
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

使用MAVLink通訊協定之無人機於大範圍三維高斯潑濺場景
擷取與飛行路徑規劃之最佳化

Optimizing Drone Trajectory Planning for Capturing Large-Scale
3D Gaussian Splatting Scenes via the MAVLink Protocol

112062583
吳承遠

Cheng-Yuan Wu

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 114年 6月
6, 2025

中文摘要

使用無人機捕捉三維高斯潑濺物體時，如何從眾多候選視角中選

擇合適的輸入視角，以確保高品質的新視角合成是一項重大挑戰。這

一挑戰更受到無人機資源限制（如電池續航力與網路頻寬）的影響。

在本論文中，我們利用不確定性量化方法來評估各候選視角對於三維

高斯潑濺的貢獻，進而優化無人機的飛行軌跡規劃。 具體而言，我

們提出一套最佳化且高效的演算法，能夠在飛行過程中即時計算無人

機的飛行路徑。據我們所知，此方法在現有文獻中尚未出現。此外，

我們開發了一個模擬器，能夠同時模擬真實物理效果、無人機飛行視

覺化，以及通信協定，作為我們演算法的完整評估平台，提供貼近實

際情境的測試與驗證。 透過大量實驗，我們的研究成果顯示，相較

於既有方法，我們的系統能夠：（i）在飛行過程中逐步建構高品質的
3DGS物體、（ii）最終生成品質更優異的 3DGS模型、以及（iii）在
選定的視角下，以較少的輸入影像完成上述目標。

i

Abstract

Capturing 3D Gaussian Splatting (3DGS) objects using drones presents a
significant challenge in selecting suitable input views from candidate poses to
ensure high-quality synthesized novel views. This challenge is compounded
by the inherent limitations of drone resources, such as battery life and net-
work bandwidth. In this thesis, we employ uncertainty to quantify the contri-
butions of individual candidate poses so as to optimize the computed drone
trajectories. More specifically, we introduce optimal and efficient algorithms
to compute drone trajectories on the fly, which, to the best of our knowledge,
has never been done in the literature. Furthermore, we developed a simulator
that simultaneously incorporates realistic physics effects, drone flight visu-
alization, and a communication message protocol. This simulator serves as
a comprehensive evaluation platform for our proposed algorithm, enabling
thorough testing and validation under conditions that closely resemble real-
world drone operations. Our extensive experiments revealed that, compared
to the previous studies, our solution can: (i) incrementally construct good-
quality 3DGS objects while following the computed trajectories, (ii) deliver
final 3DGS objects with superior quality, and (iii) achieve the above goals
with fewer input views captured at selected poses.

ii

致謝

我要衷心感謝指導教授徐正炘在整個研究過程中給予的寶貴指導和

支持。我也感謝孫元駿教導我三維高斯潑濺的相關技術並協助我修改

MMM’25會議論文。接著，我要感謝李承澤協助我一同改進本文中所
使用的演算法。最後，我要感謝所有實驗室同學在我兩年研究生生涯

中給予的鼓勵和幫助。

iii

Acknowledgments

I would like to express my sincere gratitude to Professor Cheng-Hsin Hsu
for his invaluable guidance and support throughout the course of this research.
My heartfelt thanks also go to Yuan-Chun Sun for his insightful explanations
on 3D Gaussian Splatting and his help in refining my MMM’25 conference
papers. I am equally grateful to Cheng-Tse Lee for his contributions in im-
proving the algorithms presented in this work. Finally, I would like to thank
all my labmates for their encouragement and assistance throughout my two-
year journey as a graduate student.

iv

Contents

中文摘要 i

Abstract ii

致謝 iii

Acknowledgments iv

1 Introduction 1
1.1 Contributions . 3
1.2 Organization . 4

2 Background 5
2.1 3D Representations . 5

2.1.1 Point Cloud . 6
2.1.2 Mesh . 6
2.1.3 Neural Radiance Fields . 7
2.1.4 3D Gaussian Splatting . 7

2.2 Drone system . 8
2.2.1 Drone . 8
2.2.2 Ground Control Station . 9
2.2.3 MAVLink . 10

3 Related Work 13
3.1 Drone Newtork Simulation Tools . 13

3.1.1 Drone Simulator . 13
3.1.2 Network Simulator . 14
3.1.3 Joint Drone-Network Simulator 14

3.2 Scene Reconstruction . 15
3.2.1 Non-neural 3D representations 15
3.2.2 NeRF representations . 15
3.2.3 3DGS representations . 16

4 Drone-Assisted 3DGS Construction 17
4.1 System Overview . 17
4.2 3DGS Construction . 18
4.3 Gaussian Construction Protocol . 19

v

5 Trajectory Planning for 3DGS Construction 20
5.1 Design motivation . 20
5.2 Notations . 21
5.3 Formulation . 21
5.4 Optimal algorithm . 21
5.5 Efficient algorithm . 23

6 Experiments 24
6.1 Implementations . 24
6.2 Flow-Level Simulation Setup . 25
6.3 Flow-Level Simulation Results . 26
6.4 Packet-Level Simulation Setup . 28
6.5 Packet-Level Simulation Results . 30

7 Conclusion 45
7.1 Concluding Remarks . 45
7.2 Future Directions . 45

Bibliography 47

vi

List of Figures

1.1 Pilot study results from: (a) different numbers of input views, (b), (c)

sample synthesized views from clustered input views, and (d) a sample

synthesized view from equally-spaced input views. 1

2.1 Examples of (a) point cloud and (b) mesh representations. 5

2.2 Examples of (a) NeRF and (b) 3DGS representations. 7

2.3 High-level architecture of the drone system 8

2.4 GUI of QGroundControl . 10

2.5 The MAVLink 2.0 protocol header . 11

4.1 Drone-assisted construction of a 3DGS object. 17

4.2 3DGS trainer for incrementally generating a 3DGS object. 18

4.3 Sample operations of the proposed Gaussian construction protocol. 19

6.1 The architecture of our 3DGS capturing testbed. 24

6.2 Screenshots of our FlyGS simulator in: (a) Gazebo and (b) Unity GUIs. . 32

6.3 Performance comparison of different algorithms under default settings:

(a) quality in PSNR, (b) sample synthesized view from SEQ, and (c) from

DPC at the 140-th second. Sample results from Cabin and random sam-

pling are shown. 33

6.4 Performance comparison of different algorithms under default settings:

(a) quality in PSNR, (b) sample synthesized view from SEQ, and (c) from

DPC at the 174-th second. Sample results from Car and circular sampling

are shown. 34

6.5 Performance of different algorithms with random sampling: (a) quality in

PSNR, (b) quality in SSIM, and (c) numbers of input views. 35

6.6 Performance of different algorithms with circular sampling: (a) quality in

PSNR, (b) quality in SSIM, and (c) numbers of input views. 36

6.7 Performance under different W : (a), (c) quality in PSNR and (b), (d)

number of input views. (a), (b) are from random and (c), (d) are from

circular sampling. 37

vii

6.8 Performance under different C: (a) quality in PSNR and (b) number of

input views. 38

6.9 Computational usage under different C: (a) algorithm running time in

second and (b) usage. 39

6.10 Visual quality under different M from: (a) random and (b) circular sam-

pling. 40

6.11 Visual quality improvement in PSNR of random sampling over circular

sampling under different W using: (a) DPC and (b) AUM. 41

6.12 Reconstructed visual quality from different algorithms with different ra-

dial distances (4, 7, and 10) and numbers of candidate poses (3, 6, 12, and

24). 42

6.13 Impacts of different objects: (a) visual quality, (b) number of input im-

ages, and (c) uplink throughput. 43

6.14 Tradeoff between visual quality and uplink throughput from: (a) Ship and

(b) average across all three objects. 44

viii

List of Tables

6.1 Resource Utilization in Online Reconstruction 31

ix

Chapter 1

Introduction

In recent years, several 3D representations have been adopted in emerging applications,

such as urban planning [34], smart agriculture [28], search and rescue [58], heritage

preservation [48], defect detection [30], film production [9], and robotics navigation [35].

Popular 3D representations include 3D meshes [59], 3D point clouds [19,27], Neural Ra-

diance Fields (NeRFs) [17, 40], and 3D Gaussian Splatting (3DGS) [29]. Compared to

3D meshes and 3D point clouds, NeRF and 3DGS often lead to better visual quality of

synthesized novel views from a few input views of a natural or computer-generated 3D ob-

ject [22]. Here, synthesized novel views1 refer to the new views generated from positions

and orientations which differ from those of the input views. High-quality synthesized

novel views enable 6 Degrees-of-Freedom (6-DoF) interactions for human beings, and

can be further analyzed by vision-based analytics for knowledge extraction.

0 4 8 12
Number of Input Views

0

15

30

Q
ua

lit
y

in
PS

N
R

(d
B

)

(a) (b) (c) (d)

Figure 1.1: Pilot study results from: (a) different numbers of input views, (b), (c) sample

synthesized views from clustered input views, and (d) a sample synthesized view from

equally-spaced input views.

Compared to NeRF, 3DGS supports real-time synthesis, resulting in better respon-

siveness for interactive applications, and thus have attracted attention from both academia
1We use synthesized views for brevity in the rest of this paper.

1

and industry. While 3DGS demonstrates great potential, gathering input views for a larger

3DGS object [1, 5, 54], such as a building, landmark, bridge, cabin, vessel, or vehicle, is

tedious, time-consuming, and error-prone. One way to capture input views from chal-

lenging positions and orientations is to employ a civilian drone with an RGB camera.

However, it is crucial to navigate the drone to take a sufficient number of input views at

different positions and orientations to train a 3DGS object that leads to high-quality syn-

thesized views. In this paper, we collectively call the position and orientation of a drone

to capture an image a pose, and refer to a series of poses as a trajectory.

To understand the importance of selecting input views, we conducted a pilot study

using LEGO [40] in 3D meshes with the vanilla 3DGS implementation [29], which we

describe as follows. We employed Unity [2] to render 24 equally-spaced views facing the

center of the LEGO along the same latitude with a radius of four meters. We reserved the

odd number views as testing views and present the 3DGS synthesized views in Fig. 1.1.

First, we started from a single input view facing the bucket, and incrementally added an

extra input view right next to the previous one. In total, we trained twelve 3DGS objects

with increasingly more input views. We report the average quality of all synthesized

views in Peak Signal-to-Noise Ratio (PSNR) [21] in Fig. 1.1(a), which demonstrates that

more input views leads to better quality. With that said, each drone has limited resources,

such as battery level and network bandwidth, and thus, we have to select the input views

carefully. Next, considering six input views at different poses, we trained two 3DGS

objects with (i) clustered input views close to the LEGO bucket and (ii) equally-spaced

input views surrounding the LEGO. Figs. 1.1(b) and 1.1(c) give the synthesized views

from the clustered input views with better (closer to the bucket) and worse (further away

from the bucket) orientations, respectively. These figures show that a synthesized view

away from the clustered input views suffers from catastrophic quality drops. Fig. 1.1(d)

shows the synthesized view from the equally-spaced input views with the same pose as

Fig. 1.1(c). This figure reveals a huge quality improvement (a 6.51 dB boost in PSNR),

compared to the clustered input views, showing the importance of selecting input views.

Although our pilot study depicts the importance of input view selection, prior related

works [7, 24, 43, 52, 56] only considered the Best View Selection (BVS) problem, which

selects a set of input views from already captured views. Algorithms solving the BVS

problem do not work well in online scenarios, where a 3DGS object is incrementally

constructed on the fly when input views are captured by a drone. The evolving 3DGS

object is used to select the next few poses for additional input views, forming the drone

trajectory. We refer to this online version of the BVS problem as the Next Best View

Selection (NBVS) problem, which, to the best of our knowledge, has never been studied

on 3DGS objects, despite its NeRF variants having been recently investigated [25, 46, 63,

2

64].

In this paper, we study the NBVS problem to construct the drone trajectory for cap-

turing each 3DGS object, which is challenging for two reasons. First, it is not easy to

quantify the amount of information each potential, or candidate pose can bring to an ex-

isting 3DGS object. Second, it is non-trivial to systematically compute a drone trajectory

to maximize the overall quality of synthesized views. To address the former challenge, we

quantify the uncertainty of a candidate pose given the current 3DGS object. Since candi-

date poses with higher uncertainty levels can bring more additional information, they are

more preferable during input view selection. To address the latter challenge, we math-

ematically formulated an optimization problem to compute the drone trajectory, which

can be optimally solved by a Dynamic Programming (DP) algorithm. This DP algorithm,

however, does not scale to bigger problem instances. Hence, we also propose an efficient

heuristic algorithm for larger objects and real-time scenarios. Our extensive evaluation

results show the strengths of the two proposed algorithms; they: (i) improved the visual

quality of 3DGS objects by up to 5.90 dB in PSNR, (ii) cut the number of input views by

up to 48.07%, and (iii) achieved the final synthesized view quality of the previous studies

by up to 50+% time reduction.

1.1 Contributions

In this thesis, we makes the following contributions:

• We design and implement a drone simulator that closely resembles real-world drone

operations. The simulator provides (i) realistic physics effects, including gravity,

wind, and collision dynamics; (ii) photo-realistic rendering with dynamic light-

ing effects to simulate visual perception; and (iii) actual network packet exchanges

through a full MAVLink protocol implementation. This platform enables compre-

hensive testing of drone behavior, perception, and communication under practical

constraints.

• We propose two novel trajectory planning algorithms, DPC and AUM, that address

the NBVS problem in 3DGS reconstruction. These algorithms utilize uncertainty

estimation to quantify the information gain of individual candidate viewpoints,

thereby enabling efficient and adaptive drone trajectory computation in real-time.

• We conduct a comprehensive experimental evaluation of DPC and AUM using our

simulator and benchmark them against state-of-the-art offline reconstruction ap-

proaches. The results demonstrate that our methods not only produce higher-quality

3

3DGS models with fewer input views, but also significantly reduce computational

overhead through online decision-making.

1.2 Organization

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of

commonly used 3D data representation formats and modern drone system. Chapter 3 re-

views related work on the Next Best View Selection (NBVS) problem across different 3D

representations, as well as existing drone simulation platforms. Chapter 4 describes the

problem scenario considered in this thesis, focusing on drone-assisted 3D reconstruction.

Chapter 5 introduces the formal problem formulations and details the proposed algorithms

designed to address them. Chapter 6 presents the experimental setup and results used to

evaluate the effectiveness of the proposed methods. Finally, Chapter 7 summarizes the

key findings and outlines potential directions for future research.

4

Chapter 2

Background

In this chapter, we present an overview of commonly used 3D representation formats,

followed by an introduction to the modern drone system.

2.1 3D Representations

(a) (b)

Figure 2.1: Examples of (a) point cloud and (b) mesh representations.

In this section, we review four commonly used forms of 3D representations: Point

Clouds, Meshes, Neural Radiance Fields (NeRFs), and 3D Gaussian Splatting (3DGS).

Each method presents a unique approach to modeling the geometry, appearance, and

structure of three-dimensional environments.

5

2.1.1 Point Cloud

Point clouds are one of the most widely adopted formats for representing 3D data. They

consist of a set of discrete data points in a three-dimensional coordinate system, typi-

cally captured by depth sensors, LiDAR, or photogrammetry techniques. Each point con-

tains spatial coordinates (x, y, z), and may optionally include additional attributes such as

color, intensity, or surface normal vectors. As shown in Fig. 2.1(a), the point cloud rep-

resentation models the object as discrete points, capturing its spatial distribution without

explicit surface connectivity. Point clouds offer a flexible and efficient means of captur-

ing the geometric structure of objects or environments. One of their primary advantages

is their simplicity and ease of generation, especially from depth images or multi-view

stereo techniques. Additionally, point clouds are lightweight compared to mesh or volu-

metric representations, making them suitable for real-time processing and transmission.

However, point clouds also exhibit several limitations. They inherently lack topological

connectivity, making it difficult to represent surfaces explicitly. This can lead to chal-

lenges in visualization, editing, and physical simulation. Furthermore, they are often

sparse and noisy, particularly when generated from sensors with limited resolution or in

environments with occlusions and poor lighting conditions. As a result, post-processing

steps such as denoising, surface reconstruction, or meshing are often required to convert

raw point clouds into more structured and usable 3D objects.

2.1.2 Mesh

Meshes extend the concept of point clouds by introducing connectivity between points.

A mesh typically consists of vertices, edges, and faces, forming a polygonal structure,

most commonly composed of triangles. As shown in Fig. 2.1(b), the mesh representation

models the object’s surface using connected triangular faces, clearly depicting its geome-

try. Meshes are highly effective for representing the surface geometry of 3D objects with

precision and are widely used in computer graphics, simulation, and 3D modeling. The

structured nature of meshes enables efficient rendering and physical simulation. Never-

theless, generating high-quality meshes from raw 3D data remains a non-trivial problem,

especially when dealing with noisy or incomplete inputs. Despite these advantages, mesh

comes with several challenges. The process of converting raw sensor data (e.g., point

clouds or depth maps) into a mesh typically involves complex algorithms such as surface

reconstruction, Poisson reconstruction, or Delaunay triangulation, which can be compu-

tationally intensive. Moreover, the resulting meshes may suffer from topological errors,

such as holes, non-manifold edges, or poorly shaped triangles, especially in cases where

the input data is sparse or noisy. Maintaining mesh consistency and integrity during in-

6

cremental or real-time reconstruction remains a significant research challenge.

2.1.3 Neural Radiance Fields

(a) (b)

Figure 2.2: Examples of (a) NeRF and (b) 3DGS representations.

Neural Radiance Fields (NeRF) represent a novel paradigm in 3D scene reconstruc-

tion, leveraging deep learning to synthesize photorealistic images from novel viewpoints.

Unlike traditional representations that rely on explicit geometry (e.g., point clouds or

meshes), NeRF encodes a scene as a continuous volumetric function, typically imple-

mented as a multilayer perceptron (MLP). To train a NeRF model, multiple images of

a scene must be collected from different viewing angles. NeRF then predicts the corre-

sponding color and volume density at each sampled 3D location. By integrating these val-

ues along rays, a photorealistic synthesized view of the scene can be generated. NeRF has

demonstrated remarkable performance in novel view synthesis, achieving high-fidelity

rendering of complex scenes with intricate lighting effects. However, NeRF’s train-

ing process is computationally expensive and time-consuming, often requiring dozens

of hours. Additionally, it lacks explicit geometry, making it difficult to perform tasks

such as physical simulation or path planning in robotics.

2.1.4 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) is a recently proposed approach that significantly improves

both the efficiency and quality of 3D reconstruction compared to NeRF. Instead of using

neural networks to represent color and density at every viewpoint in space, 3DGS repre-

sents a scene as a collection of anisotropic 3D Gaussians, each carrying parameters such

7

as position, covariance, and radiance information. These Gaussians are rendered directly

using rasterization-based techniques, enabling real-time rendering without the need for

costly ray marching. Consequently, 3DGS offers an appealing trade-off between visual

quality and computational efficiency. It retains the photorealistic appearance of NeRF

while greatly reducing training and inference time, making it more practical for real-time

or near-real-time applications. Moreover, it provides a more structured representation

than NeRF, allowing for better integration with traditional graphics pipelines.

2.2 Drone system

Drone
Ground Control

Station

Telemtery data
&

Status Infomation

Control Command

Figure 2.3: High-level architecture of the drone system

The high-level architecture of the drone system is illustrated in Fig. 2.3. Modern drone

system is composed of multiple subsystems that work in tandem to achieve data collec-

tion, and real-time control, and autonomous flight. In this section, we briefly describe

the three essential components that form the foundation of typical drone-based systems:

Drone, Ground Control Station (GCS), and the communication protocol, typically imple-

mented using MAVLink.

2.2.1 Drone

The drone, or unmanned aerial vehicle (UAV), serves as the aerial platform responsible

for executing flight missions and collecting data. It is typically equipped with a flight

controller, actuators, and sensors to collect images or videos. The common drone types

are introduced as follows:

• Multirotor: These drones (e.g., quadcopters, hexacopters) are characterized by mul-

tiple rotors that provide vertical lift and enable precise hovering, vertical takeoff and

8

landing (VTOL), and agile maneuverability. Their compact size, mechanical sim-

plicity, and ease of control make them ideal for applications such as aerial photog-

raphy, inspection, mapping, and indoor navigation. However, they generally suffer

from limited flight duration and range due to high energy consumption required for

sustained lift.

• Fixed-wing: Unlike multirotors, fixed-wing drones generate lift via aerodynamic

surfaces and are propelled forward by one or more motors. They are capable of

covering larger distances at higher speeds with greater energy efficiency, making

them well-suited for long-range surveillance, agricultural monitoring, and environ-

mental surveys. On the downside, fixed-wing drones typically require runways or

catapults for takeoff and cannot hover.

• Hybrid (e.g., VTOL fixed-wing platforms): These platforms aim to combine the

benefits of both categories, featuring vertical takeoff capabilities alongside efficient

fixed-wing cruising. Hybrid drones are increasingly used in complex missions that

demand both hovering precision and long endurance.

To enable autonomous operation, an autopilot system ,such as Pixhawk [38] or ArduPi-

lot [4], is essential for drones. An autopilot is an integrated control unit that enables the

drone to execute complex flight maneuvers automatically by processing onboard sensor

data and following pre-programmed flight paths. Functioning as an embedded computer,

the autopilot runs real-time control software that governs the drone’s flight dynamics and

navigation. These systems typically integrate a variety of sensors, including Global Posi-

tioning System (GPS) modules, Inertial Measurement Units (IMUs), and communication

interfaces, allowing for precise localization, stability control, and decision-making with-

out requiring continuous human input.

2.2.2 Ground Control Station

The Ground Control Station (GCS) serves as the central interface between the human op-

erator and drone. It provides the tools necessary for mission planning, real-time monitor-

ing, telemetry analysis, and manual override control. A GCS can range from lightweight

laptop-based systems to dedicated ground terminals with multiple displays and control

peripherals. Functionally, the GCS communicates with the drone’s autopilot system via

telemetry links, commonly using communication protocols such as MAVLink. Through

this link, it receives real-time flight data, including position, attitude, battery status, and

sensor readings, while also transmitting control commands or mission updates to the

drone. Most modern GCS platforms support graphical user interfaces (GUIs) that allow

9

Figure 2.4: GUI of QGroundControl

operators to monitor the drone’s status and environment in an intuitive way. Examples

of widely used open-source GCS software include QGroundControl [44] and Mission

Planner [39], both of which are compatible with autopilot systems. Figure 2.4 shows a

screenshot of the QGroundControl interface, illustrating its key components, including a

real-time map view, telemetry panel, flight mode selector, and mission status indicators.

It displays the drone’s location on a map, defines waypoints, adjusts flight parameters,

and triggers specific actions such as payload deployment or camera operation. This inter-

face greatly enhances situational awareness and simplifies mission execution, especially

in complex or autonomous operations. In autonomous missions, the GCS plays a critical

role in pre-mission configuration, in-flight supervision, and post-mission data analysis,

ensuring safety, efficiency, and mission success. Furthermore, the GCS may serve as the

gateway for multi-UAV coordination, data logging, and regulatory compliance in profes-

sional or commercial operations.

2.2.3 MAVLink

MAVLink [32, 36] is a lightweight, header-only communication protocol widely used in

drone systems. It enables efficient and reliable message exchange between onboard flight

controllers, GCS, and other companion computers. MAVLink messages are typically

10

Figure 2.5: The MAVLink 2.0 protocol header

transmitted over serial or UDP/TCP links and are compatible with many autopilot sys-

tems, including PX4 and ArduPilot. MAVLink supports both telemetry data and control

commands, making it an integral part of modern drone communication architectures. The

protocol’s extensibility and cross-platform support make it a key enabler for integrating

third-party applications and performing closed-loop control.

Fig. 2.5 shows the header structure of MAVLink 2.0. MAVLink messages are struc-

tured into compact binary packets, which begin with a fixed-format header followed by a

payload and checksum. The standard MAVLink 2.0 header consists of the following key

fields:

• STX (1 byte): Start-of-frame marker of a MAVLink 2.0 packet with a fixed value

(0xFD).

• LEN (1 byte): Length of the payload (0–255 bytes).

• INC FLAGS (1 byte): Bitmask indicating incompatible features with older MAVLink

versions.

• CMP FLAGS (1 byte): Bitmask for backward-compatible feature flags.

• SEQ (1 byte): A monotonically increasing number for tracking lost packets.

• SYS ID (1 byte): ID of system (vehicle) sending the message. Used to differentiate

systems on network (e.g., drone and GCS).

• COMP ID (1 byte): ID of component sending the message. Used to differentiate

components in a system (e.g. autopilot and a camera).

• MSG ID (3 bytes): ID of message type in payload. Used to decode data back into

message object.

• PAYLOAD (0-255 bytes): Message data. Depends on message type (i.e. Message

ID) and contents.

• Checksum (2 bytes): CRC-16/MCRF4XX checksum calculated over the header and

payload, used to detect transmission errors.

11

• Signature (13 bytes, optional): Optional digital signature for message authentica-

tion and tamper detection, used in secure communication scenarios.

12

Chapter 3

Related Work

In this chapter, we examine recent developments in joint drone-network simulation frame-

works, which aim to provide realistic environments for evaluating autonomous drone op-

erations under varying physical and network conditions. We also review existing research

related to the Best-View Selection (BVS) and Next-Best-View Selection (NBVS) prob-

lems, with a focus on their application to modern 3D representations.

3.1 Drone Newtork Simulation Tools

3.1.1 Drone Simulator

AirSim [51], developed by Microsoft, is a widely adopted platform that provides photo-

realistic visual environments and a range of virtual sensors for computer vision applica-

tions. It also includes a Python API for simulation control and data collection. However,

AirSim employs a proprietary simplified drone dynamics model known as Fast Physics,

which may not generalize well to scenarios requiring high-fidelity flight dynamics. More-

over, because AirSim’s physics engine is tightly coupled with its rendering pipeline, the

simulation capabilities are somewhat restricted in terms of modularity and scalability. In

contrast, RotorS [16] and PX4 [37] are simulation frameworks built on Gazebo [31], a

widely used robotic simulator in the research community. These platforms offer more

realistic and modular drone dynamics models, supporting complex interactions through

various sensor plugins, such as IMUs, GPS, and generic odometry sensors. With Gazebo’s

plugin-based architecture, these simulators are extensible to other types of robots, includ-

ing ground and underwater vehicles. However, one notable limitation of Gazebo is its lack

of support for photo-realistic rendering, which may limit its applicability in vision-based

reconstruction or perception-driven tasks.

13

3.1.2 Network Simulator

NS-3 [47] is a discrete-event network simulator widely adopted for research and academic

purposes, particularly in wireless communications and internet protocols. Designed with

a modular architecture and implemented in C++ with Python bindings, NS-3 provides a

rich set of models for simulating various network stacks, including LTE, Wi-Fi, 5G, and

TCP/IP protocols. Its packet-level simulation capabilities allow researchers to analyze

end-to-end latency, packet loss, routing behavior, and congestion under controlled condi-

tions. OMNeT++ [57] is a general-purpose, component-based discrete-event simulation

framework that is particularly well-suited for modeling communication networks, dis-

tributed systems, and multi-agent scenarios. It features a graphical runtime environment,

an extensive model library, and a hierarchical module design that enables flexible system

composition. OMNeT++ is highly extensible, making it a popular choice for simulat-

ing vehicular networks, IoT ecosystems, and increasingly, UAV communication systems.

Compared to NS-3, OMNeT++ emphasizes simulation visualization and user interaction,

which can facilitate debugging and educational use. While its networking models are not

as extensive or low-level as NS-3’s, OMNeT++ provides higher-level abstractions and

intuitive configuration interfaces. Similar to NS-3, OMNeT++ lacks native support for

drone dynamics, and thus requires integration with physical simulation tools for compre-

hensive drone system evaluation.

3.1.3 Joint Drone-Network Simulator

FlyNetSim [6] provides various network types and communication channels for drone

communication simulations by integrating ArduPilot with NS-3. However, its user in-

terface supports only a limited set of commands and does not include image capturing

capabilities. UAVSim [23] is platform based on OMNeT++ that focuses on cyberattack

simulation and security testing within drone networks. It allow research change the num-

ber of hosts and attackers, mobility models, and radio-propagation models. AirSimN [55]

is a co-simulation framework that integrates AirSim as the drone simulator and NS-3 as

the network simulator. Built on top of NS-3, AirSimN supports a wide range of network

types, topologies, communication channels, and protocols, thereby enabling realistic sim-

ulation of drone communication systems. A middleware messaging system, ZeroMQ

(ZMQ) [20], is employed to facilitate efficient and low-latency communication between

the two simulators. FANS [12] is a co-simulation platform that integrates NS-3, Gazebo,

and ROS to simulate both communication and mobility in ad-hoc networks. It enables

multi-hop routing through intermediate nodes in the network simulator, making it suitable

for applications such as post-disaster surveys. In conclusion, the simulators mentioned

14

above do not encode messages using the MAVLink protocol during packet exchanges.

3.2 Scene Reconstruction

3.2.1 Non-neural 3D representations

BVS or NBVS problems have been studied in drone-assisted constructions of various

3D representations. For non-neural representations, Simultaneous Localization and Map-

ping (SLAM) systems [14, 15, 41, 42] simultaneously estimate the position of the robot

and construct a map of the surrounding environment using visual or depth data. To en-

hance online 3D model reconstruction, a variety of trajectory planning algorithms have

been proposed [7, 11, 53, 62] which guide drones toward unexplored regions in a 3D vol-

umetric map to address the NBVS problem. For example, RH-NBV [7] proposes an

algorithm to incrementally construct a random tree within the known free space and eval-

uate each branch based on its expected information gain. Song et al. [53] generate a

coarse model before re-scanning for trajectory refinements. S-NBV [62] further improves

the estimation of information gain by incorporating both volumetric and semantic maps

to utilize richer contextual information. MAP-NBV [11] extends along this direction

by introducing decentralized agents for collaborative 3D reconstruction. These meth-

ods [7,11,14,15,41,42,53,62] primarily focus on geometric fidelity and scene coverage.

They fall short in delivering photorealistic rendering quality, which is crucial for applica-

tions such as immersive visualization, virtual inspection, and digital twins.

3.2.2 NeRF representations

The BVS problem for constructing NeRF objects has also been studied. For example,

ActiveNeRF [43] and Conditional-Flow NeRF [52] computed the estimated uncertainty

levels of individual candidate views by applying the Bayesian rule on the current NeRF

object so as to select the input views. Several follow-up studies considered the NBVS

problem, For example, VBA [10] performs online 3D model reconstruction by incremen-

tally integrating new images into a volumetric map that encodes color, density, and feature

data per voxel. SRT [49] replaces the volumetric representation with a set-latent scene

encoding by utilizing a transformer-based encoder-decoder architecture. NeU-NBV [25]

incorporated a simulator to support an autonomous drone, where the simulator quantifies

drone uncertainty levels of various candidate views, which may not be feasible in a real

setup. In contrast, Zeng et al. published a series of papers solving the NBVS problem

for NeRF objects [46, 63, 64]. In their first work, they estimated the uncertainty levels of

candidate views and employed RRT (Rapidly-exploring Random Tree) to construct the

15

drone trajectory [46]. Next, they switched to a more advanced A∗-based algorithm to

construct the drone trajectory so as to improve the overall data collection efficiency [63].

Last, they proposed methods to avoid local optima for better optimality and to support

multiple drones for high efficiency [64]. These NeRF approaches [10, 25, 46, 49, 63, 64]

rely on memory-intensive voxel-based representations, which may limit their scalability.

3.2.3 3DGS representations

To the best of our knowledge, only the BVS problem for 3DGS objects has been con-

sidered recently. For example, Savant et al. [50] introduced a framework integrating un-

certainty estimation with 3DGS training using variational inferencing and a customized

loss function. Their method significantly improved both uncertainty estimation accuracy

and synthesized view quality, demonstrating good overall performance. Moreover, Jiang

et al. [24] computed Fisher information of the radiance fields to solve the BVS problem

using pixel-wise uncertainty quantification. Their method performs well in uncertainty

quantification and view selection, showing its effectiveness in 3DGS construction.

The NBVS problem has recently garnered attention in the context of 3DGS recon-

struction. Jin et al. proposed GS-Planner [26], a method that actively reconstructs 3DGS

using a quadrotor. Their approach maintains and evaluates unobserved regions based on

the current reconstruction quality to guide the robot in addressing the NBVS problem.

This work was further extended by the same group [61] to improve exploration efficiency

and mitigate the risk of local optima. Similarly, ActiveSplat [33] enhances exploration

efficiency by incorporating a Voronoi graph into its planning framework. GS-SLAM [?]

performs online 3DGS reconstruction and camera tracking by directly optimizing Gaus-

sians and camera settings via differentiable rasterization. In contrast to these single-agent

approaches, Zeng et al. [65] introduced a multi-robot autonomous framework for 3DGS

reconstruction, aiming to reduce task completion time by leveraging cooperative agents.

While these methods effectively explore unobserved regions in large-scale environments,

they typically rely on memory-intensive 3D voxel maps, which may limit their scalability.

Furthermore, their evaluations are primarily confined to indoor environments, and their

generalize ability to outdoor or real-world scenarios remains largely unaddressed.

Differing from these works, the current paper is the first to solve the NBVS problem

focus on visual quality for constructing 3DGS objects.

16

Chapter 4

Drone-Assisted 3DGS Construction

In this chapter, we present the considered scenario of drone-assisted 3DGS construction.

We begin by outlining the overall system, including the role of the drone in data acqui-

sition and trajectory planning. This is followed by a discussion of the 3DGS training

procedure and the communication messaging protocol used to coordinate the drone’s op-

erations and data transmission.

4.1 System Overview

Captured
Images

Next
Pose

Flight
Controller

Camera

Onboard Computer

DroneGround Control
Station

Uncertainty
Model

Trajectory
Planning

Algorithm

3DGS
Trainer 802.11gPhysical

802.11 MACData Link

Transport UDP

MAVLinkApplication

Network IP

Figure 4.1: Drone-assisted construction of a 3DGS object.

Fig. 4.1 reveals our considered scenario, which consists of three entities: drone,

Ground Control Station (GCS), and edge server. Here, the camera-equipped drone is

responsible for following the instructions from the GCS, flying to the next position, and

17

taking an image at the next orientation specified by the trajectory. To do so, the drone

employs a flight controller to dynamically adjust the actuators, such as propellers, based

on sensor readings, such as those from GPS readers and inertial sensors. The onboard

computer collects all the sensors data, and is the main computation and communication

unit of the drone. Whenever an image is captured, it is sent to the GCS, which com-

putes the drone trajectory using a trajectory planning algorithm. This algorithm takes an

incrementally built 3DGS object as input. The GCS also hosts an uncertainty model to

estimate how much additional information a candidate pose brings to the current 3DGS

object, which is crucial to trajectory planning algorithms.

More specifically, across recurring (disjoint) planning windows, the trajectory plan-

ning algorithm periodically produces a drone trajectory for the next planning window to

cope with environment dynamics. Because constructing a 3DGS object is computation-

and memory-demanding, GCS offloads the 3DGS trainer to an edge server. That is, the

GCS passes all the captured views from the drone to the edge server as the input views for

constructing a 3DGS object. The 3DGS trainer incrementally constructs a 3DGS object

across multiple epochs, and sends the latest 3DGS object to the GCS upon request, which

essentially is the time of executing the trajectory planning algorithm for the next planning

window. Once the 3DGS construction process is over, the edge server outputs the latest

3DGS object.

4.2 3DGS Construction

3DGS
Object (S)

Init.

Random
Points

S S

ES'

Neural
Network
for 3DGS
Training

Differentiable
Tile

Rasterizer

Quality
Estimator

Synthesized
Images (R)

Evaluation
Results (E)

Input
Images (I)

Figure 4.2: 3DGS trainer for incrementally generating a 3DGS object.

Fig. 4.2 zooms into the 3DGS trainer, which starts from a set of random points, serving

as an initial 3DGS object S. Next, the trainer uses the set of input images I and the current

3DGS object S to train a neural network to optimize the overall synthesized view quality.

In particular, the 3DGS trainer rasterizes multiple synthesized images I ′ using S in order

18

to evaluate I ′’s visual quality compared to the ground truth. The evaluation result E is

used to update S, turning it into the next 3DGS object S′ before moving into the next

epoch. Readers interested in more details on the 3DGS trainer are referred to Kerbl et

al. [29].

4.3 Gaussian Construction Protocol

GCS

SE _POSITION_T R ET_L CAL_NE

D T _T A SMISSION_HA DSH K

E CA SU A E _DA A

COMMA D_ACK

COMMA D_ACK

f y t

wa p i t

Drone

Figure 4.3: Sample operations of the proposed Gaussian construction protocol.

On top of MAVLink, we propose a Gaussian construction messaging protocol to en-

able the cooperation between the GCS and the drone. More specifically, Fig. 4.3 sum-

marizes a sample exchange sequence of four key messages. The GCS first sends a

SET_POSITION_TARGET_LOCAL_NED message to the drone, which contains the next

waypoint. The drone responds with a COMMAND_ACK message and navigates to the

waypoint. The drone then turns on the camera to capture an image. Next, the drone sends

a DATA_TRANSMISSION_HANDSHAKE message to describe the image, which contains

the image size, width, height, and the number of upcoming packets. This is followed by

a series of ENCAPSULATED_DATA messages containing the image. After the GCS re-

ceives all messages, it replies with a final COMMAND_ACK. This completes a round of

the online 3DGS refinement, and the GCS proceeds to the next refinement round.

19

Chapter 5

Trajectory Planning for 3DGS
Construction

In this chapter, we formulate the trajectory planning problem, which is followed by opti-

mal and efficient trajectory planning algorithms.

5.1 Design motivation

One key design decision of trajectory planning is how to model the uncertainty level,

which can be done in multiple ways. We adopted an uncertainty model based on Fisher

information [24] to evaluate each candidate pose’s potential contribution to improve the

current 3DGS object. We emphasize that Jiang et al. [24] solved the BVS problem, which

is different from the NBVS problem we have in hand. Applying their solution to our

scenario leads to two issues. First, their solution assumes the input views at all candidate

poses have been captured, which is not the case in a real drone setup. Second, their

solution does not allow for exploring new poses that are not in the set of input views,

while ours offers much more freedom. With that said, planning a drone trajectory within a

large search space is fundamentally challenging. To cope with it, we have to discretize the

search space by sampling. We consider two alternative sampling methods: random and

circular. The former sampling method is self-explanatory. The second method uniformly

and sequentially samples the poses along the latitude, longitude, and radius centered at

the 3D object. Each dimension comes with a minimum and a maximum, along with a

sampling step; these parameters are user-specified.

20

5.2 Notations

Let X represent the set of candidate poses, with the first element of set x1 representing

the starting pose, and M = |X|. At each pose, the position of the drone can be specified

with latitude θ, longitude ϕ, and radius r in the polar coordinate system. The orientation

of the drone camera points to the center of the 3D object. We use W to denote the duration

of the planning window, which repeats N times until the construction is done. Hence, the

total time duration is W ·N . Last, we let H represent the Fisher information of candidate

poses in X given the current 3DGS object S.

5.3 Formulation

For every pose xi ∈X , the current 3DGS object S is used to generate a synthesized view

ỹi to approximate the ground truth image yi at xi. Using ỹi and the current neural network

model parameters, we compute the Fisher information hi ∈H [24]. Here, hi is a positive

real number, where a higher value indicates more additional information beyond S.

With the above definition, our problem can be seen as a variant of the Traveling Sales-

person Problem (TSP): given the planning window duration W and M candidate poses in

X , we select the optimal trajectory P = {p1, p2, . . . , pN} from X to maximize the to-

tal Fisher information within the planning window duration. Let A capture the expected

moving time, i.e. A[xi][xj] is the time for the drone to move from pose xi to xj . Let V

be the decision variable, where boolean variable vij = 1 iff pose j is visited after i. Our

problem can then be formulated as:

maximizeP
∑M

i=1

∑M
j=1 hi · vij (5.1a)

subject to :
∑M

i=1 vij =
∑M

k=2 vjk ∀j ∈ {p2, p3, . . . , pN−1} (5.1b)∑M
j=2 v1j = 1; (5.1c)∑M
j=2 vij ≤ 1;∀i = 2, 3, . . . ,M ; (5.1d)∑
∀vij=1A[xi][xj] ≤ W ; (5.1e)

vij ∈ {0, 1}, ∀i, j = 1, 2, . . . ,M. (5.1f)

The constraints in Eqs. (5.1b)–(5.1e) correspond to the flow conservation, starting pose,

duplicated poses, and planning window duration, respectively.

5.4 Optimal algorithm

The trajectory planning problem in Eq. (5.1) is NP-Hard. We developed a Dynamic Pro-

gramming (DP) algorithm [8] with a user-specified running time budget C, which returns

21

Algorithm 1 Dynamic Programming with Constraint: DPCC

Input: Time A, planning window duration W , poses X , object S, running time budget C

Output: Trajectory P ∗

1: dic← ∅; hp.push(0, 0, 0, [0]); u∗ ← 0; P ∗ ← [0]; U ← Uo(X, S)

2: while hp is not empty do
3: if tp > C then break

4: (u, t, x,P)← hp.pop()

5: if u ≥ u∗ then u∗ ← u; P ∗ ← P

6: for i← 1 to M do
7: if xi /∈ P then
8: t′ ← t+ A[x][xi]

9: if t′ ≤ W then u′ ← u+U [xi]; P ′ ← P + {xi}
10: if (xi, t

′) /∈ dic or dic[(xi, t
′)] < u′ then dic[(xi, t

′)]← u′; hp.push(u′, t′, xi,P
′)

11: Return P ∗

the best-known solution after C. We refer to this algorithm as Dynamic Programming

with Constraint, or DPCC , where C is the running time budget; we note that DPC∞

degrades to the optimal DP algorithm. To quantify the contribution brought by each can-

didate pose xi ∈ X , given the current S, we define a utility function Uo(xi,S) using its

Fisher information, i.e:

Uo(xi, S) = hi. (5.2)

DPC employs several intermediate data structures: (i) dictionary dic stores the maximum

utility of each DP state, (ii) max-heap hp sorted by their utility values (denoted as u),

along with total elapsed time t, poses x, and trajectory P , (iii) best-known total utility u∗,

(iv) best-known trajectory P ∗, and (v) running time tp.

Algorithm 1 gives the pseudocode of DPCC . The algorithm begins with pushing the

initial tuple of total utility, elapsed time, pose, and trajectory onto hp. Line 2 ensures the

while loop continues until hp is empty. At each iteration for this loop, we extract and

process the next tuple from hp. Line 5 updates u∗ and P ∗ if the current utility exceeds

the best-known u∗. The for-loop starts from line 6 and evaluates all possible candidate

poses xi. Line 7 confirms that xi has not yet been visited. The time to move to xi is added

to the current elapsed time in line 8. Line 9 adds the utility of xi to the total utility and

appends xi to the trajectory if the elapsed time does not exceed W . Line 10 stores the

current state in dic and pushes the current tuple onto hp if it is a new state or the next

total utility surpasses the state’s utility value in dic. The algorithm returns the best-known

trajectory P ∗ in line 11. The time complexity of this algorithm is O(M22M logM), where

DP accounts for M22M and heap accounts for logM .

22

Algorithm 2 A*-inspired Utility Maximization: AUM
Input: Time A, planning window duration W , poses X , object S

Output: Trajectory P ∗

1: P ∗ ← [0]

2: t← 0

3: while t ≤ W do
4: for i← 1 to M do
5: for j ← 1 to M do
6: if i ̸= j and xi, xj /∈ P ∗ and t+A[xi][xj] ≤ W then store UA(xi, xj , S, t) in U

7: xi∗ ← argmax
xi

U

8: P ∗.append(xi∗); t← t+ A[P ∗.last()][xi∗]

9: return P ∗

5.5 Efficient algorithm

We also propose an efficient algorithm inspired by the A* algorithm [13] when real-

timeness is crucial. We call it the A*-inspired Utility Maximization (AUM) algorithm.

As a greedy algorithm, AUM jointly considers the next two poses xi and xj beyond a

given trajectory P ∗. To quantify the potential contribution of adding pose xi to P ∗, with

the total elapsed time denoted as t, we define a utility function UA(xi, xj, S, t) as:

UA(xi, xj, S, t) = hi + hj/A[xi][xj] · [(W − (t+ A[xi][xj])]), (5.3)

where the first term represents the Fisher information provided by pose xi, and the second

term represents the weighted Fisher information provided by pose xj . In particular, the

weighted Fisher information is: (i) inversely proportional to the moving time from pose

xi to xj , and (ii) proportional to the remaining time in the planning window duration after

reaching pose xj .

Algorithm 2 gives the pseudocode of the proposed AUM algorithm. Lines 3 and 6

ensure that the resulting trajectory can be completed within the duration of the planning

window. The for loops, starting from lines 4 and 5, iterate through all candidate poses xi

and xj . After storing the utility function value of all combinations of xi and xj , line 7

finds the next two candidates’ poses that lead to the highest utility function value defined

in Eq. (5.3). Line 8 appends pose xi to trajectory P ∗, and line 9 returns the best-known

P ∗. The time complexity of the AUM algorithm is O(M3), as the algorithm selects at

most M poses, and the time complexity for each pose is O(M2).

23

Chapter 6

Experiments

In this chapter, we evaluate the effectiveness of our proposed trajectory planning algo-

rithms, DPC and AUM, using the developed drone simulator. The primary objectives of

our experiments are threefold: (i) to quantify the time savings enabled by on-the-fly tra-

jectory optimization and model training, (ii) to assess the improvement in visual quality

of the reconstructed 3DGS objects, and (iii) to analyze the impact of key parameters on

overall system performance.

6.1 Implementations

Drone

Physics
Engine

Renderer
Engine

Poses

Captured Images

GCS

Simulated
Drone Motion

Drone MotionTrajectory

Captured Images

Camera
Parameters

Current Pose

Figure 6.1: The architecture of our 3DGS capturing testbed.

We implemented a detailed testbed to evaluate our proposed solution. Fig. 6.1 gives

the main components of our simulator:

• ROS. Robot Operating System (ROS) [45] is used to enable modular, real-time

communication through a publish–subscribe mechanism.

24

• Physics engine. Gazebo [31] is used to capture the drone’s physical behavior, in-

cluding aero-dynamics, sensor readings (e.g., GPS, IMU), and environments (e.g.,

wind and collisions).

• Renderer engine. Unity [2] is used for realistically synthesized images, thanks to

its dynamic lighting and shadow casting.

• Network simulator. NS-3 [47] is used to perform the packet-level simulations be-

tween the GCS and the drone. It supports multiple wireless interfaces (e.g., Wi-Fi,

LTE, D2D), and models real-world factors such as network congestion, environ-

mental interference, and signal attenuation through obstacles. Additionally, we

extend NS-3 with MAVLink protocol [?] to simulate packet-level telemetry and

control message exchange between a GCS and a drone.

Combining all these components, our simulator is able to support high-fidelity visual-

ization and capture realistic network communications. Specifically, our drone simulator

offers the following capabilities: (i) realistic physical effects, (ii) photorealistic rendering,

and (iii) packet-level communication.

We built our testbed upon several open-source projects. For instance, the simulator

structure is based on the open-source FANS simulator [12] using a combination of C/C++

and C#. Moreover, we use a widely adopted autopilot software stack, PX4 [37], to capture

drone dynamics. Furthermore, we employ Gazebo [31] for physics-based simulations.

Unity [2] performs photorealistic rendering, while FlightGoggles [18] enables seamless

interaction between PX4 and Unity. For communication, we adopt the official MAVLink

C library [?], allowing us to encode and decode messages in the simulator. Fig. 6.2 shows

screenshots of the physics and renderer engines of our simulator.

6.2 Flow-Level Simulation Setup

To isolate and evaluate the effectiveness of our trajectory planning algorithm without in-

terference from communication-related factors, we conducted a set of experiments under

idealized network conditions. We assume a perfect communication channel between the

GCS and the drone, where all command and data packets are transmitted instantaneously

and without loss. Specifically, we disabled the ns-3 network module and bypassed any

network-induced latency, jitter, or packet drop.

As the NBVS problem for 3DGS objects has never been studied, we implemented

two baseline algorithms: (i) Sequential (SEQ), which constructs the 3DGS object using

all captured views, and (ii) Adjusted Sequential (ASEQ), which employs Fisher infor-

mation [24] to select representative input views with a number capped to the maximum

25

between those of DPC and AUM (for a comparable workload of the 3DGS trainer). The

edge server hosts a 3DGS trainer enhanced by Kerbl et al. [29]. In total, we modified or

added 44 files with 7014 line-of-code changes in our testbed. We adopted three synthetic

objects in the experiment, Car [1], Ship [54], and Cabin [5]. Each object was placed in

a 4× 2× 2 m3 bounding box with a direct light and an environmental light with a white

background. We ran our experiments on a workstation with an AMD Ryzen 7 5700X

CPU, 32 GB of RAM, and an NVIDIA RTX 3090 Ti GPU. In each simulation run, the

drone flew for 300 s. After that, the edge server continued training the 3DGS object for

50 seconds. For sampling candidate poses, we set r ∈ [4, 10] to random sampling; and

θ ∈ {15, 30, 45, 60}, ϕ ∈ {0, 20, . . . , 340}, and r ∈ {4, 5, . . . , 10} to circular sampling.

We varied W ∈ {25, 50, 75, 100}, M ∈ {5, 10, 20, 40, 80}, and C ∈ {0.25, 0.5, 1, 4},
where the underlined values are the defaults. We report the average performance results

from five simulations with 95% confidence intervals whenever possible.

• Hyperparameters:

– W ·N = 300

– Additional training time = 50

– Random method:

* r ∈ [4, 10]

– Circular method:

* θ ∈ {15, 30, 45, 60}

* ϕ ∈ {0, 20, · · · , 340}

* r ∈ [4, 10]

• Experiment variable:

– W = {25, 50, 75, 100}

– M = {5, 10, 20, 40}

– C = {0.25, 0.5, 1, 4}

6.3 Flow-Level Simulation Results

Merits of our trajectory planning algorithms. We start with a sample run of our ex-

periments. Fig. 6.3 shows sample results of Cabin with random sampling from different

trajectory planning algorithms. Fig. 6.3(a) depicts the visual quality over time. In the first

300 seconds, our algorithms can steadily improve the quality of the 3DGS object as we

26

solve the NBVS problem, allowing us to refine the 3DGS object on the fly instead of after

all views are captured. We observe some fluctuations in the quality of DPC and AUM,

which can be attributed to the 3DGS mechanism that periodically removes some 3D Gaus-

sian to prevent excessive 3D Gaussian density. In Fig. 6.3(b), we show a synthesized view

of the final 3DGS object from SEQ. We also give the corresponding synthesized view of

the 3DGS object at the 140-th second from our DPC in Fig. 6.3(c), which clearly has a

much higher perceived quality compared to Fig. 6.3(b). A deeper investigation revealed

that DPC provided fairly good visual quality in a short time and continued optimizing

the 3DGS object. Fig. 6.3(a) also depicts that DPC outperformed SEQ by 1.85 dB and

ASEQ by 8.01 dB in PSNR when the final 3DGS objects were constructed. Fig. 6.4

presents sample results of Car with circular sampling from different trajectory planning

algorithms. Observations on the figure are in line with those made on Fig. 6.3: DPC de-

livered comparable synthesized visual quality to that of SEQ at the 174-th second, and

boosted the final visual quality by up to 5.90 dB. This performance boost of DPC was

realized with fewer input views: from 52 (SEQ) to 31 (DPC), showing the strength of an

optimized drone trajectory.

Next, we present the results from five runs and across different 3D objects. Fig. 6.5

gives the results from random sampling. Compared with SEQ, our proposed DPC achieved

a better visual quality at 22.17 dB in PSNR, which can be attributed to 13.6 more input

views enabled by DPC’s optimized flying trajectory. Fig. 6.6 gives the results from cir-

cular sampling. The results show that SEQ captured 21.0 more input views than DPC

on average. Nonetheless, DPC still outperformed SEQ by 1.60 dB in PSNR on average.

This is because our algorithms carefully select the most promising candidate poses based

on their utility function values. Adding to that, because we solved the NBVS problem,

our algorithms train 3DGS objects on the fly, allowing them to get more complete 3DGS

objects sooner.

Impacts of configurable parameters. We first varied the planning window duration

W between 25 and 100 s. Fig. 6.7 reports the performance under different W . Fig. 6.7(a)

depicts that the visual quality is not affected by W with random sampling. Fig. 6.7(c)

shows that the visual quality generally decreases with larger W values under circular

sampling. When increasing W from 25 to 100, with the DPC and AUM algorithms, the

overall quality drops by 2.47 and 2.96 dB in PSNR, respectively. Figs. 6.7(b) and 6.7(d)

reveal that the numbers of input views decrease when W is increased. There are a few

possible causes. First, theoretically, when W is sufficiently large, our algorithms get a

chance to select the most suitable poses from the candidate poses for a good trajectory.

However, in practice, for the DPC algorithm, a longer planning duration leads to higher

computational complexity. For example, in our experiments, when W exceeds 75 s, DPC

27

cannot complete the optimal trajectory with smaller C, forcing it to return the best-known

solution. In contrast, AUM does not encounter this issue; even with W = 100 s, AUM

takes only 0.332 milliseconds on average to plan the trajectory. Second, a large W reduces

the flexibility of both DPC and AUM in trajectory planning. Given a limited total time, a

larger W value results in fewer re-planning opportunities, thereby decreasing the chances

for our algorithm to adjust according to the utility of existing 3DGS objects.

Next, we vary the running time budget C. Fig. 6.8(a) shows the visual quality as the

value of C increases. Since AUM needs a much shorter running time than any of the

considered running time budgets, varying C has a negligible impact on its performance.

Hence, we focus on discussing C’s impact on DPC. We take Cabin as an example. When

increasing C from 0.25 to 4 s, the number of input views is reduced from 30 to 26, with a

1.14 dB boost to PSNR. Fig. 6.9 depicts the overall results. On average, increasing C from

0.25 to 4 s yields a 0.226 dB improvement in quality and reduces the required number of

input views by 1.67. The reason is that when our trajectory planning algorithms have time,

they can find the best trajectory in time. The drone then follows the trajectory for higher

utility and fewer input views. However, the implication of C is also highly related to the

decision of W , which determines whether the drone has enough planning and capturing

time. Thus, we recommend adaptively choosing the C for DPC and W for DPC and AUM

based on usage scenarios and computing resources.

Fig. 6.10 shows the results of increasing the number of candidate poses from 5 to 80.

We observe that, as M increases, the visual quality improves. The reason is that larger

M increases the number of candidate poses for the trajectory planning algorithms for

selection so that our algorithms can select better trajectories. However, when we increase

M beyond 20, DPC may use up all the running time budget C. Hence, the visual quality

does not significantly improve once M goes beyond 20. Fig. 6.11 presents the quality

difference between the random and circular sampling. This figure shows that with larger

W , random sampling leads to better visual quality because of the randomness. In contrast,

when W is small, the candidate poses that are far away may miss the opportunity to be

selected. Hence, randomness no longer helps.

6.4 Packet-Level Simulation Setup

In contrast to the idealized setting, we also conducted experiments under realistic network

conditions to assess the robustness and reliability of our protocol and trajectory execution

in the presence of communication disturbances. In this configuration, we enabled the ns-3

network simulation module to introduce controlled network impairments. These impair-

ments were designed to emulate typical wireless communication scenarios encountered

28

in real-world drone deployments.

The trajectory planning setup in the packet-level simulation is identical to that of the

flow-level simulation, ensuring a consistent comparison baseline across both experimental

conditions. However, unlike the idealized network assumed in the flow-level case, this

setting incorporates realistic network behaviors. Specifically, we integrate the Building

and Propagation Loss modules [3] into NS-3. The material properties were defined as

"Metal" for Car and Ship, and "Wood" for Cabin. The drone has the same initial position

in all experiments.

Within the GCS, we implement two trajectory planning algorithms: (i) DPC and (ii)

AUM to identify waypoints for the sake of demonstrations. We also implement offline

(OF) reconstruction as the baseline, which reconstructs with all captured images. Each

online reconstruction task is allocated 300 seconds, during which the system simulta-

neously captures images and progressively reconstructs the 3DGS model. The offline re-

construction baseline first completes the image capture phase entirely before commencing

the 3D reconstruction. We adopt the IEEE 802.11g Wi-Fi standard using the IP protocol

stack. Message transmission utilizes UDP in conjunction with the MAVLink 2.0 protocol.

For online reconstruction (DPC and AUM), camera poses are randomly sampled within

a spherical coordinate space. Specifically, the radial distance r is sampled from the

range from {4, 7, 10}, the elevation angle θ from [15◦, 90◦], and the azimuthal angle ϕ

from [0◦, 360◦). For offline reconstruction (OF), four fixed circular trajectories are pre-

defined around the 3D object. The camera poses along this trajectory are constrained

to a constant elevation angle θ = 15◦, while the azimuthal angle ϕ is uniformly sam-

pled over the range [0◦, 360◦). Four circular orbits are discretized into 3, 6, 12, or 24

evenly spaced candidate poses. The JPEG compression ratio is varied across quality lev-

els: Q ∈ {100, 80, 60, 40, 20}. We let Q = 80 if not otherwise specified. The distance

between the GCS and the building is D = 50. All results are evaluated on a test set of 100

images and are reported as averages, accompanied by 95% confidence intervals where

applicable.

• Hyperparameters:

– W ·N = 300

– Additional training time = 0

– D = 50

– Online reconstruction:

* r ∈ {4, 7, 10}

* θ ∈ [15◦, 90◦]

29

* ϕ ∈ [0◦, 360◦)

– Offline reconstruction:

* r ∈ {4, 7, 10}

* θ = 15◦

* ϕ ∈ [0◦, 360◦)

• Experiment variable:

– Q = {100, 80, 60, 40, 20}

6.5 Packet-Level Simulation Results

Merits of online reconstruction. We first present a sample run of our experiments in

Fig. 6.12, which shows that the visual quality of the 3DGS model produced by online

reconstruction improves over time. In contrast, the offline reconstruction generates a

single 3DGS model after its training is completed. We make three observations on the

figure. First, the DPC and AUM algorithms generally outperform OF. Second, enough

number of candidate poses (say 24) is needed for good reconstructed quality. Lastly, a

radial distance of 4 gives better visual quality than 7 and 10. Such observations are not

possible without our physics simulator.

Impacts of different objects. Fig. 6.13 reports sample performance with 24 candidate

poses from different trajectory planning algorithms and diverse objects. We observe that

the performance trends across the algorithms are consistent among objects. In particular,

Figs. 6.13(a) and 6.13(b) show that DPC and AUM achieve better visual quality, thanks to

more input images. For example, on average (across three objects), DPC boosts the visual

quality of OF:4 by 2.49 dB, at an expense of 8.75 more images. Fig. 6.13(c) reports the

uplink throughput, which shows that OF leads to much more bursty traffic. A closer

look indicate that unlike the DPC and AUM algorithms that would intelligently fly to the

next best pose, the OF trajectories sequentially capture a series of images in close spatial

(and temporal) proximity. This shows DPC and AUM also incur lower network traffic

burst-ness. Such observations are not possible without our photorealistic simulator.

Impacts of JPEG quality levels. Fig. 6.14 reports the tradeoff between visual quality

and unlink throughput using the JPEG quality level Q as the control knob. Sample results

from 24 candidate poses are given here. For brevity, we omit curves from OF:8 and OF:10.

Also we turn their x-axis in log-scale due to wider throughput range. We observe that

higher Q levels do not necessarily result in higher visual quality. This can be attributed

to the fact that the bandwidth between a GCS and a drone is limited. Because higher Q

30

Table 6.1: Resource Utilization in Online Reconstruction

Ship Car Cabin

DPC

CPU utilization 26.97 ± 3.04 24.41 ± 2.55 36.63 ± 2.41

GPU utilization 84.59 ± 6.82 85.32 ± 6.38 87.40 ± 7.55

Memory 63.07 ± 0.41 58.30 ± 0.37 62.06 ± 0.18

GPU memory 10.10 ± 0.44 9.56 ± 0.52 9.75 ± 0.50

AUM

CPU utilization 26.24 ± 3.90 26.22 ± 2.63 37.85 ± 2.89

GPU utilization 84.25 ± 8.02 85.91 ± 6.30 87.14 ± 10.28

Memory 62.77 ± 0.29 63.82 ± 0.14 62.02 ± 0.15

GPU memory 10.11 ± 0.41 14.52 ± 0.64 10.64 ± 2.84

levels result in bigger images (thus, higher throughput), fewer images can be transmitted

to the GCS before the simulation is over. Such observations are not possible without our

packet-level simulator.

Resource Utilization. Tab. 6.1 reports the average resource utilization of DPC and

AUM algorithms across three different scenes. GPU resources are primarily consumed

during the training process of the 3DGS reconstruction, while CPU resources are used for

tasks such as message decoding and planning. Overall, GPU utilization remains consis-

tently high (above 84%) across both algorithms and all scenes, indicating the computa-

tional intensity of online 3DGS reconstruction. CPU utilization varies slightly, with the

Cabin scene showing higher usage due to its structural complexity. Memory and GPU

memory consumption are relatively stable. Despite these differences, both approaches

maintain moderate resource usage, confirming the feasibility of deploying online recon-

struction under realistic computational constraints.

31

(a)

(b)

Figure 6.2: Screenshots of our FlyGS simulator in: (a) Gazebo and (b) Unity GUIs.

32

0 100 200 300 350
Time (s)

0

10

20

30

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC AUM SEQ ASEQ

(a)

(b) (c)

Figure 6.3: Performance comparison of different algorithms under default settings: (a)

quality in PSNR, (b) sample synthesized view from SEQ, and (c) from DPC at the 140-th

second. Sample results from Cabin and random sampling are shown.

33

0 100 200 300 350
Time (s)

0

10

20

30

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC AUM SEQ ASEQ

(a)

(b) (c)

Figure 6.4: Performance comparison of different algorithms under default settings: (a)

quality in PSNR, (b) sample synthesized view from SEQ, and (c) from DPC at the 174-th

second. Sample results from Car and circular sampling are shown.

34

Car Ship Cabin All0

10

20

30

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC
AUM

SEQ
ASEQ

(a)

Car Ship Cabin All
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

in
SS

IM

DPC
AUM

SEQ
ASEQ

(b)

Car Ship Cabin All0

10

20

30

40

50

N
um

be
ro

fI
np

ut
V

ie
w

s

DPC
AUM

SEQ
ASEQ

(c)

Figure 6.5: Performance of different algorithms with random sampling: (a) quality in

PSNR, (b) quality in SSIM, and (c) numbers of input views.

35

Car Ship Cabin All0

10

20

30

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC
AUM

SEQ
ASEQ

(a)

Car Ship Cabin All
0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

in
SS

IM

DPC
AUM

SEQ
ASEQ

(b)

Car Ship Cabin All0

10

20

30

40

50

N
um

be
ro

fI
np

ut
V

ie
w

s

DPC
AUM

SEQ
ASEQ

(c)

Figure 6.6: Performance of different algorithms with circular sampling: (a) quality in

PSNR, (b) quality in SSIM, and (c) numbers of input views.

36

25 50 75 100
Planning Window W (s)

0

10

20

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC (Car)
DPC (Cabin)
DPC (Ship)
DPC (All)

AUM (Car)
AUM (Cabin)
AUM (Ship)
AUM (All)

(a)

25 50 75 100
Planning Window W (s)

0

10

20

30

40

N
um

be
ro

fI
np

ut
V

ie
w

s

(b)

25 50 75 100
Planning Window W (s)

0

10

20

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC (Car)
DPC (Cabin)
DPC (Ship)
DPC (All)

AUM (Car)
AUM (Cabin)
AUM (Ship)
AUM (All)

(c)

25 50 75 100
Planning Window W (s)

0

10

20

30

40

N
um

be
ro

fI
np

ut
V

ie
w

s

(d)

Figure 6.7: Performance under different W : (a), (c) quality in PSNR and (b), (d) number

of input views. (a), (b) are from random and (c), (d) are from circular sampling.

37

0 1 2 3 4
Time Constraint C (s)

0

10

20
Q

ua
lit

y
in

PS
N

R
(d

B
)

DPC (All)
AUM (All)

(a)

0 1 2 3 4
Time Constraint C (s)

0

10

20

30

40

N
um

be
ro

fI
np

ut
V

ie
w

s

DPC (All)
AUM (All)

(b)

Figure 6.8: Performance under different C: (a) quality in PSNR and (b) number of input

views.

38

0 1 2 3 4
C

0

1

2

A
lg

o.
R

un
ni

ng
Ti

m
e

(s
) DPC (Car)

AUM (Car)
DPC (Cabin)
AUM (Cabin)

(a)

0 1 2 3 4
C

0

25

50

75

100

U
sa

ge
of

C
(%

)

DPC (Car)
AUM (Car)
DPC (Cabin)
AUM (Cabin)

(b)

Figure 6.9: Computational usage under different C: (a) algorithm running time in second

and (b) usage.

39

0 40 80
Sampling Number M

0

10

20

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC (Car)
DPC (Ship)
DPC (Cabin)
DPC (All)

AUM (Car)
AUM (Ship)
AUM (Cabin)
AUM (All)

(a)

0 40 80
Sampling Number M

0

10

20

Q
ua

lit
y

in
PS

N
R

(d
B

)

DPC (Car)
DPC (Ship)
DPC (Cabin)
DPC (All)

AUM (Car)
AUM (Ship)
AUM (Cabin)
AUM (All)

(b)

Figure 6.10: Visual quality under different M from: (a) random and (b) circular sampling.

40

25 50 75 100
Planning Window W (s)

−2

0

2

4
Q

ua
lit

y
∆

in
PS

N
R

(d
B

)

Car
Ship

Cabin
All

(a)

25 50 75 100
Planning Window W (s)

−2

0

2

4

Q
ua

lit
y

∆
in

PS
N

R
(d

B
)

Car
Ship

Cabin
All

(b)

Figure 6.11: Visual quality improvement in PSNR of random sampling over circular sam-

pling under different W using: (a) DPC and (b) AUM.

41

Figure 6.12: Reconstructed visual quality from different algorithms with different radial

distances (4, 7, and 10) and numbers of candidate poses (3, 6, 12, and 24).

42

(a)

(b)

(c)

Figure 6.13: Impacts of different objects: (a) visual quality, (b) number of input images,

and (c) uplink throughput.

43

(a)

(b)

Figure 6.14: Tradeoff between visual quality and uplink throughput from: (a) Ship and

(b) average across all three objects.

44

Chapter 7

Conclusion

7.1 Concluding Remarks

In this study, we designed, implemented, and evaluated a drone-assisted capturing system

of 3DGS construction to optimize the resulting synthesized novel views. We used Fisher

information [24] to quantify the contributions of individual candidate poses. We then

developed two algorithms to solve the NBVS problem for 3DGS objects: (i) the DP-based

DPC algorithm for optimal drone trajectories, and (ii) the A*-inspired AUM algorithm

for efficient drone trajectories. Experiment results showed that, compared to the prior

arts, our solution: (i) improved the visual quality of 3DGS objects by up to 5.90 dB (on

average 0.99 dB) in PSNR, (ii) cut the number of input views by up to 48.07% (on average

43.59%), and (iii) achieved the final synthesized view quality of the previous studies in a

shorter time (e.g., with a 50+% time reduction for Cabin and random sampling).

7.2 Future Directions

This work can be extended in several directions, including but not limited to: develop-

ing NBVS algorithms that better adapt to diverse and dynamic physical environments,

enabling multi-drone coordinated capture of 3DGS objects, implementing and evaluating

the solution on a real drone, and incorporating more realistic network conditions with

packet loss and delay.

• Reliable protocol designs: To ensure robust communication between the drone and

the ground control station or between drones in a fleet, future work may focus on

designing reliable communication protocols tailored to resource-constrained aerial

networks. Such protocols should address challenges such as intermittent connectiv-

ity, packet loss, and limited bandwidth, while minimizing overhead. Incorporating

error correction, adaptive retransmission mechanisms, and QoS (Quality of Service)

45

guarantees can significantly enhance the stability and performance of real-world de-

ployments.

• Network-Aware Trajectory Planning: Current trajectory planning focuses primarily

on maximizing scene coverage and information gain. A promising direction for

future work is to incorporate real-time network metrics—such as signal strength,

bandwidth availability, and latency—into the trajectory optimization process. By

jointly considering communication quality and NBVS objectives, drones can make

more informed decisions that improve both 3DGS reconstruction fidelity and data

transmission reliability in dynamic network environments.

• Uncertainty Estimations: The current framework adopts Fisher Information [24] as

the sole means of quantifying the informational contribution of each view in the

3DGS process. This choice was made due to the limited availability of alternative

uncertainty estimation methods at the time of implementation. However, with the

rapid development of this field, several novel approaches to uncertainty estimation

have recently been proposed [60]. Future research should consider integrating and

systematically evaluating these emerging techniques, as they may offer enhanced

accuracy in modeling epistemic uncertainty and improved guidance for view selec-

tion in online reconstruction scenarios.

• Cooperation Systems: Extending the system to support coordinated multi-drone

operations would allow for faster and more comprehensive 3DGS scene capture.

Future work can explore distributed NBVS algorithms, inter-drone communication

strategies, and dynamic task allocation frameworks that enable drones to collabora-

tively select viewpoints and share reconstruction tasks. Challenges such as collision

avoidance, load balancing, and synchronization will need to be addressed for effec-

tive system-level cooperation.

• Alternative Networks: In addition to traditional Wi-Fi, future implementations could

leverage alternative communication technologies such as LoRa (Long Range) or

DSRC (Dedicated Short Range Communications). These protocols offer distinct

advantages in terms of range, power consumption, and reliability under specific en-

vironmental constraints. Investigating their integration into drone-based systems,

particularly in remote or infrastructure-limited areas, could broaden the applicabil-

ity and resilience of 3DGS capture solutions.

46

Bibliography

[1] Racing car, 2022. https://assetstore.unity.com/packages/3d/

vehicles/land/arcade-free-racing-car-161085.

[2] Unity3D game engine. https://unity.com/cn/releases/editor/

whats-new/2022.3.7, 2023.

[3] Buildings Module in NS-3. https://www.nsnam.org/docs/models/

html/buildings.html, 2025.

[4] ArduPilot Development Team. ArduPilot, 2025. http://www.ardupilot.

com.

[5] I. B. Cabin. https://3dwarehouse.sketchup.com/model/

1181ab53-5f0c-4c65-8962-deea50abcd51/cabin?hl=en, 2022.

[6] S. Baidya, Z. Shaikh, and M. Levorato. Flynetsim: An open source synchronized

uav network simulator based on ns-3 and ardupilot. In Proceedings of the 21st

ACM International Conference on Modeling, Analysis and Simulation of Wireless

and Mobile Systems, pages 37–45, 2018.

[7] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding hori-

zon" next-best-view" planner for 3D exploration. In 2016 IEEE international con-

ference on robotics and automation (ICRA), pages 1462–1468. IEEE, 2016.

[8] P. Bouman, N. Agatz, and M. Schmidt. Dynamic programming approaches for the

traveling salesman problem with drone. Networks, 72(4):528–542, 2018.

[9] L. Chen, S. Peng, and X. Zhou. Towards efficient and photorealistic 3D human

reconstruction: a brief survey. Visual Informatics, 5(4):11–19, 2021.

[10] R. Clark. Volumetric bundle adjustment for online photorealistic scene capture. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 6124–6132, June 2022.

47

https://assetstore.unity.com/packages/3d/vehicles/land/arcade-free-racing-car-161085
https://assetstore.unity.com/packages/3d/vehicles/land/arcade-free-racing-car-161085
https://unity.com/cn/releases/editor/whats-new/2022.3.7
https://unity.com/cn/releases/editor/whats-new/2022.3.7
https://www.nsnam.org/docs/models/html/buildings.html
https://www.nsnam.org/docs/models/html/buildings.html
http://www.ardupilot.com
http://www.ardupilot.com
https://3dwarehouse.sketchup.com/model/1181ab53-5f0c-4c65-8962-deea50abcd51/cabin?hl=en
https://3dwarehouse.sketchup.com/model/1181ab53-5f0c-4c65-8962-deea50abcd51/cabin?hl=en

[11] H. Dhami, V. D. Sharma, and P. Tokekar. Map-nbv: Multi-agent prediction-guided

next-best-view planning for active 3d object reconstruction. In 2024 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 5724–5731.

IEEE, 2024.

[12] S. C. Dhongdi, M. P. Tahiliani, O. Mehta, M. Dharmadhikari, V. Agrawal, and

A. Bidwai. Fans: flying ad-hoc network simulator. In Proceedings of the 2022

Latin America Networking Conference, pages 34–41, 2022.

[13] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica. Path

planning with modified A-star algorithm for a mobile robot. Procedia engineering,

96:59–69, 2014.

[14] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam.

In European conference on computer vision, pages 834–849. Springer, 2014.

[15] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular vi-

sual odometry. In 2014 IEEE international conference on robotics and automation

(ICRA), pages 15–22. IEEE, 2014.

[16] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. RotorS—a modular Gazebo

MAV simulator framework. Robot Operating System (ROS) The Complete Reference

(Volume 1), pages 595–625, 2016.

[17] K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li. NeRF: Neural radiance field in 3D

vision, a comprehensive review. arXiv preprint arXiv:2210.00379, 2022.

[18] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman. Flightgoggles: Photore-

alistic sensor simulation for perception-driven robotics using photogrammetry and

virtual reality. In 2019 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6941–6948. IEEE, 2019.

[19] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep learning for

3D point clouds: A survey. IEEE transactions on pattern analysis and machine

intelligence, 43(12):4338–4364, 2020.

[20] P. Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.",

2013.

[21] A. Hore and D. Ziou. Image quality metrics: PSNR vs. SSIM. In 2010 20th inter-

national conference on pattern recognition, pages 2366–2369. IEEE, 2010.

48

[22] C. Hsu, Y.-C. Sun, K.-Y. Lee, and C.-Y. Huang. Will neural 3D object representa-

tions be the silver bullet for improving VR experience in HMDs? In 2024 IEEE

7th International Conference on Multimedia Information Processing and Retrieval

(MIPR), CA, USA, 2024.

[23] A. Y. Javaid, W. Sun, and M. Alam. Uavsim: A simulation testbed for unmanned

aerial vehicle network cyber security analysis. In 2013 ieee globecom workshops

(gc wkshps), pages 1432–1436. IEEE, 2013.

[24] W. Jiang, B. Lei, and K. Daniilidis. FisherRF: Active view selection and uncer-

tainty quantification for radiance fields using Fisher information. arXiv preprint

arXiv:2311.17874, 2023.

[25] L. Jin, X. Chen, J. Rückin, and M. Popović. NeU-NBV: Next best view planning

using uncertainty estimation in image-based neural rendering. In 2023 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 11305–

11312. IEEE, 2023.

[26] R. Jin, Y. Gao, Y. Wang, Y. Wu, H. Lu, C. Xu, and F. Gao. Gs-planner: A

gaussian-splatting-based planning framework for active high-fidelity reconstruc-

tion. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 11202–11209, 2024.

[27] Y. Jin, K. Hu, J. Liu, F. Wang, and X. Liu. From capture to display: A survey on

volumetric video. arXiv preprint arXiv:2309.05658, 2023.

[28] J. M. Jurado, A. López, L. Pádua, and J. J. Sousa. Remote sensing image fusion on

3D scenarios: A review of applications for agriculture and forestry. International

journal of applied earth observation and geoinformation, 112:102856, 2022.

[29] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3D Gaussian Splatting

for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14,

2023.

[30] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth. A review on com-

puter vision based defect detection and condition assessment of concrete and asphalt

civil infrastructure. Advanced engineering informatics, 29(2):196–210, 2015.

[31] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source

multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent

robots and systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–

2154. Ieee, 2004.

49

[32] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui. Micro

air vehicle link (mavlink) in a nutshell: A survey. IEEE Access, 7:87658–87680,

2019.

[33] Y. Li, Z. Kuang, T. Li, G. Zhou, S. Zhang, and Z. Yan. Activesplat: High-

fidelity scene reconstruction through active gaussian splatting. arXiv preprint

arXiv:2410.21955, 2024.

[34] Z. Ma and S. Liu. A review of 3D reconstruction techniques in civil engineering and

their applications. Advanced Engineering Informatics, 37:163–174, 2018.

[35] M. Maboudi, M. Homaei, S. Song, S. Malihi, M. Saadatseresht, and M. Gerke. A re-

view on viewpoints and path planning for UAV-based 3D reconstruction. IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing, 16:5026–

5048, 2023.

[36] MAVLink Development Team. MAVLink common message set. https://

mavlink.io/en/messages/common.html, 2025. Accessed: 2025-06-01.

[37] L. Meier, D. Honegger, and M. Pollefeys. Px4: A node-based multithreaded open

source robotics framework for deeply embedded platforms. In 2015 IEEE inter-

national conference on robotics and automation (ICRA), pages 6235–6240. IEEE,

2015.

[38] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys. Pix-

hawk: A micro aerial vehicle design for autonomous flight using onboard computer

vision. Autonomous robots, 33:21–39, 2012.

[39] Michael Oborne et al. Mission Planner: Ground control station for ardupilot-based

uavs. https://ardupilot.org/planner/, 2025. Accessed: 2025-06-01.

[40] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng.

NeRF: Representing scenes as neural radiance fields for view synthesis. Communi-

cations of the ACM, 65(1):99–106, 2021.

[41] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: A versatile and accurate

monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

[42] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monoc-

ular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262,

2017.

50

https://mavlink.io/en/messages/common.html
https://mavlink.io/en/messages/common.html
https://ardupilot.org/planner/

[43] X. Pan, Z. Lai, S. Song, and G. Huang. ActiveNeRF: Learning where to see with

uncertainty estimation. In European Conference on Computer Vision, pages 230–

246. Springer, 2022.

[44] QGroundControl Development Team. Qgroundcontrol: Open-source ground control

station for drones. https://qgroundcontrol.com/, 2025. Accessed: 2025-

06-01.

[45] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y.

Ng, et al. ROS: an open-source robot operating system. In ICRA workshop on open

source software, volume 3, page 5. Kobe, Japan, 2009.

[46] Y. Ran, J. Zeng, S. He, J. Chen, L. Li, Y. Chen, G. Lee, and Q. Ye. NeurAR: Neural

uncertainty for autonomous 3D reconstruction with implicit neural representations.

IEEE Robotics and Automation Letters, 8(2):1125–1132, 2023.

[47] G. F. Riley and T. R. Henderson. The ns-3 network simulator. In Modeling and tools

for network simulation, pages 15–34. Springer, 2010.

[48] B. Rodriguez-Garcia, H. Guillen-Sanz, D. Checa, and A. Bustillo. A systematic

review of virtual 3D reconstructions of cultural heritage in immersive virtual reality.

Multimedia Tools and Applications, pages 1–51, 2024.

[49] M. S. M. Sajjadi, H. Meyer, E. Pot, U. Bergmann, K. Greff, N. Radwan, S. Vora,

M. Lučić, D. Duckworth, A. Dosovitskiy, J. Uszkoreit, T. Funkhouser, and

A. Tagliasacchi. Scene representation transformer: Geometry-free novel view syn-

thesis through set-latent scene representations. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 6229–

6238, June 2022.

[50] L. Savant, D. Valsesia, and E. Magli. Modeling uncertainty for Gaussian Splatting.

arXiv preprint arXiv:2403.18476, 2024.

[51] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical

simulation for autonomous vehicles. In Field and Service Robotics: Results of the

11th International Conference, pages 621–635. Springer, 2018.

[52] J. Shen, A. Agudo, F. Moreno-Noguer, and A. Ruiz. Conditional-Flow NeRF: Accu-

rate 3D modelling with reliable uncertainty quantification. In European Conference

on Computer Vision, pages 540–557. Springer, 2022.

51

https://qgroundcontrol.com/

[53] S. Song, D. Kim, and S. Choi. View path planning via online multiview stereo for 3D

modeling of large-scale structures. IEEE Transactions on Robotics, 38(1):372–390,

2021.

[54] S. T. Ship. https://assetstore.unity.com/packages/3d/

environments/flooded-grounds-48529#description, 2019.

[55] S.-M. Tang, C.-H. Hsu, Z. Tian, and X. Su. An aerodynamic, computer vision,

and network simulator for networked drone applications. In Proceedings of the

27th Annual International Conference on Mobile Computing and Networking, pages

831–833, 2021.

[56] S.-M. Tang, Y.-C. Sun, and C.-H. Hsu. A blind streaming system for multi-client on-

line 6-DoF view touring. In Proceedings of the 31st ACM International Conference

on Multimedia, pages 9124–9133, 2023.

[57] A. Varga. Omnet++. In Modeling and tools for network simulation, pages 35–59.

Springer, 2010.

[58] S. Verykokou, A. Doulamis, G. Athanasiou, C. Ioannidis, and A. Amditis. UAV-

based 3D modelling of disaster scenes for urban search and rescue. In 2016 IEEE

International Conference on Imaging Systems and Techniques (IST), pages 106–111,

2016.

[59] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2Mesh: Gener-

ating 3D mesh models from single RGB images. In Proceedings of the European

conference on computer vision (ECCV), pages 52–67, 2018.

[60] J. Wilson, M. Almeida, S. Mahajan, M. Labrie, M. Ghaffari, O. Ghasemalizadeh,

M. Sun, C.-H. Kuo, and A. Sen. Pop-gs: Next best view in 3d-gaussian splatting

with p-optimality. In Proceedings of the Computer Vision and Pattern Recognition

Conference, pages 3646–3655, 2025.

[61] Z. Xu, R. Jin, K. Wu, Y. Zhao, Z. Zhang, J. Zhao, F. Gao, Z. Gan, and W. Ding. Hgs-

planner: Hierarchical planning framework for active scene reconstruction using 3d

gaussian splatting. arXiv preprint arXiv:2409.17624, 2024.

[62] X. Yu and C. W. Chen. Semantic-aware next-best-view for multi-dofs mobile system

in search-and-acquisition based visual perception. In Proceedings of the 32nd ACM

International Conference on Multimedia, pages 3713–3721, 2024.

52

https://assetstore.unity.com/packages/3d/environments/flooded-grounds-48529#description
https://assetstore.unity.com/packages/3d/environments/flooded-grounds-48529#description

[63] J. Zeng, Y. Li, Y. Ran, S. Li, F. Gao, L. Li, S. He, J. Chen, and Q. Ye. Efficient view

path planning for autonomous implicit reconstruction. In 2023 IEEE International

Conference on Robotics and Automation (ICRA), pages 4063–4069. IEEE, 2023.

[64] J. Zeng, Y. Li, J. Sun, Q. Ye, Y. Ran, and J. Chen. Autonomous implicit indoor scene

reconstruction with frontier exploration. arXiv preprint arXiv:2404.10218, 2024.

[65] J. Zeng, Q. Ye, T. Liu, Y. Xu, J. Li, J. Xu, L. Li, and J. Chen. Multi-robot autonomous

3d reconstruction using gaussian splatting with semantic guidance. IEEE Robotics

and Automation Letters, 2025.

53

	中文摘要
	Abstract
	致謝
	Acknowledgments
	Introduction
	Contributions
	Organization

	Background
	3D Representations
	Point Cloud
	Mesh
	Neural Radiance Fields
	3D Gaussian Splatting

	Drone system
	Drone
	Ground Control Station
	MAVLink

	Related Work
	Drone Newtork Simulation Tools
	Drone Simulator
	Network Simulator
	Joint Drone-Network Simulator

	Scene Reconstruction
	Non-neural 3D representations
	NeRF representations
	3DGS representations

	Drone-Assisted 3DGS Construction
	System Overview
	3DGS Construction
	Gaussian Construction Protocol

	Trajectory Planning for 3DGS Construction
	Design motivation
	Notations
	Formulation
	Optimal algorithm
	Efficient algorithm

	Experiments
	Implementations
	Flow-Level Simulation Setup
	Flow-Level Simulation Results
	Packet-Level Simulation Setup
	Packet-Level Simulation Results

	Conclusion
	Concluding Remarks
	Future Directions

	Bibliography

