k hash

functions, and the resulting bits B[hi(x)] for i = 1, . . . ,k are set to 1 [47]. The insertion

procedure is illustrated in Figure 2.5, where three elements are inserted using three hash

functions, each mapping to distinct positions in the bit array. To query whether an element

y ∈U is in the set, the same hash functions are used. If all B[hi(y)] are set, the filter returns

“possibly in the set.” If any bit is 0, the filter concludes that y /∈ S.

Due to shared bit usage among multiple elements, false positives may occur when

all relevant bits are incidentally set by other elements. However, false negatives are

impossible.

Design Considerations and Variants The false positive rate ε ∈ (0,1) depends on the

number of inserted elements n = |S|, the bit array size m, and the number of hash functions

k. For a fixed n, one can optimize m and k to minimize ε [73]. A space-optimized Bloom

filter has a per-element space requirement of approximately [32]:

bits per item = 1.44 · log2(1/ε). (2.1)

This is close to the theoretical lower bound of log2(1/ε) bits per element. Several

Bloom filter variants exist to address practical constraints. In the partitioned Bloom

filter [2], the bit array is divided into k equal sections, one per hash function. This design

enhances the uniformity of false positives. In contrast, the standard non-partitioned Bloom

filter uses a shared array, which can be more space-efficient but may suffer from clustered

bit saturation.

Due to their low memory usage and simplicity, Bloom filters remain a key building

block for set membership testing in resource-constrained systems.
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2.5.2 Cuckoo Filter

Figure 2.6: Insertion of element X into

Cuckoo filter where both candidate buckets

are full. Two relocation steps are required

before successful insertion.

Figure 2.7: Insertion of element Y into

Cuckoo filter where one candidate bucket

has space. The fingerprint ηy is inserted

directly without relocation.

The Cuckoo filter is a dynamic set-membership data structure derived from Cuckoo

hashing [68]. In contrast to Bloom filters, it supports both insertions and deletions while

maintaining similar guarantees of space efficiency and bounded false positives. It is

particularly well-suited for use cases where elements must be frequently removed or

replaced. Figures 2.7 and 2.6 illustrate the core components and mechanisms of Cuckoo

filters and will be referenced throughout this section.

In a Cuckoo filter, each element x ∈ U is represented not by its full value but by a

compact fingerprint ηx ∈ {0,1} f . This fingerprint is stored in one of two candidate buckets

within an array of buckets of size B. These bucket positions are computed as h1(x) and

h1(x)⊕h2(ηx), where h1 maps the original item to a bucket index, and h2 maps fingerprints

to XOR offsets. This process is illustrated in Figures 2.7 and 2.6, where elements X and Y

are each mapped to two candidate buckets. Each bucket can accommodate up to b entries.

A core enabling feature of Cuckoo filters is the use of partial-key cuckoo hashing [32].

Since only the fingerprint is stored in the filter, the second candidate bucket must be derived

from the original bucket index and the fingerprint itself, rather than from the full element.

This approach enables compact storage but limits the flexibility of the insertion process.
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Insertion, Querying, and Deletion To insert an element, the algorithm first computes

its fingerprint and attempts to store it in either of its two candidate buckets. If both

are full, the filter randomly selects a fingerprint from one of the buckets, evicts it, and

relocates it to its alternate bucket. This process may repeat until an empty slot is found or

a relocation threshold is reached, at which point the insertion is deemed unsuccessful. The

insertion process is illustrated in Figures 2.6 and 2.7, which show the relocation and direct

insertion cases, respectively. Together, they reflect the adaptive behavior of Cuckoo filters

in response to varying table occupancy.

To test whether an element y ∈U is in the set, the filter checks whether its fingerprint

ηy is found in either of the two associated buckets. If present, the filter reports potential

membership; otherwise, the element is certainly not in the set.

Deletions proceed by locating a matching fingerprint and removing it from its bucket.

If multiple copies are present, only one is deleted.

Design Considerations and Properties Cuckoo filters exhibit competitive space effi-

ciency, especially when the desired false positive rate ε is low. The fingerprint size f

and the load factor α , which measures how full the table is, determine the expected false

positive rate and overall capacity. The space usage per item is defined as [32]:

bits per item =
log2(1/ε)+3

α
. (2.2)

This places Cuckoo filters close to the theoretical lower bound while providing func-

tionality that Bloom filters lack, such as deletions.

An edge case that needs to be considered is that duplicate insertions of elements with

identical fingerprints may lead to overflows if the same item is inserted more than 2b times,

where b denotes the number of slots per bucket. In such cases, both candidate buckets

may become saturated with indistinguishable entries, making further insertions impossible

without evicting or resolving them externally. Ideally, Cuckoo filters are deployed in

scenarios where repeated insertions are rare, and where occasional overflows can be

either tolerated or mitigated through higher-level system logic. A practical advantage of

Cuckoo filters, particularly relevant for programmable data planes, is that the number of

relocation steps during insertion is strictly bounded (typically to a maximum number of

500 relocations [32]).

Cuckoo filters are often favored in environments where operations beyond insertion and

querying are needed, while still providing strong guarantees on space and error bounds.
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2.5.3 Quotient Filter

The Quotient filter [69, 47, 87] is a dynamic probabilistic data structure that provides

approximate set membership with support for deletions. Similar to the Cuckoo filter, it

stores fingerprints instead of full keys, but it does so using a different encoding scheme

based on the principle of quotienting [7]. Its design allows for compact storage, but at the

cost of more complex access patterns.

The core idea of quotienting is to split a hash fingerprint f (x) ∈ {0,1}p into two

components: a q-bit quotient and an r-bit remainder, such that p = q + r. Given a

hash function h : U → {0, . . . ,2p − 1}, each element x ∈ U is mapped to a fingerprint

f (x). The quotient quot(x) = ⌊ f (x)/2r⌋ determines the slot index, while the remainder

rem(x) = f (x) mod 2r is stored at that slot or near it [87].

Each slot in the table stores the remainder, along with three metadata bits used for

decoding runs and clusters, which enables the compact resolution of collisions via linear

probing.

Insertion, Querying, and Deletion To insert an element x, its fingerprint is split, and

the remainder is placed in the slot indexed by the quotient. If the slot is occupied by

another remainder with the same quotient, the filter performs linear probing to find the

next available position. Runs (i.e., sequences of remainders sharing the same quotient) are

stored contiguously, and overlapping runs are shifted accordingly to preserve ordering.

To query whether an element y is present, the filter uses the quotient to identify the

starting slot, then scans the corresponding run to check whether the associated remainder is

present. Deletion follows the same search procedure and removes one matching remainder

if found.

Design Considerations and Properties Quotient filters maintain a competitive space

efficiency relative to other filters, particularly when deletions are required. Their false

positive rate depends on the fingerprint size p, while their memory usage is determined

by the number of remainders and the metadata overhead. The number of bits required per

element, depending on false positive rate ε and load factor α , is defined as [69]:

bits per item =
(log2(1/ε)+2.125)

α
. (2.3)

While Quotient filters offer strong space bounds and support for deletions, they come

with a notable drawback: lookup operations are inherently more complex due to the need

for scanning runs and decoding metadata. In contrast to Bloom and Cuckoo filters, which

typically involve only a few fixed-position probes, quotient filters require potentially long
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and variable-length linear scans. This performance degradation becomes particularly

pronounced as occupancy increases, making the structure less suitable for latency-sensitive

environments or high-load settings. Also it becomes ill suited for programmable data

planes like P4 where variable length linear memory scans are not supported natively.
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Chapter 3

Related Work on SYN Flood Protection
in Programmable Data Planes

The challenge of mitigating SYN flood attacks within programmable data planes has at-

tracted significant academic attention. Traditional techniques, such as SYN-Cookies, offer

stateless protection with perfect precision, but their application in high-speed environments

is often limited by computational and memory constraints. As a result, recent research

has increasingly focused on offloading defense mechanisms into programmable network

hardware to preserve service availability while maintaining high mitigation efficacy.

Effective defenses must balance several critical properties: they must successfully

block malicious SYN packets to protect the server, preserve the availability of legiti-

mate connections by minimizing false positives and false negatives, and scale efficiently

with the number of concurrent flows while operating within strict processing and mem-

ory constraints. These considerations frame the evaluation of prior work and guide the

development of new approaches in this thesis.

This chapter surveys existing approaches to SYN flood mitigation in programmable

data planes, with a particular focus on SmartNICs and P4-capable hardware. It categorizes

defenses by their architectural characteristics, beginning with ML-based systems, followed

by rule-based designs, and concluding with SYN-Cookie-based strategies.

3.1 ML-based Approaches

Several works have explored using machine learning to detect and mitigate SYN flood

attacks in programmable data planes. Musumeci et al. [55] propose an ML-based detection

framework where a P4 switch periodically exports traffic statistics to an external classifier.

Features are extracted over sliding traffic windows and fed into a supervised learning

model that labels time windows as ”attack” or ”no attack.” Based on this output, the switch
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can either forward or drop traffic. In terms of mitigation success, the framework can

detect large-scale SYN floods based on traffic anomalies. However, its reaction effectively

cuts off all traffic during an attack, without distinguishing between benign and malicious

connections. Availability preservation is therefore not achieved, as legitimate flows are

indiscriminately dropped. While scalability is not the primary concern, as only aggregated

statistics are exported, the system introduces control plane latency that delays the reaction

to attacks. Furthermore, if attackers use short, high-intensity bursts within the export

interval, the system may fail to block malicious packets altogether, exposing a critical

weakness in its protection strategy.

Dimolianis et al. [22] present a hybrid architecture combining supervised ML-based

traffic classification with data plane filtering via XDP on a SmartNIC. Malicious signatures

are identified offline and installed as simplified filtering rules, while ambiguous flows fall

back to SYN-Cookie verification. This design improves mitigation success by blocking

large volumes of attack traffic early, while fallback mechanisms preserve availability. Scala-

bility is achieved through aggressive signature reduction, which minimizes the SmartNIC’s

memory footprint. However, the approach does not address the limitations of conventional

SYN-Cookie implementations in the data plane as discussed in this thesis.

Miano et al. [52] develop a similar approach, integrating ML-guided filtering into

server-side SmartNIC processing. Compact signature filters, derived from minimal feature

sets, are installed in the data plane to block obvious attack traffic, while SYN-Cookies

validate unmatched packets. Mitigation success is achieved through efficient offloading,

with availability protected by protocol-level fallbacks. The ML architecture is explic-

itly optimized for SmartNIC memory constraints, making it scalable under high churn.

Nevertheless, like other ML-based designs, its effectiveness depends on maintaining

timely, accurate filter updates—an assumption that may not hold against carefully crafted,

indistinguishable attacks.

In summary, ML-based approaches to SYN flood protection offer promising scalability

and adaptability but cannot eliminate classification errors and often require SYN-Cookie

fallback mechanisms for robustness. Their dependence on training data and control plane

coordination introduces unavoidable latency and uncertainty. Notably, even the most

promising ML-based defenses ultimately rely on naive implementations of SYN-Cookies,

without accounting for their inherent limitations. This underlines the importance of

continued research into efficient, lightweight SYN-Cookie architectures for environments

requiring maximum assurance — the direction pursued by this thesis. Thus, while ML-

based methods may augment SYN-Cookie-based defenses by pre-filtering clearly malicious

packets, they fall short as standalone solutions.
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3.2 Rule-Based Approaches

Several approaches to SYN flood mitigation have explored rule-based designs that do

not rely on the SYN-Cookie principle. Palleri et al. [71] propose a SYN flood defense

on the NETFPGA-SUME SmartNIC platform, where protection is triggered once an

arbitrary threshold of SYN packets to different ports is exceeded. The detection logic

is simplistic and ineffective against sophisticated attackers who randomize target ports

to evade threshold detection. Nevertheless, the work provides valuable insights into

SmartNIC resource constraints: even this basic approach already consumes around 37%

of the FPGA-based SmartNIC’s memory, highlighting how even minimalistic security

mechanisms can impose significant overheads.

Fei et al. [35] propose a rule-based system for in-network DDoS detection, includ-

ing SYN floods, using short-lived Bloom filters to track IP addresses based on packet

fingerprints. The design assumes that SYN packets from the same botnet share similar

signatures, allowing attacks to be detected within brief observation windows, such as 0.25

seconds. While computationally efficient, this approach critically relies on the homo-

geneity of attack traffic and can be easily evaded by botnets that randomize TCP header

fields. Similar to ML-based designs, it serves more as a preliminary filter rather than a

complete mitigation solution. The system, implemented on BMv2, demonstrates efficiency

but remains effective only against a limited class of SYN flood attacks.

Another rule-based approach is ConPoolUBF [76], which combines updatable Bloom

filters with connection pooling to manage TCP handshakes entirely within the data plane.

While innovative in offloading handshake management from servers, the system introduces

significant overhead: epoch-based Bloom filters must be updated frequently, and complete

per-flow TCP state, including sequence and acknowledgment numbers, must be maintained

in the data plane. These requirements impose considerable memory and processing burdens,

making the approach difficult to scale on resource-constrained programmable devices.

In summary, rule-based defenses offer appealing simplicity but generally fall short

in addressing the full spectrum of SYN flood attack strategies. Their reliance on rigid

assumptions, coarse thresholds, or high memory overheads undermines the accuracy,

scalability, and practical deployability of mitigation. As such, these approaches appear less

promising for robust and scalable protection compared to mechanisms based on precise,

protocol-aware defenses—such as SYN-Cookie-based solutions, including our proposed

design.
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3.3 SYN-Cookie Based Approaches

Recent work has adapted SYN-Cookie mechanisms to programmable data planes to defend

against SYN flood attacks while minimizing server resource usage. Scholz et al. [77]

implement a SYN proxy architecture validated across multiple P4 platforms, including

several software targets and FPGA-based SmartNICs. Incoming SYN packets are validated

using SYN-Cookies, and only confirmed flows are forwarded to the server. However,

after cookie validation, the programmable hardware device must maintain complete per-

connection state. This includes TCP 4-tuples and sequence numbers necessary for sequence

number translations between server and client to maintain protocol correctness. This

mechanism is discussed in further detail in the architecture chapter (Section 5.2) as it’s

fundamental for CUCKOOGUARD. It is effective at blocking spoofed connections, but this

approach incurs substantial memory overhead: its implementation consumes about 35%

of the available SmartNIC memory when handling only 100 parallel connections, with

memory usage expected to grow further under higher connection loads. This highlights a

fundamental limitation—the design does not optimize memory usage, making it unsuitable

for typical high-connection or high-churn environments.

To address these challenges, Yao et al. [92] propose SMARTCOOKIE, a split-proxy

architecture designed for constrained data planes. A programmable switch performs

lightweight SYN-Cookie validation and memory-efficient flow filtering. At the same

time, complete TCP sequence number translation and connection state management are

delegated to a server-side eBPF agent. By avoiding per-connection state on the switch,

SMARTCOOKIE significantly reduces memory pressure while preserving protocol trans-

parency. Nevertheless, the design introduces new trade-offs: coordination between the

switch and server adds system complexity, and considerable rates of false positives (7.66%

in their evaluation) in the flow filter trigger unnecessary cookie verifications at the server

during ACK floods, seriously undermining the intended CPU offload benefits.

In summary, SYN-Cookie-based defenses offer the most promising foundation for

precise, scalable, and hardware-friendly SYN flood mitigation. Split-proxy architectures

such as SMARTCOOKIE demonstrate that efficient SYN-Cookie offloading is feasible even

on constrained data planes. However, they leave key challenges unresolved: significant

coordination overhead remains, false positives in flow filtering still cause unnecessary

server load, and handling high connection churn under limited memory remains difficult.

These limitations motivate the need for a more optimized design. The CUCKOOGUARD

architecture introduced in this thesis aims to address these challenges and improve the

scalability, accuracy, and efficiency of SYN-Cookie-based flood defenses in programmable

data planes.
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Chapter 4

Problem Analysis

Distributed Denial-of-Service (DDoS) attacks continue to pose a significant threat to

modern network services worldwide. Recent observations highlight Taiwan as a particularly

affected region [17]. Notably, during the visit of U.S. House Speaker Nancy Pelosi to

Taiwan in August 2022, DDoS activity escalated sharply: the Ministry of Foreign Affairs

website received over 8.5 million access requests within a single minute, effectively

overwhelming the site’s capacity.

Figure 4.1: Distribution of DDoS attack types in Q4 2024 across Cloudflare’s net-

works [20].

On a global level Taiwan ranked third in Q4 2024, among the most targeted countries

for DDoS attacks [20]. According to Cloudflare, 38% of all network-layer DDoS attacks

during this period were classified as SYN flood attacks (see Figure 4.1), underlining

their significance as a persistent and growing attack vector. Moreover, SYN floods were

identified as an emerging threat category, with a 130% increase in frequency compared

to the previous quarter, underscoring their escalating impact.SYN floods pose not only

a technical threat but also a severe economic risk, with over 90% of mid-size and large

enterprises reporting average hourly downtime costs exceeding 300,000 USD—excluding

legal or regulatory liabilities [44].
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4.1 Problem Statement

SYN flood attacks aim to exhaust server resources by sending large volumes of TCP

SYN packets, thereby overwhelming a server’s ability to manage legitimate connection

requests. The objective is to degrade or completely deny access to services such as websites,

APIs, and other online platforms. Such attacks are effective because naive network stack

implementations allocate memory or perform computationally expensive operations, such

as cookie hashing, immediately upon receiving a SYN packet. When handled directly

on server hardware, these operations exhaust memory and CPU resources under high-

volume attack conditions. Therefore, SYN flood defenses must focus specifically on new

connection attempts, where the authenticity of a sender cannot yet be confirmed.

Figure 4.2: Illustration of SYN flood mitigation using flow filtering: malicious SYN and

ACK packets are intercepted and discarded, while legitimate traffic is forwarded to the

server.

The central difficulty is distinguishing between malicious SYN packets and legitimate

ones before the three-way handshake is completed. Consequently, effective defenses must

implement fine-grained per-packet validation without prematurely discarding legitimate

traffic or keeping costly state for incomplete handshakes. Simply blocking all incoming

SYN packets would result in self-inflicted denial-of-service. As illustrated in Figure 4.2,

the defense must selectively filter malicious packets while preserving service availability

for genuine users.

On top of that, efficiency and scalability are key for protecting critical server resources

under attack feasibly. To achieve that, such defenses must maintain precise filtering

capabilities at high traffic volumes to ensure uninterrupted service even during massive

flooding events. These defenses must go beyond established built-in security mechanisms

(Section 2.2), which continue to fail in protecting server resources.
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4.2 Background and Context

4.2.1 Attack Types

For this thesis, we distinguish two types of SYN flood attacks, while recognizing that

finer-grained classifications exist. First, randomized spoofed SYN floods send stateless

SYN packets with fake source IP addresses, making attribution difficult. Second, botnet-
based realistic SYN floods originate from compromised devices using valid IP addresses,

often exhibiting more legitimate traffic characteristics. However, both types of attacks

exploit the TCP handshake in the same way. For SYN flood protection at the protocol

level (i.e., SYN-Cookies), it is not critical to distinguish between attack types, unlike IP

address filter-based or ML-based defenses, where traffic classification is more important.

As discussed in the related works, while ML-based and statistical filtering methods can

complement SYN-Cookie defenses, they must be applied with care, as they can introduce

service degradation by erroneously blocking legitimate traffic.

4.2.2 Hardware Accelerating SYN Flood Defenses

SYN flood defenses must operate under extremely high packet rates, which CPU-only

solutions cannot keep up with. General-purpose compute hardware is not designed for

the high-throughput, low-latency requirements of network packet processing at line rate.

Although incremental improvements in CPU architectures continue, the scalability required

to process millions of SYN packets per second is fundamentally constrained by the sequen-

tial CPU processing paradigm. For that reasons, critical networking tasks have historically

been offloaded to specialized hardware, such as network interface cards (NICs), to achieve

predictable and sufficient performance. Recent developments in network programmability,

particularly with SmartNICs and other P4-programmable devices, now enable flexible,

line-rate processing without burdening the host CPU [23] (see Section 2.4.1). In this thesis,

we leverage these hardware accelerated programmable data planes to deploy our SYN

flood defense, taking advantage of their ability to filter and validate packets at wire speed

independently. Nevertheless, we recognize that the data plane is a shared environment

hosting multiple network functions, and we consider how our defense interacts with other

co-resident applications.

Why P4? P4 is a portable domain-specific language designed for programming network

functions (see Section 2.3) on hardware accelerators such as SmartNICs and programmable

switches. Given our focus on hardware-based SYN flood defenses, P4 is a natural choice:

it enables precise, low-latency packet validation at line rate while maintaining some level
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of portability across various hardware targets. A SYN flood defense implemented in P4

can operate alongside other network functions as part of a broader in-data-plane security

suite. Moreover, the use of P4 ensures that the academic contributions of this thesis remain

applicable to a wide range of real-world deployment scenarios, beyond a single proprietary

platform.

4.2.3 FPGA-based SmartNICs for Data Plane Acceleration

FPGA-based SmartNICs provide an attractive platform for deploying efficient and flex-

ible SYN flood defenses. Unlike CPU-bound solutions, FPGAs provide true hardware

parallelism, enabling line-rate packet processing without introducing significant latency or

burdening the server. Architecturally, FPGAs combine reconfigurable logic blocks, fast

on-chip memories, and highly efficient memory access patterns [39, 84, 1], making them

well-suited for precise, fine-grained network functions, such as SYN-Cookie validation.

From a performance-per-watt perspective, FPGA-based SmartNICs achieve higher effi-

ciency than CPUs while remaining reprogrammable, a balance that fixed-function ASICs

cannot offer [30, 33].

Recent research increasingly envisions FPGA-based SmartNICs as hosting multiple,

dynamically deployed network functions rather than being dedicated to a single task.

Lin et al. [50] and Su et al. [79] propose architectures where network functions are

flexibly virtualized across individual or interconnected SmartNICs, abstracting hardware

boundaries and enabling dynamic, multi-tenant deployments. Since FPGA reprogramming

is slow and disruptive, and modern advances such as Partial Reconfiguration still have

inherent limitations [14], keeping defenses always loaded and activating them as needed

avoids downtime due to reconfiguration. This approach aligns with broader trends in

cloud infrastructure, where functions coexist, and isolation and scalability are critical.

Byways [38] further emphasizes the need for secure and efficient deployment of network

functions due to the requirement for them to remain functional in multi-tenant environments.

This motivates defenses that seamlessly integrate into evolving multi-function SmartNIC

environments. Therefore, this thesis positions FPGA-based SmartNICs as a foundational

platform for scalable, resource-efficient SYN flood protection, integrated into the broader

trend of dynamic, multi-function network service deployments.

Memory as a Limiting Factor in Data Planes

Memory constraints are a critical challenge for deploying SYN flood defenses in pro-

grammable data planes. FPGA-based SmartNICs typically offer only a few megabytes of

fast on-chip memory, which must accommodate all deployed network functions, includ-
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ing flow tracking, SYN state handling, and packet classification of SYN flood defenses.

Studies such as [22] and [77] demonstrate that even relatively simple network functions

can consume more than a third of available SmartNIC on-chip memory, highlighting the

importance of resource-efficient designs. Similarly, Miano et al. [52] identify limited

memory resources as a key obstacle, motivating the use of distributed architectures that

offload functionality beyond the SmartNIC itself.

Other work, such as Balla et al. [9], further illustrates these limitations: their FPGA-

based DDoS mitigation system, implemented using P4, is constrained to a maximum of

250,000 entries in its firewall rule table, setting a hard limit on the number of malicious

IP addresses that can be actively blocked. Even when applying selective filtering, such as

targeting high-volume sources, the inherent hardware limitations significantly constrain

scalability during large-scale spoofed attack scenarios—particularly when the firewall is

deployed alongside other essential network functions.

Tight memory budgets are not exclusive to FPGA-based SmartNICs; programmable

switches often operate under similar constraints, with total available memory sometimes

limited to only a few tens of megabytes. SMARTCOOKIE [72] explicitly acknowledges

these limitations and employs a distributed architecture where memory-intensive tasks are

offloaded to a server-side agent.

Furthermore, the aforementioned trend toward multifunctional deployments, where

multiple network functions coexist on the same SmartNIC, imposes additional pressure to

minimize both the algorithmic complexity and memory footprint of each function. Solu-

tions that consume excessive memory or logic resources not only limit scalability but also

interfere with the deployment of other critical services sharing the device. Consequently,

we view computational and memory resource consumption as a primary optimization goal.

4.3 Case Study

This section examines two common types of Internet-facing servers—REST API servers

and streaming servers—and derives additional requirements for SYN flood defenses based

on their typical traffic patterns and operational characteristics.

4.3.1 Protecting REST API Servers

REST API servers provide lightweight, stateless services over HTTP(S), often serving

mobile apps, web clients, or microservices. They handle a large number of short-lived

TCP connections, with clients frequently issuing rapid, bursty connection attempts. Some

systems also maintain huge numbers of idle connections via HTTP keep-alive to reduce
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latency when setting up. SYN flood defenses for REST API servers must tolerate high

connection churn without exhausting memory or introducing connection setup delays.

Line-rate operation and memory-efficient tracking are critical to avoid misclassifying

legitimate connection bursts.

4.3.2 Protecting Streaming Servers

Streaming servers typically manage fewer but longer-lived TCP connections, maintaining

continuous sessions for video, audio, or data delivery. While connection surges may occur

during major events, the overall churn rate remains low compared to REST APIs. Here,

SYN flood defenses must filter malicious SYNs without disrupting active, long-lived

sessions. Robust per-connection tracking over extended periods is essential to preserve

service quality under attack.

4.4 Requirements for a SYN Flood Defense in Programmable

Data Planes

Based on the preceding analysis, we define a set of key requirements for SYN flood

defenses deployed in hardware-accelerated programmable data planes. Each requirement

addresses a distinct aspect of scalability, performance, and deployability critical to effective,

real-world protection.

• R1 – Low Memory Consumption and High Connection Capacity (MEM)
The defense must minimize its memory footprint to fit within the limited on-chip

memory resources available on SmartNICs, while supporting large numbers of

simultaneously active legitimate connections.

• R2 – Low Latency (LAT)
The defense must add minimal per-packet processing delay to preserve end-to-end

application performance.

• R3 – High Throughput (THR)
The system must handle high volumes of SYN packets at line rate without introducing

processing bottlenecks.

• R4 – Transparency (TRP)
The defense must be protocol-transparent to both clients and servers, preserving

normal TCP handshake and traffic behavior without introducing anomalies.
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• R5 – Server Offloading (OFF)
The solution must offload connection validation from the server, preventing server

CPU and memory exhaustion under attack.

• R6 – High Churn Tolerance (CHN)
The defense must remain effective when legitimate connection attempts occur at

high rates, ensuring rapid tracking and validation of short-lived connections.

• R7 – Connection Stability and Long-Term Robustness (STA)
The defense must maintain the stability of long-lived connections and preserve con-

sistent behavior and performance over time, even under prolonged attack conditions.

While not all of these requirements have been explicitly formalized in prior work,

several similar or partially overlapping design goals have been identified, reinforcing the

validity of the principles outlined here. Scholz et al. [77] highlight the importance of high

throughput and memory efficiency, describing R3 (THR) as the ability to operate at or

beyond line rate, and discussing R1 (MEM) in the context of SYN cache constraints that

limit scalability under high connection volumes. SMARTCOOKIE [72] further emphasizes

service quality and protocol transparency by targeting low end-to-end latency and avoiding

disruptions to standard TCP behavior, directly addressing R2 (LAT) and R4 (TRP).
Importantly, both approaches share the overarching objective of reducing server-side

processing burden, thereby aligning with R5 (OFF) as a central design goal.

R6 (CHN) and R7 (STA) are explicitly introduced in this work, as they address

critical yet previously underexplored challenges in realistic deployment scenarios—namely,

the need for defenses to remain effective under high connection churn and to preserve

connection stability during prolonged deployment periods.

While existing defenses provide valuable groundwork, this thesis generalizes and

formalizes these insights into a unified and comprehensive set of requirements, summarized

in Table 4.1, tailored explicitly for deployment in hardware-accelerated programmable

data planes.

4.5 Comparison with Existing Solutions.

Based on the requirements defined in Section 4.4, the existing SYN flood defense solutions

introduced in Chapter 3 were evaluated and compared to CUCKOOGUARD, the new

architecture introduced in this thesis. The outcome of this analysis is summarized in

Table 4.2. While individual approaches address subsets of the requirements, none of them

fulfill all demands. CUCKOOGUARD is specifically designed to close these gaps, with the

following chapter detailing how it achieves full compliance across all criteria.
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Table 4.1: Architectural requirements for a SYN flood defense.

Requirement Description

R1 (MEM) Low memory consumption and high connection capacity

R2 (LAT) Low latency

R3 (THR) High throughput

R4 (TRP) Protocol transparency

R5 (OFF) Server offloading

R6 (CHN) High churn tolerance

R7 (STA) Connection stability and long-term robustness

Table 4.2: Comparison of SYN flood defense solutions against the requirements.

Approach MEM LAT THR TRP OFF CHN STA

ML-based [22, 52] × ✓ ✓ ◦ ◦ × ×
Palleri et al. [71] × ✓ ✓ × ✓ ◦ ×
Fei et al. [35] ✓ × ✓ × ✓ ◦ ×
ConPoolUBF [76] × ✓ ◦ ✓ ✓ × ✓

SYN Proxy [77] × ✓ ✓ ✓ ✓ × ✓

SMARTCOOKIE [92] ✓ ✓ ◦ ✓ ◦ × ✓

CUCKOOGUARD ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: fully satisfies, ◦: partially satisfies, ×: does not satisfy.
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Chapter 5

CUCKOOGUARD Architecture

The design of a scalable and precise SYN flood mitigation system in programmable

data planes must be grounded in a careful analysis of trade-offs between performance,

resource efficiency, and architectural feasibility. In the previous chapter, a set of concrete

requirements (R1–R7) was defined to characterize the properties expected of any such

system.

This chapter presents the CUCKOOGUARD architecture, which is developed in di-

rect response to these requirements. The central idea is to perform efficient connection

validation at the data plane level using programmable hardware. As one of its core com-

ponents, the system uses an approximate flow filter to track verified connections within

the SmartNIC. Given the centrality of this component, the chapter begins by evaluating

alternative filter designs and motivating the choice of a Cuckoo filter. The remainder of the

chapter then introduces the full architectural pipeline, including its deployment strategy

and inter-component coordination mechanisms. Finally, we discuss how the design is

expected to behave under realistic attack and traffic scenarios.

5.1 Flow Filter Design Rationale

At the heart of CUCKOOGUARD lies a dynamic, memory-efficient flow filter that tracks

trusted TCP flows. This flow filter is a crucial decision point, enabling stateful SYN packet

handling while preserving server transparency and, most importantly, memory efficiency.

Given the strict memory and processing constraints of programmable network devices such

as SmartNICs, the choice of filter data structure significantly impacts system feasibility

and performance.

This section compares three widely used approximate set-membership data structures—

Bloom, Quotient, and Cuckoo filters—based on requirements derived from the overall

system goals. The algorithmic principles of these filters are introduced in Section 2.5, and
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are therefore not repeated here; instead, we focus on evaluating their practical suitability

for deployment in a constrained programmable data plane.

5.1.1 Filter Requirements

To guide the filter selection process, we identify the following specific requirements,

derived from the general architecture goals R1 (MEM), R3 (THR), and R7 (STA):

F1 – Memory Efficiency: The filter must use as little memory per tracked TCP flow as

possible while maintaining an acceptable false positive rate.

F2 – Precision: Faulty filtering decisions caused by false positives must be low and stable

across varying traffic loads.

F3 – Performance: All operations (insertion, lookup, and deletion) must be executable

with minimal latency and predictable runtime behavior in P4 data plane applications.

F4 – Deletion Support: The filter must support element removal explicitly or via a time-

out mechanism to handle high churn and functioning over extended periods, prevent-

ing filter saturation.

The design context assumes the tracking of full 4-tuples (source/destination IP and

port), which form a canonical identifier for established TCP connections. Traditional exact

data structures such as hash tables, maps, or match-action tables—commonly employed in

P4 programs—are ill-suited for data plane deployment in this context, as their per flow

memory requirements are high and typically need to grow unboundedly with the number

of tracked connections, conflicting with the strict memory constraints of programmable

hardware. Approximate filters provide an attractive alternative, offering compact, constant-

size representations at the cost of probabilistic membership testing.

In what follows, we evaluate the three filter candidates based on the criteria F1–F4,

based on theoretical analysis.

5.1.2 F1 – Memory Efficiency

Given the stringent memory constraints of programmable data planes, the filter component

in CUCKOOGUARD must represent each tracked connection as compactly as possible. This

requirement, derived from design goal R1 (MEM), directly impacts scalability under high

connection volumes.

Figure 5.1 shows the theoretical memory cost per element for Bloom, Cuckoo, and

Quotient filters across varying false positive rates. The x-axis is logarithmically scaled
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Figure 5.1: Bits per filter item required to achieve different false positive rates. Cuckoo

and Quotient filters outperform Bloom filters in the low false positive region.

to highlight the low false positive range; the y-axis shows the number of bits required

per tracked item. These results are derived from the formulas in Section 2.5 (Equa-

tions 2.1–2.3).

At moderate false positive rates (e.g., 1%), Bloom filters are highly memory-efficient,

requiring around 9.6 bits per item. However, as the target false positive rate is further

reduced (≤ 0.1%), their bits-per-item requirement increases more rapidly than that of

alternative filter types, limiting their suitability for applications demanding very low false

positive rates. In this range, both Cuckoo and Quotient filters become more space-efficient.

Quotient filters consistently use 0.875 fewer bits per item than Cuckoo filters, which is

also observable in the formulas and can be traced back to the differences in encoding and

querying algorithms.

Since CUCKOOGUARD targets a high-precision operating point (≪ 0.1% false positive

rate), Cuckoo and Quotient filters are significantly more memory-efficient than Bloom

filters and are therefore preferred in this category.

5.1.3 F2 – Precision

In addition to memory efficiency, the CUCKOOGUARD filter must offer highly precise

membership checks to avoid forwarding unauthenticated packets to the server, violating

the offload objective R5 (OFF) (see Section 5.2).

Figure 5.1 again highlights how filter designs behave in terms of achievable precision.

At any fixed memory budget, Cuckoo and Quotient filters outperform Bloom filters in the
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sub-0.1% false positive range targeted by CUCKOOGUARD. Their ability to maintain low

error rates under tight memory constraints makes them well-suited for security-sensitive

deployments.

Cuckoo and Quotient filters jointly dominate in the high-precision regime and are thus

also preferred in terms of accuracy.

5.1.4 F3 – Performance

To ensure viability for deployment in programmable data planes, all core filter operations—

insertions, lookups, and deletions—must exhibit predictable, low-latency behavior. Ta-

ble 5.1 summarizes the time complexities of these operations for Bloom, Cuckoo, and

Quotient filters, based on the literature [32, 10, 47, 80].

Table 5.1: Runtime complexity comparison of Bloom, Cuckoo, and Quotient filters. k

denotes the number of hash functions; α is the filter’s load factor.

Filter Type Insertion Query Deletion

Bloom Filter O(k) O(k) Not supported

Cuckoo Filter O(1) amortized, O(500) worst-case O(1) O(1)

Quotient Filter O(α) O(α) O(α)

Bloom filters require multiple hash computations per query or insertion, typically with

k = 6 to 10, resulting in k memory accesses and hash calculations per operation. This

introduces variability in performance depending on k. Additionally, Bloom filters do

not support explicit deletion of entries. Their primary advantage lies in implementation

simplicity, which explains their widespread adoption in P4-based applications. However,

many such implementations choose suboptimal values for k, as repeated hash computations

and memory accesses can degrade performance. As a result, the achievable false positive

rate is often worse than theoretically possible with an optimal k.

Quotient filters, while compact, depend on scanning runs of remainders, leading to

variable and potentially high latencies, especially at high load factors. This poses a

challenge for P4-based implementations, which lack native support for unbounded memory

access patterns or loops. In particular, the run-scanning mechanism of quotient filters is

highly inefficient to implement in P4, making them impractical for data plane environments.

In contrast, Cuckoo filters support constant-time lookups and deletions—each requiring

at most two independent memory accesses and hash calculations—and offer amortized

constant-time insertions, making them well-suited for high-speed packet processing. While

worst-case insertions may require multiple relocation steps—up to O(500) in extreme
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scenarios—these cases are rare under typical load factors (α ≤ 95%). Empirical results in

Chapter 7 validate that insertion overhead remains manageable.

Due to their constant-time operations and practical support for all required functions,

Cuckoo filters are the clear winner regarding runtime performance in data plane environ-

ments.

5.1.5 F4 – Deletion Support

In high-churn network environments, especially those involving short-lived REST API

connections, the ability to delete stale entries from the filter is essential to prevent filter

saturation and ensure continuous availability. Table 5.2 summarizes the deletion capabilities

of the evaluated filters.

Table 5.2: Deletion support across filter types.

Filter Type Deletion Support

Bloom Filter Not supported (requires expiration)

Cuckoo Filter Supported (explicit deletion)

Quotient Filter Supported (explicit deletion)

Bloom filters fundamentally lack support for deletion due to their bit-sharing nature.

While expiration mechanisms (e.g., epoch-based resets or time-decaying variants) can

approximate deletion, they compromise precision and increase implementation complexity

and the memory footprint. In contrast, both Cuckoo and Quotient filters support explicit

element removal. This makes them more suitable for data plane deployment, where precise,

memory-stable operation is critical.

5.1.6 Justification of Cuckoo Filters as Final Design Choice

To consolidate the findings from the previous sections, Table 5.3 summarizes the perfor-

mance of each filter type across the four key evaluation criteria F1–F4. The table serves as

the basis for selecting the best filter data structure as the core component of the flow filter

in the CUCKOOGUARD architecture. As detailed in the next section (see Section 5.2), this

filter plays a central role in enabling connection-level DDoS mitigation directly within the

programmable data plane.

After careful consideration, Cuckoo filters are selected because they offer the best

overall balance across all criteria. In particular, their superior memory–precision trade-off

compared to Bloom filters makes them suitable for precise flow tracking under memory

constraints. Furthermore, their support for (amortized) constant-time insertions, lookups,
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Table 5.3: Comparison of candidate filter types across filter evaluation criteria F1–F4.

Filter Type F1: Memory F2: Precision F3: Performance F4: Deletion

Bloom Filter ◦ ◦ ✓ ×
Quotient Filter ✓ ✓ × ✓

Cuckoo Filter ✓ ✓ ✓ ✓

✓: fully satisfies, ◦: partially satisfies, ×: does not satisfy.

and deletions makes them algorithmically well-suited for programmable data planes such

as P4, where bounded processing steps are essential.

Critically, explicitly removing individual entries enables efficient handling of high-

churn traffic as the key feature of CUCKOOGUARD. This marks a significant improvement

over Bloom-filter-based approaches, which are often utilized due to implementation sim-

plicity.

While Cuckoo filters provide powerful capabilities, they also present implementation

challenges, as will be discussed in Chapter 6. Their compelling combination of preci-

sion, memory efficiency, and dynamic operation makes them a strong foundation for

CUCKOOGUARD’s programmable SYN flood defense.

5.2 Architecture Components

Building on the split-proxy model introduced previously (see Section 3.3), the CUCKOOGUARD

architecture proposes a refined, high-performance design tailored for SmartNIC deploy-

ment. The primary objective of CUCKOOGUARD is to realize the full functionality of a

SYN-Proxy [77], while addressing its traditional performance and deployment limitations.

To facilitate a clear understanding of the protocol-level interactions that underpin this

functionality, Figure 5.2 illustrates the precise behavior of a SYN-Proxy during the TCP

three-way handshake and regular TCP traffic forwarding. This depiction highlights how

the proxy intercepts and validates incoming SYN packets using SYN-Cookies, effectively

completing a handshake with the client on behalf of the server before initiating a separate,

backend handshake with the protected server only after validation succeeds. After that,

regular TCP traffic is forwarded with translated sequence numbers.

To address the unique memory and performance limitations of SmartNICs and server

hardware, respectively, the architecture distributes this connection-handling logic across

two cooperative components to leverage each component’s advantages:

• The SmartNIC Agent performs line-rate packet filtering and TCP connection

validation in the data plane.
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Figure 5.2: Protocol-level visualization of SYN-Proxy operations.

• The Server Agent executes lightweight control tasks and keeps detailed connection

state within the host’s kernel space.

This division eliminates the need for memory-hungry per-connection state on the Smart-

NIC and enables transparent, protocol-compliant connection handling. Figure 5.3 provides

a detailed overview of the architecture and the interactions between its components.

In contrast to prior designs that place the hardware-accelerated defense component

centrally within the network, CUCKOOGUARD is deployed directly at the server edge. This

choice aligns with the typical deployment model of SmartNICs, which are designed to

provide line-rate packet processing for individual hosts rather than entire networks. Placing

the defense mechanism at the server edge also brings important security advantages: it

protects the server from external SYN flood attacks and malicious traffic within the same

network, such as compromised tenant workloads or misbehaving internal services.
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This close coupling between the SmartNIC and its associated server also simplifies

coordination. Unlike distributed solutions that must manage state across multiple loca-

tions, the CUCKOOGUARD architecture operates with a one-to-one mapping between the

SmartNIC Agent and the Server Agent.

5.2.1 SmartNIC Agent

The SmartNIC Agent is deployed entirely in the SmartNIC’s data plane, intercepting all

incoming TCP packets. Its primary task is to perform SYN-Cookie-based authentication

without maintaining any explicit per-flow state. Once a connection is verified via SYN-

Cookies, the SmartNIC Agent tags the final ACK packet of the TCP handshake and

forwards it to the Server Agent. Upon receiving further confirmation from the Server

Agent, the SmartNIC inserts the TCP connection’s flow info into its flow filter. To track

these verified benign flows efficiently, the agent implements an approximate flow filter as

a Cuckoo filter. Utilizing an approximate filter significantly reduces memory usage—a

significant advantage given the tight resource constraints of SmartNICs. From that point

onward, arriving packets belonging to this known connection bypass further validation and

are simply forwarded.

Although the Cuckoo filter is probabilistic and may yield false positives, occasionally

allowing unverified ACKs to reach the server, all SYN packets are reliably intercepted. This

makes the architecture completely immune to SYN Floods, limited only by the line-rate

specifications and hash calculations of the SmartNIC. To ensure security and correctness in

the case of false positives, the Server Agent revalidates any unverified ACKs via a fallback

cookie check. Finally, when a connection terminates, the Server Agent recognizes that

and signals the SmartNIC Agent to remove the corresponding entry from the flow filter,

preserving accuracy and freeing memory for new flows.

5.2.2 Server Agent

The Server Agent is implemented using two coordinated eBPF programs: one at the ingress

(XDP [83]) and one at the egress (TC [27]) of the kernel networking stack. Operating

entirely in-kernel, these programs avoid costly user-space context switches and execute

with minimal overhead. Both programs share access to a BPF map [82], which stores the

state of currently active connections and the sequence number offsets needed to maintain

protocol correctness. The Server Agent fulfills two key responsibilities:

Once a connection request passes cookie verification at the SmartNIC, the SmartNIC

Agent adds a setup tag to the final ACK of the TCP handshake. Then, it is forwarded to

the Server Agent, initiating a second handshake between the Server Agent and the actual
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Figure 5.3: Deployment of CUCKOOGUARD, illustrating the separation of handshake

validation and stateful connection management between the SmartNIC and the server.
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TCP server. Due to the server selecting a new initial sequence number independently (as

required by the TCP protocol), the Server Agent computes and stores the sequence number

differential in the BPF map. This allows future packets of the connection to be correctly

translated and relayed. After the handshake is completed, the Server Agent instructs the

SmartNIC to register the connection in the Cuckoo filter. When the connection terminates

(see Chapter 6 for details on connection termination detection), the Server Agent likewise

signals the SmartNIC to remove the corresponding flow entry from the Cuckoo filter.

If an ACK packet that does not correspond to an existing connection and is not tagged

as part of a verified handshake reaches the Server Agent, the agent performs a fallback

cookie check. If successful, the handshake process is initiated; otherwise, the packet is

dropped. Due to cookie-hashing, this fallback path is computationally expensive, and thus,

minimizing its invocation is a primary optimization goal (R5 – OFF). Reducing the false

positive rate of the SmartNIC’s Cuckoo filter is, therefore, critical and is the central focus

of our evaluation in Chapter 7.

5.3 Operations

The operation of the proposed architecture is described with three representative traffic

scenarios:

5.3.1 Scenario – Benign Client Connection

A legitimate client sends a SYN, and the SmartNIC Agent replies with a SYN-ACK

containing a cookie. Upon receiving an ACK from the client including the cookie hash,

the SmartNIC Agent verifies the cookie and forwards a tagged packet to the Server Agent.

The Server Agent then completes the handshake with the server, calculates sequence

number offsets, saves connection information in the BPF map, and finally messages the

SmartNIC agent to update the Cuckoo filter to incorporate the newly established connection.

Subsequent packets pass the Cuckoo filter at the SmartNIC Agent, and the Server Agent

translates the sequence numbers and forwards the packets to the server. Upon connection

teardown, the Server Agent signals the SmartNIC Agent to remove the connection’s flow

entry from the Cuckoo filter.

5.3.2 Scenario – SYN Flood

An attacker initiates a SYN flood by transmitting a high volume of SYN packets. The

server, however, remains fully protected, as the SmartNIC intercepts all incoming SYNs
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and responds with SYN-ACKs embedding a cookie value, without maintaining any per-

connection state. Until the handshake is successfully completed by the client, no connection

state is created. Crucially, unsolicited SYN packets from external sources are never

forwarded to the server, ensuring that the server remains isolated from incomplete or

spoofed connection attempts.

5.3.3 Scenario – ACK Flood

Malicious ACK packets attempt to bypass cookie checks. Some may pass the Cuckoo

filter due to false positives and reach the Server Agent, which performs a fallback cookie

check that eliminates all malicious ACKs. The processing cost of the cookie hashing at the

Server Agent remains bounded by the Cuckoo filter’s false positive rate.

5.4 Qualitative Discussion on System Requirements

To assess the adequacy of the CUCKOOGUARD architecture, we revisit the system-level

requirements R1–R7 defined in Chapter 4. Each requirement is addressed below in the

context of the architectural design choices presented in this chapter.

R1: Low Memory Consumption and High Connection Capacity (MEM). The

CUCKOOGUARD architecture achieves memory efficiency using a split-proxy design

that separates precise connection tracking and flow filtering. The SmartNIC maintains no

explicit per-flow state and relies on a compact Cuckoo filter to filter out most malicious

packets. This filter consumes significantly less memory than traditional connection tables,

enabling high connection capacity. A detailed per-flow state—consisting only of a TCP

sequence number delta, connection state, and connection identifier—is stored in a BPF

map on the server and is not subject to SmartNIC memory limitations.

R2: Low Latency (LAT). All latency-critical operations are executed in the SmartNIC’s

data plane or within eBPF programs in the kernel, both optimized for minimal delay. The

defense integrates seamlessly with the standard TCP handshake process, introducing no

user-visible round-trip delays.

R3: High Throughput (THR). The design ensures line-rate throughput through light-

weight processing: In the SmartNIC Agent, SYN packets are verified via a hardware-

accelerated cookie mechanism, and subsequent ACK packets are processed using efficient

filter lookups. For verified flows, packets pass through without additional computation;

only the sequence number needs to be adjusted by the Server Agent.
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R4: Transparency (TRP). CUCKOOGUARD functions as a transparent SYN proxy that

preserves TCP semantics. Client and server observe a normal three-way handshake. The

Server Agent operates entirely within the kernel and does not interfere with application-

layer behavior, preserving out-of-the-box compatibility with unmodified software stacks.

R5: Server Offloading (OFF). Under attack conditions, the architecture effectively

shields the server from connection attempts. SYN packets are intercepted and handled at

the SmartNIC; only verified connections are forwarded. While false positives during ACK

floods may occasionally lead to fallback checks, the Cuckoo filter’s precision minimizes

this overhead. Thus, CPU and memory resources on the host remain largely unaffected

even under heavy SYN and ACK floods.

R6: High Churn Tolerance (CHN). The Cuckoo filter supports explicit deletions

and maintains high space efficiency, enabling it to track rapidly changing sets of active

connections. Unlike time-decaying Bloom filters, which may saturate under churn, the

filter dynamically adapts to connection turnover. This ensures correct behavior under high

connection setup and teardown rates.

R7: Connection Stability and Long-Term Robustness (STA). The filter maintains

only active flows because flow entries are explicitly inserted and removed based on

connection state. This dynamic behavior ensures that long-lived connections are not

evicted prematurely and that stale entries do not accumulate. As a result, CUCKOOGUARD

remains robust and consistent even during extended deployment and attack periods.

In summary, the CUCKOOGUARD architecture satisfies all seven design requirements

through careful decomposition of responsibilities, SmartNIC–kernel coordination, and

efficient data structures. This validation supports its suitability as a scalable and prac-

tical SYN flood defense mechanism for SmartNIC and other programmable data plane

environments.
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Chapter 6

Implementation

To validate the feasibility of the CUCKOOGUARD architecture and compare different flow

filter designs experimentally, we implement two variants of SYN flood defenses in P4:

CUCKOOGUARD using a Cuckoo Filter and the baseline SMARTCOOKIE using a Bloom

filter. Both use the split-proxy model introduced in Chapter 5.2. The implementations are

built to run on the Behavioral Model v2 (BMv2) [63] (see Section 2.4.2), a widely used

software switch that serves as a reference implementation for the P4 language.

BMv2 lacks support for secure hash functions, so all variants use CRC-based hash-

ing [36] for SYN-Cookie generation. While insecure for deployment, this suffices for

functional evaluation of the architecture and for comparing the operational behavior of

the filter structures. Cookie security is not the focus of this evaluation. We refer to prior

work such as [92, 78] for implementing the necessary cryptographic hash functions in

programmable data planes.

BMv2 provides a practical and faithful environment for expressing and debugging

idiomatic P4 code. Its support for tables, actions, control flow, and register arrays allows

for prototyping packet-processing pipelines that closely mirror real deployments. However,

as a software-based switch, BMv2 cannot replicate the performance characteristics of

hardware P4 targets. Therefore, while our implementations offer insights into correctness

and filter effectiveness, absolute throughput or latency measurements do not represent

hardware performance and are hence omitted. An overview of P4 itself is provided in

Section 2.3.1.

The implementation’s source code is available online on GitHub [26] and GitLab [25].

Goal of the Implementations The primary goal of the implementation effort is to realize

and compare two filter-based connection tracking mechanisms within the CUCKOOGUARD

architecture. By expressing both Bloom and Cuckoo filters in P4, we are able to assess

their practicality under the constraints imposed by data plane programming.
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Unlike general-purpose languages, P4 restricts developers to a constrained, pipeline-

oriented execution model with no loops, recursion, or sequential memory access. This

demands algorithmic adaptations to suit the language’s capabilities and the underlying

target. For each implementation, we highlight key design decisions, limitations, and

workarounds that emerged during the porting process.

In the sections that follow, we detail the structure and implementation logic of both

filter designs, with particular focus on how the Cuckoo filter maps to P4 programming

constructs such as register arrays, match-action tables, and metadata fields.

6.1 CUCKOOGUARD

6.1.1 SmartNIC Agent: P4

The SmartNIC Agent tracks verified TCP connections using a memory-efficient Cuckoo

filter [32], implemented entirely in P4 using BMv2. Cuckoo filters offer explicit deletion,

insertion, and low false positive rates.

Cuckoo Filter Configuration

The filter is implemented as a fixed-length register array, organized into B buckets, each

holding b fingerprints. A fingerprint η is a compact representation of a connection’s

4-tuple. To optimize for a low false positive rate ε , the size of each fingerprint f and the

total number of buckets B are derived from the available memory m in bits and expected

number of active benign flows n, with α denoting the load factor:

f =
⌊m ·α

n

⌋
(6.1)

B =

⌊
m

f ·b

⌋
(6.2)

These parameters are chosen optimally according to standard values established in litera-

ture [32].

Fingerprint and Index Calculation

To compute the fingerprint, the 4-tuple of the connection is hashed using CRC32. As

a hash function, we use CRC32, which offers good distribution characteristics despite

lacking full bijectivity for our input sizes [75]. Listing 6.1 shows the fingerprint generation

in P4.
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1 const bit<6> fp_bit_index = 32 - FINGERPRINT_SIZE;

2

3 action cuckoo_calc_fingerprint() {

4 bit<32> index_hash;

5 hash(index_hash, HashAlgorithm.crc32, (bit<32>)0,

6 {hdr.ipv4.src_addr, hdr.ipv4.dst_addr,

7 hdr.tcp.src_port, hdr.tcp.dst_port},

8 (bit<32>)4294967295);

9

10 meta.cuckoo_fingerprint = index_hash[31:fp_bit_index];

11 }

Listing 6.1: Fingerprint calculation in P4 using CRC32

After the fingerprint is computed, two candidate bucket indices are derived. The first index

is obtained by hashing the 4-tuple bound to the number of buckets B, and the second is

computed via an XOR between the first index and a fingerprint-derived hash. Since BMv2

does not support modulo operations directly, we use a conditional subtraction to ensure the

index stays within the allowed range [0,(B−1)]. Listing 6.2 shows the P4 implementation.
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1 action cuckoo_calc_index_pair() {

2 // Calculate index1 based on the full 4-tuple

3 hash(meta.cuckoo_index1, HashAlgorithm.crc32, (bit<32>)0,

4 {hdr.ipv4.src_addr, hdr.ipv4.dst_addr, hdr.tcp.src_port,

hdr.tcp.dst_port},

5 (bit<32>) N_BUCKETS_MINUS_ONE);

6 // First calculation step for index2 based on the

fingerprint

7 hash(meta.cuckoo_index2, HashAlgorithm.crc32, (bit<32>)0,

8 {meta.cuckoo_fingerprint},

9 (bit<32>) N_BUCKETS_MINUS_ONE);

10

11 // Second calculation step for index2

12 bit<32> temp_index;

13 temp_index = meta.cuckoo_index1 ˆ meta.cuckoo_index2;

14

15 if (temp_index >= N_BUCKETS) {

16 temp_index = temp_index - N_BUCKETS;

17 }

18

19 meta.cuckoo_index2 = temp_index;

20 }

Listing 6.2: Index pair calculation for Cuckoo hashing in P4

Core Operations: Insertion, Lookup, and Deletion

The SmartNIC Agent performs three primary operations on the Cuckoo filter (see Sec-

tion 2.5):

• Insertion: A fingerprint is inserted into one of its two candidate buckets indicated

by the two indices. If both are full, a random bucket is chosen, and the fingerprint is

randomly inserted, causing an existing entry to be evicted and relocated, potentially

triggering a chain of displacements.

• Lookup: To check for membership, both candidate buckets are scanned for the

fingerprint. A match indicates likely membership (with some false positive risk).

• Deletion: The fingerprint is searched in both candidate buckets and deleted if found.

The lookup and deletion mechanisms are relatively straightforward and, therefore, not

discussed in further detail. Instead, the focus is placed on illustrating how the insertion
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logic—the most complex operation due to its potential for recursive evictions—is realized

within the constraints of P4 using packet recirculation.

Insertion Mechanism in P4

Figure 6.1: Insertion of fingerprint η9 into a Cuckoo filter with B buckets using Cuckoo

hashing (h1, h2).

The insertion process is illustrated in Figure 6.1. Due to P4’s lack of native looping

constructs and dynamic control flow, the recursive aspect of the insertion logic is emulated

through packet recirculation. When both candidate buckets are full, the fingerprint selected

for displacement (here η6) is stored in packet metadata along with the current recirculation

count. The packet is then recirculated alongside its metadata to retry insertion of the

displaced fingerprint into its alternate bucket. This process may repeat up to a configured

maximum number of evictions, denoted as MaxNumKicks. In line with the original

configuration proposed by Fan et al. [32], we set MaxNumKicks to 500.

6.1.2 Server Agent: eBPF

The Server Agent is implemented using eBPF and distributed across the egress and ingress

paths of the Linux kernel’s networking stack. Specifically, the eBPF implementation

utilizes Traffic Control (TC) at the egress and eXpress Data Path (XDP) at the ingress.

Both paths share access to a common BPF map, which maintains the TCP connection state:

1 BPF_TABLE_PINNED("hash", map_key_t, map_val_t, nonpercpu_bpf_map

, 2000, "/sys/fs/bpf/my_nonpercpu_map");

Listing 6.3: Shared BPF map definition and structures

Where the structures map key t and map val t are defined as follows:

1 typedef struct map_key_t {

2 uint32_t src_ip;

3 uint32_t dst_ip;
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4 uint16_t src_port;

5 uint16_t dst_port;

6 } map_key_t;

7

8 typedef struct map_val_t {

9 uint32_t delta;

10 uint8_t map_state;

11 } map_val_t;

Listing 6.4: Structure definitions for BPF map keys and values

All together, the Server Agent keeps 136 bits of explicit state for each verified (benign)

connection.

Extended TCP Connection State Machine

Figure 6.2: Connection State Machine in the Server Agent.

Figure 6.2 depicts the connection states monitored by the Server Agent for each
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individual connection. Upon receiving a tagged ACK packet from the SmartNIC Agent,

indicating a legitimate new connection attempt, the Server Agent commences the TCP

three-way handshake with the server by sending a SYN packet to the server (SYN SENT).

Upon receiving the SYN-ACK response from the server, the connection state advances to

ACK SENT. Once the final ACK packet is sent to the server, completing the handshake,

the state machine immediately transitions to NOTIFY PROXY. In this state, the SmartNIC

Agent is notified to incorporate the newly established connection’s flow identifier into its

flow filter, thus ensuring the correct forwarding of all subsequent packets.

After successful establishment, the connection persists for regular TCP communication

in the ESTABLISHED state. The server initiating connection termination, indicated

by a FIN packet, transitions the state machine into the CLOSE WAIT state. During

CLOSE WAIT, the server may still receive ACK packets from the client. The connection

remains in this state until a FIN packet from the client is received, triggering a transition to

the LAST ACK state, awaiting the server’s final acknowledgment.

Eventually, the state machine reaches the CLOSED state, prompting the removal of

the corresponding flow entry from the Cuckoo filter and purging all related connection

states from the BPF map. Robustness to unexpected and connection-terminating behaviour

is explicitly integrated into the state machine design; unexpected packets of an ongoing

connection, such as RST packets signaling abrupt connection termination, immediately

transition the connection to the CLOSED state to reset the connection and prevent memory

resource exhaustion.

Robust Detection of Connection Termination in the Connection State Machine

The implemented state machine comprehensively supports one of the standard TCP con-

nection termination scenarios described in RFC 793 [59]:

• Remote TCP-initiated termination via FIN segments, i.e., the server initiates

connection closure. This is the most common scenario for web servers and similar

services.

Other termination scenarios defined in RFC 793 include:

• Closure initiated by the user. This scenario is not within the scope of the current

implementation, but it can be readily incorporated by extending the current state

machine model. We decided to omit it to prevent unnecessary complexity in the

implementation and the thesis. Nevertheless, we formally verified that its inclusion

is feasible.
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• Simultaneous termination initiated by both connection endpoints. This scenario

is likewise not supported in the current state machine. We deliberately excluded it to

reduce implementation complexity and facilitate comprehensive testing. However,

its addition presents no conceptual difficulties.

Robustness to irregular client behaviour

More importantly, our state machine model is designed to handle irregular and unexpected

client behavior. This robustness is critical to prevent scenarios in which the connection

state is retained indefinitely, leading to memory exhaustion within our architecture. The

following outline the system’s resilience to such irregular cases, assuming the server’s TCP

stack, which is under our control, adheres to protocol standards.

RFC 793 explicitly outlines the procedures for managing standard termination scenarios.

It ensures that segments preceding and including FIN segments are reliably retransmitted

until acknowledged, thereby preserving protocol integrity (RFC 793, Section 3.5). Ad-

ditionally, unsolicited FIN segments received from the network must trigger immediate

acknowledgments and user notifications, facilitating graceful connection closure.

Moreover, RFC 793 mandates that in the event of a client-side TCP stack crash and

restart, the client must issue an RST packet upon receiving further packets from the server.

This behavior immediately notifies the server to close its corresponding connection state

(RFC 793, Section 3.4), ensuring timely resource cleanup.

The case of a completely unresponsive client is also addressed. As stipulated in RFC

1122 [13] (Section 4.2.3.5), persistent lack of acknowledgment after repeated retransmis-

sion attempts necessitates connection abortion. RFC 793 defines this as: ”an abort causes

the TCB to be removed, and a special RESET message to be sent to the TCP on the other

side of the connection” (RFC 793, Section 3.4).

This behavior is essential, as it guarantees that connection termination is always

observable by the Server Agent—either explicitly through the standard TCP closing

sequence or implicitly via exceptional events, such as the reception of a TCP reset (RST)

segment. Consequently, the Server Agent’s TCP state machine, assuming that the server

adheres strictly to TCP protocol specifications, can robustly handle irregular scenarios. This

design ensures effective resource reclamation and prevents the uncontrolled accumulation

of connection state, safeguarding against memory exhaustion.

6.2 SMARTCOOKIE Baseline

Our SMARTCOOKIE baseline builds upon the open-source P4 implementation [72] origi-

nally designed for the Intel Tofino platform, which we ported to the BMv2 software target.
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The implementation also follows a split-proxy architecture: SYN-Cookie generation and

flow filtering are handled entirely within the data plane (P4), while a server-side eBPF

agent is responsible for sequence number translation and connection state management.

The available memory m (in bits) and the expected number of concurrently active benign

flows n are relevant parameters used in the following. For flow filtering, we evaluate two

Bloom filter variants:

• The (Ideal) Bloom filter is a theoretical precision upper bound for standard Bloom

filters. The number of hash functions, k, is set as an integer variable, and using

linear search, the optimal value minimizing expected false positives can quickly be

found (ideal k does not exceed 30 up to filter sizes of up to 1 TB). The expected false

positive rate is calculated using the following exact formulation [2]:

Fs(n,m,k) =
m

∑
i=1

S(n,m,k, i)
(

i
m

)k

, (6.3)

where:

S(n,m,k, i) = B(nk,m, i); (6.4)

B(n,m, i) =
(

m
i

)
· in ·m−n. (6.5)

To implement k hash functions, we use CRC32 and CRC16 [36] as base functions

(k = 1 and k = 2) and generate further hashes using the method [32]:

hashk(x) = CRC32(x)+(k−2) ·CRC16(x). (6.6)

This represents an idealized setting, as real hardware targets such as Intel Tofino

often impose strict limits on the number of hash function evaluations and memory

accesses per packet, constraining filter scalability. Moreover, since there is no

practical mechanism in P4 to dynamically adjust the number of hash functions based

on the available memory m and the number of tracked elements n, the optimal

configuration must be hardcoded. As a result, multiple pre-tuned implementation

versions are required, each tailored to specific deployment scenarios to ensure

maximal efficiency.

• The (Ideal) Bloom filter with time-decaying, enables connection entry expiry by

maintaining two (Ideal) Bloom filters in parallel, with alternating resets every inter-

val t. Each filter uses m/2 bits of memory and flows not seen for 2t are implicitly

removed. The optimal parameters for each are determined equivalently to those for

the ideal Bloom filter.
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6.3 Static Code Analysis and Comparison

This section presents a static analysis comparing the implementation complexity of the

CUCKOOGUARD and SMARTCOOKIE flow filters, focusing solely on the P4 components

executed on the SmartNIC Agent. Our objective is to approximate the relative hardware

cost, measured in terms of logical complexity, of each approach when synthesized onto an

FPGA of a SmartNIC. Although exact hardware usage (e.g., LUTs or Flip-Flops) depends

on downstream optimizations and synthesis targets, static metrics provide a first-order

estimate of comparative resource requirements.

To this end, we apply the ABC complexity metric [85], which evaluates the structural

complexity of the code based on the number of assignments (A), branches (B), and

conditionals (C). This metric has been used in software engineering as a lightweight

predictor of implementation cost and maintainability, and here serves as a rough proxy for

logic resource demand. We focus exclusively on the code implementing the flow filters,

omitting other components unrelated to the filtering logic to ensure a fair comparison.

Table 6.1: Static analysis of P4 flow filter implementations using the ABC complexity

metric.

Filter Type ABC Tuple (A, B, C) ABC Scalar Lines of Code (LoC)

Bloom Filter (k = 7) (16, 42, 10) 46.04 60

Cuckoo Filter (34, 40, 21) 56.54 126

The results summarized in Table 6.1 indicate that the Cuckoo filter implementation

incurs higher complexity than the Bloom filter baseline, as was expected. This suggests a

greater demand for logical resources (e.g., LUTs, Flip-Flops) when targeting FPGA-based

SmartNICs. However, it is essential to emphasize that the code complexity of the Bloom

filter depends on the number of hash functions k (see Section 6.2). For a typical k = 7, the

Bloom filter logic is relatively compact, but increasing k to be optimal for larger filters

would proportionally raise its complexity, potentially narrowing the gap. Moreover, these

figures represent unoptimized source-level complexity; hardware synthesis results may

differ based on backend compiler optimizations or manual hardware-aware code tuning.

6.4 Security Analysis

Given that DDoS mitigation represents a critical security component, we must ensure that

an adversary, possessing knowledge of our defensive approach (CUCKOOGUARD), cannot

bypass or compromise it. Here, we analyze two critical attack scenarios:
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1. Forging packets that bypass the Cuckoo filter, with the objective of exhausting the

server’s computational resources through repeated fallback cookie checks.

2. Crafting packets that purposefully induce collisions within the Cuckoo filter, causing

targeted denial-of-service (DoS) conditions.

6.4.1 Forged Packets and Computational Exhaustion

An attacker may theoretically craft packets specifically designed to generate identical

fingerprints within the Cuckoo filter. Let us formalize this threat scenario: given a packet

m with a fingerprint h(m), an attacker could seek to generate a malicious packet m′ where

m′ ̸= m, yet h(m′) = h(m). Initially, the attacker would establish a benign TCP connection

that legitimately registers the fingerprint h(m) in the Cuckoo filter. Subsequently, the

attacker transmits forged ACK packets with distinct connection tuples from the benign

connection (e.g., different source ports or source IP addresses), explicitly designed to map

to the same fingerprint h(m).

If these spoofed packets exhibit an identical 4-tuple, the kernel-level TCP/IP stack

will detect anomalies and trigger connection resets, subsequently removing these entries

from the Cuckoo filter, effectively mitigating this risk. However, if spoofed packets

differ sufficiently (distinct 4-tuple), each forged ACK packet triggers computationally

intensive fallback cookie validation in the Server Agent. This tactic could saturate server

computational resources, achieving a denial-of-service through resource exhaustion.

6.4.2 Targeted Collision Attacks

An alternative attack scenario exploits hash collisions to specifically target and deny service

to a particular user. This attack involves the following steps: First, the attacker identifies

the victim’s anticipated connection tuple, specifically the source IP address and port. The

attacker then proactively establishes multiple benign connections designed to intentionally

produce identical fingerprints within the Cuckoo filter, matching the anticipated fingerprint

of the victim’s future connection.

Considering each bucket within the Cuckoo filter stores b entries (typically b = 4), the

attacker strategically fills both candidate buckets associated with the victim’s fingerprint,

totaling 2b occupied entries. Practically, this equates to establishing only 2b benign-looking

connections, which is within feasible limits. Consequently, when the victim subsequently

attempts to establish their legitimate connection, due to fully occupied buckets, the Cuckoo

filter reaches its eviction limit (defined by maxNumKicks), and the victim’s legitimate

fingerprint insertion fails. As a result, subsequent legitimate packets and connection
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attempts from the victim are blocked, never reaching the server, thereby causing a targeted

denial-of-service.

However, practically achieving multiple hash collisions (specifically 2b identical fin-

gerprints) is challenging. The attacker’s degrees of freedom in packet crafting are limited,

primarily restricted to adjusting the source port and potentially the source IP, depending

upon their network configuration.

Notably, victims are generally resilient to this attack scenario due to the standardized

use of randomized source ports generated immediately before initiating a connection. For

the described collision attack to succeed, the attacker must predict the victim’s source

port before the victim’s final handshake packet reaches the server. In a realistic scenario,

a victim randomizing source ports would require the attacker to directly access network

traffic between the victim and the server. The attacker must observe the victim’s initial SYN

packet to determine the victim’s source port and IP address. Following this observation, the

attacker must rapidly establish the necessary 2b malicious connections before the victim

completes their handshake.

This scenario imposes significant timing constraints, making it even more challenging

for an attacker. Although an attacker could theoretically prepare in advance to quickly

generate the required attack packets, the feasibility of successfully executing such an attack

remains highly limited without direct network interception capabilities.

6.4.3 Second Preimage Resistance and Practical Considerations

The feasibility of the described attacks depends on the Cuckoo filter fingerprint hash

function’s resistance properties, specifically, second preimage resistance. Second preimage

resistance ensures that, given a legitimate packet m with hash output h(m), it is computa-

tionally infeasible to find a distinct packet m′ where m′ ̸= m, yet h(m′) = h(m).

Our prototype currently employs CRC32 for fingerprint hashing, which lacks second

preimage resistance, rendering it vulnerable to this collision-based exploitation. Thus,

an attacker with full access to source code and deployment specifics could feasibly craft

malicious packets meeting the collision criteria outlined above. Consequently, in practical

and production deployments, we must replace CRC32 with a cryptographically secure

hash function possessing the necessary second preimage resistance.

A robust candidate is SipHash, designed explicitly for performance-critical network

environments, providing cryptographic security against collision attacks [6]. Implemen-

tations of cryptographic hash functions such as SipHash have been demonstrated in data

plane environments using P4 [72].

To ensure robust security in production environments, we strongly recommend selecting

cryptographically secure hash functions compatible with available hardware acceleration
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capabilities in the deployed SmartNIC. By employing a cryptographically secure hash

function with sufficient second preimage resistance, our CUCKOOGUARD architecture

effectively mitigates the described collision-based attack vectors, ensuring reliable and

robust DDoS protection.
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Chapter 7

Evaluation

The following evaluation section presents a comprehensive analysis of the CUCKOOGUARD

architecture based on the implementations introduced in the preceding implementation

chapter. The primary objective is to assess the practical viability, efficiency, and preci-

sion of CUCKOOGUARD by comparing alternative filtering strategies and state-of-the-art

approaches.

The evaluation is structured around the following core goals:

• Cuckoo filter insertion overhead

• Bloom vs. Cuckoo filter connection tracking behavior

• Comparative analysis of flow filter accuracy

• CUCKOOGUARD vs. SMARTCOOKIE performance comparison in a realistic scenario

7.1 Experimental Setup

All experiments follow a unified setup and parameterization to enable fair comparison of

connection-tracking approaches, focusing on memory usage and precision of flow filters

rather than absolute throughput or latency. Bloom filter variants are evaluated within the

SMARTCOOKIE baseline implementation (Section 6.2), while Cuckoo filters are tested

using CUCKOOGUARD’s implementation (Section 6.1). Experiments are conducted on

a single commercial off-the-shelf (COTS) machine running Ubuntu 20.04.6 LTS

with kernel version 5.15.0-134-generic, using Linux virtual interfaces and network

namespaces to emulate the split-proxy setup. In addition to the practical, time-decaying

(Ideal) Bloom filter, we include an (Ideal) Bloom filter as a non-deployable reference

to illustrate the theoretical precision limit. For consistency, decay is disabled in the

time-decaying variant (via timeout t) unless stated otherwise.
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We fix the number of actively tracked connections at n = 5000 and vary the available

memory m (in bits), which determines the per-connection memory budget m/n and directly

impacts filter precision. Due to BMv2’s performance constraints, relatively small values

for n and m are used to allow fine-grained variation of m and high-resolution benchmarking

results. While not representative of large-scale deployments, these parameters can be

proportionally scaled, preserving the filters’ relative behavior [32]. To ensure statistical

robustness, each measurement was repeated ten times and averaged; false positive rate

measurements were computed from 100000 randomly generated spoofed packets per run.

Unless otherwise stated, Cuckoo filter configuration parameters are set as follows: bucket

capacity b = 4, and target load factor α = 0.95.

To validate scalability, we adopt one large-scale experimental scenario introduced by

Yoo et al. [92] for their SMARTCOOKIE architecture. This baseline tracks 579600 con-

current TCP connections under an ACK flooding attack, using time-decaying, partitioned

Bloom filters [80] with k = 3 partitions of 220 bits each, totaling approximately 786 KB of

memory. We use this setup to quantify the concrete advantages of CUCKOOGUARD under

realistic load.

The experimental evaluation focuses on two primary Key Performance Indicators

(KPIs):

• False Positive Rate, which directly impacts server-side computational load by

triggering unnecessary cookie validations during ACK floods.

• Recirculation Overhead, which quantifies the number of packet reprocessing cycles

required at the SmartNIC (Cuckoo filter Insertion).

7.2 Experimental Results

7.2.1 Cuckoo Filters offer better Precision under low False Positive
Rate Requirements

Figure 7.1 shows the relationship between the false positive rate and the available memory

per connection. Both Bloom filter variants exhibit gradually improving (decreasing) false

positive rates with increasing memory; the Cuckoo filter, on the other hand, displays step-

wise improvements. These steps are a direct consequence of fingerprint size adjustments

(Section 6.1.1): as the available memory increases, the fingerprint size increases discretely,

thereby exponentially reducing the probability of false positives due to hash collisions.

The Cuckoo filter maintains a significant advantage over all types of Bloom filters up

until a false positive rate of ∼ 0.1%. This is particularly beneficial, as achieving a low
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Figure 7.1: Memory-precision tradeoff: Comparison of false positive rates for Cuckoo

filter and Bloom filter variants across varying memory per connection.

false positive rate < 0.1% is essential for effective server offloading (R5 – OFF) in

CUCKOOGUARD.

It can be observed that SMARTCOOKIE’s Bloom filter with time-decaying consequently

experiences significantly worse precision compared to CUCKOOGUARD’s Cuckoo fil-

ter. This confirms that CUCKOOGUARD’s Cuckoo filter achieves superior precision and

therefore also memory efficiency.

7.2.2 Optimized Cuckoo Filter Insertion Overhead has Minimal Im-
pact on False Positive Rates

Although prior experiments operated CUCKOOGUARD’s Cuckoo filter near its space-

optimal capacity (α = 0.95) to minimize the false positive rate, this configuration may not

be ideal for performance. Therefore, we measure the average recirculation overhead under

a fixed memory budget of m =84227 bits while varying the load factor α , which denotes

the fraction of occupied entries in the Cuckoo filter. Each configuration is evaluated

over 1000 insertions, with the standard deviation capturing variability across these trials.

Recirculation overhead is expressed as the average number of additional pipeline passes

per insertion, represented as a percentage, where 100% corresponds to one extra pass per

inserted flow entry.

Figure 7.2 illustrates the recirculation overhead of CUCKOOGUARD’s Cuckoo filter

across various load factors. The average overhead, presented on a logarithmic scale,

remains moderate—approximately 154%—at a load factor of α = 0.85, but increases
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Figure 7.2: Insertion overhead of Cuckoo filters increases sharply with higher load factors.

sharply beyond this point, exceeding 1000% at α = 0.95. Notably, the standard deviation

also grows with the average overhead, reaching a maximum of > 2000%. The variability is

more controlled at lower load factors, e.g., α = 0.85, but it escalates as the filter approaches

full capacity. This insertion overhead must be interpreted in context. Since flow insertion

occurs only once per TCP connection, whereas all other packets of the connection are

forwarded without recirculation, the cost is amortized in long-lived connections. However,

the overhead can accumulate and potentially degrade throughput in high-churn scenarios,

such as REST APIs or microservice-based architectures, where connections are frequently

established and torn down.

To assess the viability of operating the Cuckoo filter at a recirculation-optimized load

factor α ≤ 0.95, we fix the available memory per connection at ∼ 16.85 bits, corresponding

to a total memory budget of 84227 bits for 5000 concurrent connections. We then vary the

load factor α of the Cuckoo filter to evaluate its impact on the false positive rate. Figure 7.3

presents the resulting false positive rates of the Cuckoo filter across different load factors

and compares them to those of alternative flow filtering approaches.

We correlate recirculation cost with an achievable false positive rate to determine a

practical operating point for α . The Cuckoo filter’s false positive rate improves monotoni-

cally with a higher load, reaching a minimum at α = 0.95; even at a conservative 0.85 load

factor, it remains just above the idealized Bloom filter and outperforms the time-decaying

Bloom filter by a wide margin.

This insight suggests that CUCKOOGUARD’s Cuckoo filter can be tuned to mitigate

its primary disadvantage—recirculation—without significantly compromising precision.

A load factor of α = 0.85 offers a favorable trade-off, achieving a low false positive
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Figure 7.3: False positive rate of Cuckoo filters under varying load factors. Higher

occupancy improves precision but increases insertion overhead.

rate throughout (see Figure 7.1) while maintaining reasonable processing overhead. This

corresponds to an average of just over one additional recirculation per TCP connection,

making the overhead negligible in most deployment scenarios.

7.2.3 Cuckoo Filter Ensures Minimal Overhead and Precise Connec-
tion Tracking

Figure 7.4 shows both designs’ flow filter occupancy over time under a workload of 200

new connections per second (cps), each lasting exactly 5 seconds. This setup reveals

how each filter handles dynamic connection churn across three distinct phases: a growth

phase (0-5 s), a steady-state phase (5-35 s), and a drain phase (35-40 s). The Cuckoo filter

exhibits linear growth during the initial phase, stabilizing at 1000 flow entries—the number

of active connections sustained at 200 cps with 5-second lifetimes. During the steady-state

phase, flow entry insertions and deletions balance out, keeping occupancy flat. Once new

arrivals stop, the filter empties smoothly. This behavior reflects precise connection tracking

via explicit deletions triggered by CUCKOOGUARD’s Server Agent, the distinctive feature

of CUCKOOGUARD.

In contrast, the time-decaying Bloom filter (t = 5s) exhibits oscillating occupancy

during the steady-state phase, fluctuating between 2000 and 5000 entries with sharp drops

every 5 seconds due to filter instance resets. Each connection’s flow entry is inserted into

two overlapping filter instances: one is reset every 5 seconds, and both remain active for 10

seconds. The overlap between active and new connections extends the effective tracking
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Figure 7.4: Temporal behavior of filter occupancy under dynamic connection churn.

Cuckoo filters track flows precisely with minimal memory overhead, while time-decaying

Bloom filters require overprovisioning.

window per instance to 15 seconds. At a rate of 200 cps, each instance must support up to

3000 flow entries. During the drain phase, occupancy decreases as existing connections

expire. Full clearing occurs once traffic ceases and both filter instances complete their

rotation.

Lacking support for flow entry deletion, this Bloom filter must overprovision. Each

filter instance holds 3× the active flow entries, and a second instance doubles that require-

ment, resulting in a 6× flow entry overhead. In contrast, CUCKOOGUARD’s Cuckoo filter

maintains a tight one-to-one mapping with active connections, offering precise expiration

and optimal flow entry overhead.

7.2.4 Computational Overhead Decreased by 79% Compared to the
State of the Art: SMARTCOOKIE

To ensure a fair and direct comparison, CUCKOOGUARD is configured to match the

memory and connection tracking parameters of the SMARTCOOKIE baseline, following

the methodology described in Section 6.1.1.

During evaluation, both systems are subjected to an ACK flood attack consisting

of 100000 spoofed and randomized ACK packets. This attack is repeated across 10

independent runs to ensure statistical reliability. In this setting, CUCKOOGUARD achieves

an average false positive rate of 1.56%, significantly outperforming the 7.66% rate observed

65



in the SMARTCOOKIE baseline. This improvement substantially reduces unnecessary

server-side cookie verifications, leading to an estimated decrease in CPU overhead of up

to 79%. Moreover, our results suggest that the performance gap widens even further at

lower false positive thresholds (e.g., below 0.1%), indicating strong scalability potential of

CUCKOOGUARD.

Due to the lack of cryptographic hash function support in BMv2, direct measurement

of server-side CPU usage was not conducted. In realistic deployments, cryptographic

hashing is expected to constitute the primary computational bottleneck for the Server

Agent, and performance evaluations based on CRC hashing would not yield representative

results. Instead, we refer to the evaluation of SMARTCOOKIE [72], which reported a

CPU usage of approximately 372 million instructions per second (MIPS) under a 30 Mpps

ACK flood attack [72]. Since our eBPF implementation is a modified derivative of the

SMARTCOOKIE Server Agent and achieves a more than fourfold reduction in false positive

rate, we estimate the server-side CPU overhead of CUCKOOGUARD to be proportionally

lower. Based on this relationship, CUCKOOGUARD is expected to reduce CPU usage to

approximately 78 MIPS under comparable conditions. We emphasize that this estimate

is only a coarse approximation; precise performance measurements are left for future

work once a hardware-based implementation with cryptographic hash support is available.

Nonetheless, these projections suggest that CUCKOOGUARD offers substantial practical

benefits in terms of server offloading.
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Chapter 8

Conclusion

8.1 Learned Lessons

This thesis introduced CUCKOOGUARD, a novel SYN flood defense architecture for pro-

grammable data planes that leverages a dynamic connection-tracking mechanism based

on Cuckoo filters. The architecture achieves high precision in flow filtering while main-

taining minimal overhead, making it particularly well-suited for deployment in memory-

constrained environments such as FPGA-based SmartNICs.

Among several candidate data structures considered for flow filtering, the Cuckoo filter

emerged as the most suitable choice due to its compact memory footprint, support for

explicit entry deletions, and tunable trade-offs between precision and performance. Our

implementation demonstrates that Cuckoo filters significantly outperform Bloom filter

variants in terms of false positive rates, especially under strict memory constraints. While

flow entry insertions into the Cuckoo filter necessitate packet recirculation—an inherent

limitation in data plane environments—the associated overhead is bounded and can be

controlled by adjusting the filter’s load factor.

Experimental evaluation confirms the viability of CUCKOOGUARD, showing a substan-

tial 79% reduction in server CPU load compared to the state-of-the-art SMARTCOOKIE

architecture under equivalent memory conditions. These findings underscore the efficiency

of offloading SYN-Cookie validation and flow tracking to the programmable data plane,

enabling precise and scalable defense even in high-churn environments.

Key Achievements:

• Development of an architecture that satisfies all defined design requirements (R1–R7),

including memory efficiency, transparency, and high connection churn tolerance.

• Robust protection against both SYN and ACK flood attacks for any TCP-based
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server, without requiring changes to the application layer.

• Full exploitation of programmable hardware to enable low-latency, line-rate packet

processing in the data plane.

• Demonstrated significant improvement over prior work, achieving up to 79% reduc-

tion in server-side computational overhead under identical conditions, and exhibiting

markedly better performance in more realistic, high-precision deployment scenarios.

• Introduction of Cuckoo filters as a foundational building block for connection-

tracking in programmable data planes.

• Implementation of a deployable proof-of-concept architecture that can be readily

adapted for real-world network defense scenarios.

8.2 Future Work

While CUCKOOGUARD has demonstrated strong performance in a simulated environment,

several avenues for future exploration remain. Each of the following directions addresses a

distinct challenge or limitation and outlines a detailed plan for further development and

evaluation.

8.2.1 Deployment and Evaluation on SmartNIC Hardware and Servers

To validate CUCKOOGUARD under realistic network conditions, a comprehensive empirical

evaluation on production-grade SmartNIC hardware is essential. This involves establishing

a hardware testbed and collecting detailed performance metrics, including throughput,

latency, and false positive rates.

The evaluation should begin by setting a performance target (e.g., 200 Gbps line rate,

> 30 Mpps) and acquiring compatible hardware. Ideally, the setup should include a

programmable (FPGA-based) SmartNIC that supports P4, along with a high-performance

NIC capable of hardware timestamping for accurate latency measurements. A server with

such a SmartNIC will host CUCKOOGUARD, while a dedicated client system will generate

test traffic over a high-speed link.

The testbed must be able to support a variety of traffic patterns, combining legitimate

and attack traffic. Simulated workloads should, for example, include high-churn REST

API traffic and long-lived streaming sessions to reflect realistic use cases. For attack traffic,

randomized SYN and ACK flood attacks should either be synthesized or obtained from

open-source research datasets to benchmark resilience.
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Beyond basic deployment, this line of work also opens the door for analyzing archi-

tectural variants of the system. A particular focus lies on the possibility of relocating

the Server Agent from the host to a general-purpose CPU integrated on the SmartNIC

itself, if available. Such an offloading strategy could reduce inter-device communication

latency, but might introduce additional resource contention on the SmartNIC. Trade-offs in

throughput, latency, and memory efficiency must be systematically evaluated for both the

hybrid and fully offloaded models of CUCKOOGUARD.

Furthermore, this deployment effort should also integrate a cryptographically secure

and hardware-friendly hash function for SYN-Cookie generation. SipHash [6], for instance,

is a strong candidate and should be implemented both on the SmartNIC and server. The

computational hashing performance will become especially relevant under high ACK flood

scenarios, where cookies must be verified at scale at both the server and the SmartNIC.

To complement the empirical evaluation, an additional objective should be to character-

ize how large the flow filter must be—i.e., the number of memory bits per connection—to

prevent CPU overload during worst-case conditions. Specifically, under a constrained

CPU budget (e.g., measured in MInstr/s) and a fixed deployment scenario, the analysis

should determine how to dimension the Cuckoo filter data structure to maintain line-rate

processing (e.g., 200 Gbps) while ensuring that no server-side resources are overstrained.

The expected outcome of this research direction is a fully instrumented and tunable

deployment of CUCKOOGUARD on real hardware, with quantified performance under

representative workloads and attack scenarios. This includes latency measurements with

high precision, throughput benchmarks in packets per second, and resilience testing against

various flooding patterns. The results will form a critical step toward production-readiness

and inform future optimization and hardening strategies.

8.2.2 Integration in Multi-Tenant SmartNIC Environments

In many datacenter environments, SmartNICs host multiple network functions concur-

rently. Integrating CUCKOOGUARD in such a setting requires careful attention to resource

isolation, scheduling, and cooperative execution.

The first step involves surveying prior work on multi-functional SmartNICs, especially

Meili [79] and SuperNIC [50]. Building upon these insights, a multi-tenant setup should

be prototyped on an FPGA-based SmartNIC or a simulated environment using BMv2 [63].

This direction should investigate how CUCKOOGUARD coexists with other network

functions such as TCP proxying, NAT, or packet inspection. Key research questions

include:

• How can resource usage be minimized while CUCKOOGUARD is in stand-by mode?

69



• What are the optimal conditions and mechanisms for activating CUCKOOGUARD?

• How can the SmartNIC’s memory hierarchy be leveraged to reallocate resources to

CUCKOOGUARD dynamically?

• Where in the data plane processing pipeline should CUCKOOGUARD be placed to

avoid interference while preserving correctness?

This should result in a working integration prototype and performance, isolation, and

interference analysis under different coexistence scenarios. This investigation focuses

primarily on the SmartNIC Agent and assumes the Server Agent remains unchanged.

8.2.3 Semi-Sorted Cuckoo Filter Optimization

The original CUCKOOGUARD implementation uses standard Cuckoo filters for flow track-

ing. However, variations such as semi-sorted Cuckoo filters [32] offer a promising path

toward improved memory efficiency at the expense of increased complexity.

This direction begins with an in-depth review of semi-sorted Cuckoo filters and their

properties. The existing BMv2 [63] P4 implementation should be modified to incorpo-

rate this optimization and evaluated for its impact on memory footprint, lookup latency,

insertion overhead, and performance.

Once the modified filter is operational, its integration into the CUCKOOGUARD archi-

tecture should be benchmarked against the original design. The evaluation should include

synthetic traffic and realistic scenarios introduced in this thesis (e.g., API vs. streaming

workloads).

Optionally, this may extend into hardware deployment as described above, to measure

how these filter optimizations affect performance on real-world platforms.

8.2.4 Robust Handling of TCP Options

SYN-Cookie mechanisms often simplify or omit TCP options, which can reduce compati-

bility with modern applications. To ensure protocol transparency, CUCKOOGUARD must

robustly handle TCP options such as Window Scaling [11] and Selective Acknowledgments

(SACK) [34].

This direction should begin with a comprehensive survey of TCP options in common

use, identifying their roles and implications for SYN flood defenses. The next step

involves extending CUCKOOGUARD’s Server Agent and potentially the SmartNIC Agent

to implement a complete TCP state machine capable of interpreting and responding to

these options.
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The implementation phase should include reproducing various TCP behaviors in a

testbed using applications that rely on these options. Compatibility issues must be identified

and analyzed, followed by proposed architectural improvements to the Server Agent and/or

SmartNIC Agent where necessary.

The outcome should include a fully option-aware Server Agent implementation, a

test suite of option-heavy TCP clients, and a compatibility report outlining current limita-

tions and potential fixes. This effort strengthens CUCKOOGUARD’s protocol fidelity and

broadens its applicability to real-world network deployments.

8.2.5 Integrating CUCKOOGUARD with Existing Network Telemetry
Frameworks

Cuckoo filters are widely employed in network telemetry systems for their ability to

provide fast, memory-efficient way to capture flow statistics. This opens a promising

direction for integrating CUCKOOGUARD with existing telemetry frameworks that already

leverage similar data structures for flow measurement and monitoring. The core idea

is to unify connection tracking for the purpose of SYN flood protection and telemetry

into a single, shared Cuckoo filter instance, reducing redundancy and conserving scarce

SmartNIC memory.

To pursue this integration, a detailed survey of network measurement/ telemetry ar-

chitectures using Cuckoo filters, such as [51, 37, 74], should first be conducted. These

systems often use Cuckoo filters to maintain summaries of observed flows or to detect

heavy hitters. In parallel, CUCKOOGUARD employs a Cuckoo filter to track verified TCP

connections. A comparative analysis would identify the structural and semantic overlap

between these use cases and assess compatibility at the data structure level.

Following this, a unified filter design should be developed, capable of maintaining

both TCP connection validation state and telemetry-related metadata. The feasibility of

such a combination must be investigated, particularly under high-load scenarios involving

frequent insertions and deletions. Critical design challenges include maintaining acceptable

false positive rates, and long-term filter coherence which is necessary for CUCKOOGUARD

to work correctly.

The implementation phase would prototype this integration within a simulated envi-

ronment (e.g., using BMv2) or on a SmartNIC platform if available. Evaluation metrics

should include memory savings compared to a naive dual-filter design, impact on filter

precision, and latency overhead for query operations.

Ultimately, this direction explores whether dual-purpose Cuckoo filters can support flow

validation and telemetry without compromising performance or accuracy. If successful,
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the approach could significantly improve memory efficiency and functional density of

SmartNIC deployments, especially relevant in multi-tenant environments where resource

sharing is critical.

72



Bibliography

[1] A. M. Abdelhadi and G. G. Lemieux. Modular sram-based binary content-

addressable memories. In 2015 IEEE 23rd Annual International Symposium on

Field-Programmable Custom Computing Machines, pages 207–214. IEEE, 2015.

[2] P. S. Almeida. A case for partitioned bloom filters. IEEE Transactions on Computers,

72(6):1681–1691, 2022.

[3] AMD. Vitisnetp4: P4 ip for adaptive socs and fpgas. https:

//www.amd.com/en/products/adaptive-socs-and-fpgas/

intellectual-property/ef-di-vitisnetp4.html, 2025. Accessed:

2025-05-29.

[4] APS Networks. APS2156D: 2.0Tb/s P4-Programmable TOR Switch. https:

//www.aps-networks.com/products/aps2156d/. Accessed: 2025-04-

22.

[5] Arista Networks. Arista 7170 Series: High Performance Multi-function

Programmable Platforms. https://www.arista.com/en/products/

7170-series. Accessed: 2025-04-22.

[6] J.-P. Aumasson and D. J. Bernstein. Siphash: A fast short-input prf. In S. Galbraith

and M. Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, pages 489–508,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Medjedovic,

P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash: How to cache

your hash on flash. In 3rd Workshop on Hot Topics in Storage and File Systems

(HotStorage 11), 2011.

[8] D. J. Bernstein. Syn cookies. https://cr.yp.to/syncookies.html, 1996.

Accessed: 4 Feb. 2025.

[9] R. Bifulco, S. Miano, and C. Schneble. Accelerated DDoS attacks mitigation us-

ing programmable data plane. In Proc. of the 15th ACM/IEEE Symposium on

73

https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/ef-di-vitisnetp4.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/ef-di-vitisnetp4.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/ef-di-vitisnetp4.html
https://www.aps-networks.com/products/aps2156d/
https://www.aps-networks.com/products/aps2156d/
https://www.arista.com/en/products/7170-series
https://www.arista.com/en/products/7170-series
https://cr.yp.to/syncookies.html


Architectures for Networking and Communications Systems (ANCS’19), pages 1–2,

Cambridge, UK, September 2019.

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of the ACM, 13(7):422–426, 1970.

[11] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger. TCP Extensions for

High Performance. RFC 7323, Sept. 2014.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: programming protocol-

independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,

July 2014.

[13] R. T. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122,

Oct. 1989.

[14] A. Caulfield, P. Costa, and M. Ghobadi. Beyond smartnics: Towards a fully pro-

grammable cloud. In 2018 IEEE 19th International Conference on High Performance

Switching and Routing (HPSR), pages 1–6. IEEE, 2018.

[15] Center for Strategic and International Studies. Significant cyber incidents. https:

//www.csis.org/programs/strategic-technologies-program/

significant-cyber-incidents, 2025. Accessed: 2025-04-19.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data.

ACM Transactions on Computer Systems (TOCS), 26(2):1–26, 2008.

[17] L. Y.-C. Chang. Taiwan: A battlefield for cyberwar and disinformation. Melbourne

Asia Review, 17, 2024. Accessed: 2025-04-29.

[18] X. Chen, C. Wu, X. Liu, Q. Huang, D. Zhang, H. Zhou, Q. Yang, and M. K. Khan.

Empowering network security with programmable switches: A comprehensive survey.

IEEE Communications Surveys & Tutorials, 25(3):1653–1704, 2023.

[19] Cisco Systems. Cisco Nexus 34180YC and 3464C Programmable Switches

Data Sheet. https://www.cisco.com/c/en/us/products/

collateral/switches/nexus-3000-series-switches/

datasheet-c78-740836.html. Accessed: 2025-04-22.

74

https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/datasheet-c78-740836.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/datasheet-c78-740836.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/datasheet-c78-740836.html


[20] Cloudflare, Inc. DDoS Threat Report for 2024 Q4. https://radar.

cloudflare.com/reports/ddos-2024-q4, February 2025. Accessed:

2025-04-19.

[21] T. L. K. Community. syncookies.c — syn cookie implementation in linux

kernel. https://github.com/torvalds/linux/blob/master/net/

ipv4/syncookies.c, 2025. Accessed: 2025-04-16.

[22] M. Dimolianis, A. Pavlidis, and V. Maglaris. SYN flood attack detection and mit-

igation using machine learning traffic classification and programmable data plane

filtering. In Proc. of the 24th Conference on Innovation in Clouds, Internet and

Networks (ICIN’21), pages 1–8, Paris, France, March 2021.
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