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Different Interaction Modes with Videos
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Volumetric Video

6-DoF

2D Videos

0-DoF

360-degree Videos

3-DoF

DoF = Degrees of Freedom



6DoF (Degrees of Freedom) Applications

 Film production

 Heritage preservation

 Defect detection

 Robotic navigation
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Enabling Representations of 6DoF Applications

 3D meshes and point clouds are more suitable to objects 

generated by computer graphics

 Compared to DIBR (Depth-Image-Based-Rendering), NeRF  

(Neural Radiance Fields) [ECCV’20] and 3DGS (3D Gaussian 

Splatting) [SIGGRAPH’23] produce better synthesized views

 NeRF rendering, however, is much slower than 3DGS rendering

43DGSDIBR NeRF

not good for real-life objects



3D Gaussian Splatting (3DGS) [1]
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(Novel) View Synthesis Using 3DGS

 Input views: Ground truth images captured from real scenes

 Synthesized views: New perspectives generated by 3DGS objects 
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Selection of Input Views is Crucial: Pilot Tests 

 More input views improve synthesized view quality

 With the same number of input views equally-spaced setup 

boost the quality
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View Selection Problems

 Two problem variants

■ Best View Selection (BVS): selects a subset of images from already 

captured views

■ Next Best View Selection (NBVS): select the next few poses on-the-fly

for additional input views
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BVS [1]

1. Jiang, Wen, Boshu Lei, and Kostas Daniilidis. "Fisherrf: Active view selection and mapping with radiance fields using fisher information." European 

Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024.

2. Ran, Yunlong, et al. "Neurar: Neural uncertainty for autonomous 3D reconstruction with implicit neural representations." IEEE Robotics and Automation  

Letters 8.2    (2023): 1125-1132.

NBVS [2]
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Related Work

 Best View Selection [1]: Not suitable for online scenario

 Next Best View Selection [2, 3, 4]: Built upon a memory-

hungry 3D occupant map and focus on unobserved areas

 No consideration of both network conditions and actual 

protocols like MAVLink
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Considered NBVS Scenario

 Drone: Capturing images as candidate 

input views

 Ground Control Station (GCS): 

■ Planning drone trajectory on-the-fly

■ Training 3DGS objects from input views

 MAVLink: Enabling

communication between

drone and GCS
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MAVLink (Micro Air Vehicle Link)

 Lightweight messaging protocol [1, 2] for communicating 

with drone and GCS

 Decode the payload through a predefined message
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1. https://mavlink.io/en/

2. Koubâa, Anis, et al. "Micro air vehicle link (mavlink) in a nutshell: A 

survey." IEEE Access 7 (2019): 87658-87680.

Indicating the message type

https://mavlink.io/en/


Capture image through MAVLink
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Transmit captured image

Transmit desired waypoint



3DGS Training Process

 Initialize the 3DGS object with a random point cloud

 Go through multiple epochs, where in each epoch

■ Employ a neural network that take 3DGS object (S) and set of input 

images (I) as input

■ Evaluate synthesized view (I') quality to optimize 3DGS object
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Incrementally Generated 3DGS Object

 3DGS is incrementally constructed for increasingly better 

quality when each drone gradually captures input views 

following the trajectory
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Time t3: 350.0 s

Epoch e3: 37040

PSNR q3: 21.14 dB

Time t1: 13.69 s

Epoch e1: 1412

PSNR q1: 8.91 dB

Time t2: 67.68 s

Epoch e2: 8109

PSNR q2: 12.64 dB

Time
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Challenge 1: Quantify Information 

 It is not easy to quantify the information amount brought by 

each potential, or candidate pose to an existing 3DGS object

 Solution: Employ uncertainty to quantify the contributions of 

a candidate pose given 3DGS object
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Challenge 2: Optimize Drone Trajectory 

 It is non-trivial to systematically compute a drone trajectory to 

maximize the overall quality of final synthesized views

 Solution: formulate and solve an optimization problem to 

compute the drone trajectory
■ Utility: the potential contribution of each pose, which is quantified in 

Challenge 1

■ Trajectory: a sequence of poses

■ We propose two trajectory planning algorithms to solve the problem
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NBVS Framework

 We propose a framework for producing a drone trajectory 

 Sampling poses: Discretizing the huge search space to control 
the completing

 Uncertainty estimation: To evaluate potential contribution 
(utility) of current 3DGS

 Trajectory planning: To maximize the utility of the resulting 
trajectory
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Optimization Criteria

 Fisher information [1] indicates how much information is 

captured under a candidate pose for a given 3DGS object

 We use Fisher information to evaluate potential contribution 

of each pose
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1. Jiang, Wen, Boshu Lei, and Kostas Daniilidis. "FisherRF: Active view selection and uncertainty quantification for radiance fields using Fisher 

information." arXiv preprint arXiv:2311.17874 (2023).

Conditional entropy of train 

set (Dtrain)

Conditional entropy of the set contain train set 

(Dtrain) and given pose (xacq, yacq)

Potential contribution of given pose

Challenge 1

x: candidate pose

y: synthesized view of x

w: Gaussians’ parameters



Optimization Problem

 Planning a trajectory to maximize the total utility within the 

planning window duration W
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Expected moving time within time limit

Each pose is visited once

Flow conservation

Starting pose is chosen

Challenge 2

vij show that if pose j is visited after pose i



DPC (Dynamic Programming with Constraint)

 Core idea: Find the trajectory with the maximal utility within 

time constraint using Dynamic Programming

 Key steps

■ Explore all possible candidate pose combinations as trajectories

■ Use Dynamic Programming to avoid repeated combinations 

■ Stop adding new pose into trajectory when the expected flying time 

exceeds planning window W

■ Return the best-known trajectory when time constraint C is used up
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utility function: Fisher Information

Utility of given pose 
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AUM (A*-inspired Utility Maximization)

 Core idea: Add the pose with highest utility, which has highest 

Fisher information and subsequent weighted Fisher Information 

in a greedy fashion

 Key steps
■ Add the pose with highest utility as the first pose

■ Find the highest utility of next two poses xi and xj beyond a given 
trajectory P*

■ Add the xi and start next iteration until the expected flying time exceeds 
planning window W

■ Return the best-known trajectory
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utility function:

Remaining moving time

Next poses’ weighted Fisher InformationUtility of given poses

Challenge 2



Comparison and Recommendations

 DPC:
■ Time complexity:

■ Suitable for applications that best quality is needed

■ Used with few sampling poses and short planning window

 AUM: 
■ Time complexity:

■ Suitable for applications that real-timeness is crucial 

■ Used with plenty sampling poses and long planning window

25
DPC AUM

M = the number of samples pose
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Implementations

 Use simulations to facilitate fair comparison and

better reproducibility

 Our testbed should support: 

■ Realistic physics simulation

■ Photorealistic rendering

■ Actual network with MAVLink implementation
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Drone Simulator

 Physic Engine (Gazebo) offers:

■ Realistic physic effects: gravity, wind, and robotics dynamic…

■ Various sensor plugins: GPS, IMU, and LiDAR…

■ Not capable of photo-realistic rendering

 Renderer Engine (Unity) offers photo-realistic rendering effects: 

real-time dynamic shadows, directional lights and spotlights
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Network Simulator

 Network simulator (NS-3) offers:

■ Multiple network protocol: Wi-Fi, DSRC, and LoRa…

■ Signal propagation effects: obstacle penetration , path loss models… 

 We implemented a protocol with the following configuration:

■ Protocol: UDP over WiFi

■ Mode: Unicast

■ Message format: MAVLink
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Algorithm Parameters

 Candidate pose sampling

■ r ∈ [4, 10], radius for random and circular sampling

■ ϕ ∈ {15, 30, 45, 60}, longitude for circular sampling

■ θ ∈ {0, 20, . . . , 340}, latitude for circular sampling

 M ∈ {5, 10, 20, 40, 80}, the number of samples

 W ∈ {25, 50, 75, 100}, the planning window size

 C ∈ {0.25, 0.5, 1, 2, 4}, the running time constraint
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Setup
 Sampling method

■ Random

■ Circular

 Baselines There was no NBVS baseline available at the time of writing

■ Using all already captured views (SEQ)

■ Selecting representative images, with the number capped at the number of 
input views in our algorithms (ASEQ)

 Metrics

■ Visual quality: PSNR in dB, SSIM 

■ No. input views

 Evaluation results

■ Timeliness: How much time can we save by on-the-fly training?

■ Performance: How much quality improvement can we achieve?

■ Parameters: How do the parameters impact the results? 31

CabinShipCar
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174

We Generate 3DGS Objects On-the-Fly

 DPC provides high-quality synthesized views at the 174-th 

second, compare to the 350-th second of SEQ/ASEQ

32

SEQ DPC (Ours)

A sample run

Timeliness



Our Algorithms Outperform the 

Baselines (Random Sampling)
 Although AUM underperforms SEQ by 0.45 dB in PSNR, but 

it run faster than the DPC (approximately 1000-fold 

difference, which will be shown later)

 DPC outperforms SEQ by 0.54 dB in PSNR, and captures 

13.6 more input views 
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0.54 dB
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Our Algorithms Outperform the 

Baselines (Circular Sampling)
 AUM outperforms SEQ by 1.87 dB in PSNR, and captures 

21.0 less input views

 DPC outperforms SEQ by 2.60 dB in PSNR, and capturs 22.7 

less input views
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Random Sampling Performs Better than 

Circular Sampling 
 Random sampling leads to better visual quality

 Bigger window size results in larger gap
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AUM DPC

1.23 dB 1.51 dB1.04 dB 1.51 dB
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Impact of Window Size 

 Random sampling: Visual quality is not affected by window 

size It is already fairly good

 Circular sampling: Visual quality drops with bigger window 
size from 22.66 dB to 20.19 dB in PSNR Larger W results 
in fewer re-planning opportunities
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Random Sampling Circular Sampling

22.66 dB 20.19 dB
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Impact of Time Constraint 

 AUM runs 1000 times faster than DPC under default setting 

(C = 1 s)

 Larger C reduces the number of input views and improves the 

quality
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Parameters

Running Time Number of Input Views 

30.3 27.6
21.09 dB 21.31 dB

0.285 ms

0.55 s
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Impact of Different Number of Samples

 Random sampling: It is rather stable It is already fairly good

 Circular sampling: More samples lead to better quality Larger 

M results in farther candidate poses
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Summary of Experiments

 Achieve the final synthesized view quality in a shorter 

time (reduce 175.4 s on sample result)

 Improve the visual quality of 3DGS objects by up to 

5.90 dB in PSNR with fewer input views captured

 Different parameters can be chosen to better suit 

the usage scenarios

■ For high visual quality, we recommend DPC with random sampling

■ For real-timeness, we recommend AUM
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Conclusion

 6DoF is important for many applications, including urban 

planning, smart agriculture, and search and rescue among others

 Selecting input views is critical for high quality view synthesis

 We are the first to propose NBVS algorithms for 3DGS objects

 Compared to the prior arts, our solution 

■ Improved the visual quality

(up to 5.90 dB in PSNR)

■ Achieved the final synthesized

view quality without incurring 

long running time 

(reduce 175.4 s)
41
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Future Work
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Reliable Protocols 

Alternative Networks Cooperation Systems

Network-Aware

Trajectory Planning 
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Thank you for listening!
Thanks for the help of Prof. Hsu, Yuan-Chun Sun, Cheng-Tse Lee, and all 

labmates

Publications:
1. C. Wu, Y. Sun, C. Lee, and C. Hsu, “Optimally planning drone trajectories to capture 3D Gaussian splatting objects,” in Proc. 

of International Conference on Multimedia Modeling (MMM’25), Nara, Japan, January 2025.

2. C. Wu and C. Hsu, “ FlyGS : Online 3DGS Scene Construction from MAVLink Drone Feeds” Proceedings of the 3rd 

Workshop on UAVs in Multimedia: Capturing the World from a New Perspective. 2025 (UAVM 2025) (Under preparation)



More Training Time

 The PSNR drops slightly due to overfitting
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